
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/TQE.2020.DOI

Mutation Testing of Quantum Programs:
A Case Study with QISKit
DANIEL FORTUNATO1,2,3, JOSÉ CAMPOS1,4, RUI ABREU1,2
1Faculty of Engineering of University of Porto, Portugal
2INESC-ID, Lisboa, Portugal
3LIACC - Artificial Intelligence and Computer Science Laboratory (member of LASI LA), Porto, Portugal
4LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Corresponding author: Daniel Fortunato (email: daniel.b.fortunato@tecnico.ulisboa.pt).

This work was supported in part by FCT/MCTES through projects ref. PTDC/CCI-COM/29300/2017 and CMU/TIC/0064/2019, and the
research units LASIGE (ref. UIDB/00408/2020 and UIDP/00408/2020), INESC-ID (ref. UIDB/50021/2020), and LIACC (ref.
UIDB/00027/2020).

ABSTRACT As quantum computing is still in its infancy, there is an inherent lack of knowledge and
technology to test a quantum program properly. In the classical realm, mutation testing has been successfully
used to evaluate how well a program’s test suite detects seeded faults (i.e., mutants). In this paper, building on
the definition of syntactically equivalent quantum operations, we propose a novel set of mutation operators
to generate mutants based on qubit measurements and quantum gates. To ease the adoption of quantum
mutation testing, we further propose QMutPy, an extension of the well-known and fully automated open-
source mutation tool MutPy. To evaluate QMutPy’s performance, we conducted a case study on 24 real
quantum programs written in IBM’s Qiskit library. Furthermore, we show how better test suite coverage
and improvements to test assertions can increase the test suites’ mutation score and quality. QMutPy has
proven to be an effective quantum mutation tool, providing insight into the current state of quantum tests
and how to improve them.

INDEX TERMS Quantum computing, Quantum software engineering, Quantum software testing, Quan-
tum mutation testing

I. INTRODUCTION

QUANTUM computation uses the quantum bit (qubit)—
the quantum-mechanical analog of the classical bit—

as its fundamental unit instead of the classical computing
bit. Whereas classical bits can take on only one of two basic
states (e.g., 0 or 1), qubits can take on superpositions of those
basic states (e.g., α · |0⟩+β · |1⟩), where α and β are complex
scalars such that |α|2+|β|2 = 1, allowing a number of qubits
to theoretically hold exponentially more information than the
same number of classical bits. Thus, quantum computers can,
in theory, quickly solve problems that would be extremely
difficult for classical computers. Such computation is possi-
ble because of qubit properties such as superposition of both
0 and 1, entanglement of multiple qubits, and interference [1,
2].

The field of quantum computing is evolving at a pace faster
than originally anticipated [3]. For example, in March 2020,

Honeywell announced1 a revolutionary quantum computer
based on trapped-ion technology with quantum volume 64—
the highest quantum volume ever achieved, twice the state of
the art previously accomplished by IBM. Quantum volume is
a unit of measure indicating the fidelity of a quantum system.
This important achievement shows that the field of quantum
computing may reach industrial impact much sooner than
initially anticipated.

While the fast approaching universal access to quantum
computers is bound to break several computation limita-
tions that have lasted for decades, it is also bound to pose
major challenges for many, if not all, computer science
disciplines [4], e.g., software testing. Testing is one of the
most used techniques in software development to ensure
software quality [5, 6]. It refers to the execution of software
in in vitro environments that replicate (as close as possible)
real scenarios to ascertain its correct behavior. Despite the

1https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-
breakthrough-that-will-enable-the-worlds-most-powerful-quantum-
computer

VOLUME 4, 2016 1

https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer
https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer
https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer

Fortunato et al.: Mutation Testing of Quantum Programs

fact that, in the classical computing realm, testing has been
extensively investigated, and several approaches and tools
have been proposed [7, 8, 9, 10, 11, 12], such approaches
for Quantum Programs (QPs) are still in their infancy [13,
14, 15]. It is worth noting that (i) QPs are much harder to
develop than classical programs and therefore, programmers,
mostly familiar with the classical world, are more likely to
make mistakes in the counter-intuitive quantum program-
ming one [16], and (ii) QPs are necessarily probabilistic
and impossible to examine without disrupting execution or
without compromising their results [17]. Thus, ensuring a
correct implementation of a QP is even harder in the quantum
computing realm [18].

Mutation testing [19, 20] has been shown to be an effective
technique in improving testing practices, hence helping to
guarantee program correctness. Big tech companies, such as
Google and Facebook, have conducted several studies [21,
22, 23] advocating for mutation testing and its benefits. The
general principle underlying mutation testing is that the bugs
considered to generate buggy program versions represent
realistic mistakes that programmers often make. Such bugs
are deliberately seeded into the original program by simple
syntactic changes to create a set of buggy programs called
mutants, each containing a different syntactic change. To
assess the effectiveness of a test suite at detecting mutants,
these mutants are executed against the input test suite. If
the result of running a mutant is different from the result
of running the original program for at least one test case in
the input test suite, the seeded bug denoted by the mutant is
considered detected or killed.

Just et al. [24] performed a study on whether mutants are
a valid substitute for real bugs in classical software testing,
and they concluded that (1) test suites that kill more mutants
have a higher real bug detection rate, (2) mutation score is
a better predictor of test suites’ real bug detection rate than
code coverage. We have no reason to believe that it would be
any different in quantum computing. Thus, and to shed light
on whether manually-written test suites for QPs are effective
at detecting mistakes that programmers might often make, in
this paper, we aim to investigate the application of mutation
testing on real QPs.

In this paper, we focus our investigation on the most
popular open-source full-stack library for quantum com-
puting [25], IBM’s Quantum Information Software Kit
(Qiskit) [26]2. Qiskit is one of the first software development
kits for quantum to be released publicly and provides tools to
develop and run QPs on either prototype quantum devices on
IBM Quantum Experience infrastructure or simulators on a
local computer. In a nutshell, Qiskit translates QPs written in
Python into a lower-level language called OpenQASM [27],
which is its quantum instruction language. Many famous
quantum algorithms such as Shor [28] and Grover [29] have
already been implemented using Qiskit’s API3. Building

2https://qiskit.org
3https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/
algorithms

from our previous work [30], in detail, the main contributions
of this paper are:
• A set of five novel mutation operators, leveraging the

notion of syntactically equivalent gates, tailored for QPs.
• A novel Python-based toolset named QMutPy that auto-

matically performs mutation testing for QPs written in the
Qiskit’s [26] full-stack library.

• An empirical evaluation of QMutPy’s effectiveness and
efficiency on 24 real QPs.

• A detailed discussion on extending test suites for QPs to
kill more mutants and therefore detect more bugs.

To the best of our knowledge, the study described and
evaluated in this paper is the first comprehensive mutation
testing study on real QPs. Our results suggest that QMutPy
can generate fault-revealing quantum mutants and surfaced
several issues in the test suites of the real QPs used in the
experiments. We have discussed two improvements to test
suites, viz. increasing code coverage and improving the qual-
ity of the test assertions. Such improvements significantly
increase the mutation score of the test suites—hence, leading
to QPs of higher quality.

The remainder of the paper is organized as follows. We
present current available open-source mutation tools and
detail the extension done for QMutPy in Section II. We
detail how our experiment was conducted and subjects were
selected in Section III. We present our results in Section IV.
We discuss and execute improvements to current test suites
and how they were impacted in Section V. In Section VI, we
mention published works about mutation tools and current
quantum testing tools. We discuss future work and conclude
our paper in Section VII.

II. MUTATION TESTING OF QUANTUM PROGRAMS
In this section, we explain our mutation strategy, including
the five novel mutation operators tailored for QPs, and the
implementation details of QMutPy —our proposed Python-
based toolset to automatically perform mutation testing for
QPs written in Qiskit’s [26].

A. QUANTUM MUTATION OPERATORS
Similar to classical programs, a QP is fundamentally a cir-
cuit in which qubits are initialized and go through a series
of operations that change their state. These operations are
commonly known as quantum gates. Two of the most used
quantum gates are the NOT gate and the Hadamard gate,
usually referred to as the x gate and the h gate, respectively.
They are single-qubit operations, i.e., they change the state
of one qubit [31]. The x gate is analogous to the classical
NOT gate; it simply inverts the current qubit state. The h
gate is quantum specific; it puts the qubit in a perfect state
of superposition (i.e., equal probability of being 1 or 0 when
measured).

At the time of writing this paper, Qiskit v0.29.0 provides
support to more than 50 quantum gates4. This includes

4https://qiskit.org/documentation/apidoc/circuit_library.html

2 VOLUME 4, 2016

https://qiskit.org
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms
https://qiskit.org/documentation/apidoc/circuit_library.html

Fortunato et al.: Mutation Testing of Quantum Programs

ccx

ch

cp

crx

cry

crz

cswap

csx

cu1

cx

cy

cz

dcx

h

i

id

iswap

ms

p

r

rx

rxx

ry

ryy

rz

rzx

rzz

s

sdg

swap

sx

t

tdg

u

u1

u2

u3

x

y

z

cc
x ch cp cr

x
cr

y
cr

z

cs
w
ap cs

x
cu

1 cx cy cz dc
x h i id

is
w
ap m

s p r rx rx
x ry ry

y rz rz
x

rz
z s

sd
g

sw
ap sx

t
td

g u u1 u2 u3 x y z

FIGURE 1. Equivalent gates in the Qiskit full-stack library reported
horizontally and vertically. For example, the set of equivalent gates of
gate x is y, z, h, i, id, s, sdg, sx, t, and tdg.

single-qubit gates (e.g., h gate), multiple-qubit gates (e.g.,
cx gate), and composed gates, also known as circuits (e.g.,
QFT circuit). Given their importance on the execution and
result of a QP, as a simple typo on the name of the gate
could cause bugs that developers may not be aware of,
our set of mutation operators to generate faulty versions of
QPs is based on single- and multi-qubit quantum gates, in
particular, syntactically equivalent gates. We argue that our
quantum mutants match real world bugs as (1) Liu et al.
[32] described quantum mutation to be helpful to assess the
correct behavior of QPs, and (2) 3 out of the 8 common
bug patterns in Qiskit programs described by Zhao et al.
[33] are related to quantum gates as so are the majority
of our mutation operators. Nevertheless, and as part of our
future work, we will investigate and develop novel quantum
mutation operators based on conceptual mistakes a developer
might make when developing QPs.

Formally, a gate g is considered syntactically equivalent to
gate j if and only if the number and the type of arguments5

required by both g and j are the same. At the time when we
performed our experiment, we had identified 40 gates that
had syntactical equivalents. Figure 1 lists all gates and their
syntactically equivalent ones. For instance, the h gate has 10
syntactically equivalent gates: i, id, s, sdg, sx, t, tdg, x,
y, and z. Note that these gates do not perform or compute
the same operation; they are simply used in the same manner
and require the same number and type of arguments.

The following subsections briefly describe the five quan-
tum mutation operators proposed in this paper. Our examples

5Optional arguments are not taken into consideration.

are based on the implementation of Shor’s [28] algorithm
available in the Qiskit-Aqua’s repository6.

1) Quantum Gate Replacement (QGR)
This mutation operator first identifies each call to a
quantum gate function (e.g., circuit.x()7), and then
replaces it with all syntactically equivalent gates, e.g.,
circuit.h()8, one at a time. For instance, for the x
quantum gate, 10 mutants are generated as there are 10
syntactically equivalent gates (see Figure 1). Listing 1 ex-
emplifies the QGR operator.

LISTING 1. Example of the QGR operator.
153 - circuit.x(qubits[0])
153 + circuit.h(qubits[0])

2) Quantum Gate Deletion (QGD)
Adding and removing quantum gates from a QP can sig-
nificantly impact its output. The QGD operation deletes an
invocation to a quantum gate. Listing 2 exemplifies the QGD
operator.

LISTING 2. Example of the QGD operator. In Python, a pass state-
ment is a nop that when executed nothing happens. It is useful as a
placeholder when a statement is required syntactically, but no code
needs to be executed [34].
153 - circuit.x(qubits[0])
153 + pass

3) Quantum Gate Insertion (QGI)
This quantum mutation operator performs the opposite action
of the QGD operator. Instead of deleting a call to a quantum
gate, it inserts a call to a syntactically equivalent gate. For
each quantum gate in the source code, this mutation operator
creates as many mutants as the number of syntactically
equivalent gates. For example, for the x gate, which has 10
syntactically equivalent gates, it creates 11 mutants, one per
equivalent gate. Note that the x gate itself can be inserted in
the source code, counting as a valid mutant. Listing 3 shows
an example of the QGI operator.

LISTING 3. Example of the QGI operator.
153 circuit.x(qubits[0])
154 + circuit.y(qubits[0])

4) Quantum Measurement Insertion (QMI)
In quantum computing, measuring a qubit breaks the state of
superposition and the qubit’s value becomes either 1 or 0 (as
in classical computing), which can be considered a mutation
by design. This operator adds a call to the measure func-

6https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/
algorithms/factorizers/shor.py

7https://qiskit.org/documentation/stubs/qiskit.circuit.library.XGate.html
8https://qiskit.org/documentation/stubs/qiskit.circuit.library.HGate.html

VOLUME 4, 2016 3

https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/algorithms/factorizers/shor.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/algorithms/factorizers/shor.py
https://qiskit.org/documentation/stubs/qiskit.circuit.library.XGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.HGate.html

Fortunato et al.: Mutation Testing of Quantum Programs

TABLE 1. MutPy [35] vs. mutmut [36] vs. Cosmic Ray [37] vs.
Mutatest [38]. Regarding testing frameworks mutmut supports all test
runners (because mutmut only needs an exit code from the test
command)

MutPy [35] mutmut [36] Cosmic Ray [37] Mutatest [38]

Open-Source Ë Ë Ë Ë
Language Python Python Python Python
Installing/Setup
Mutation operators AOD, AOR,

ASR, BCR,
COD, COI,
CRP, DDL,
EHD, EXS,
IHD, IOD, IOP,
LCR, LOD,
LOR, ROR,
SCD, SCI, SIR

value
mutations,
decision
mutations,
statement
mutations

Binary
Operator
Replacement,
Boolean
Replacer,
Break/-
Continue,
Comparison
Operator
Replacement,
Exception
Replacer,
Keyword
Replacer,
Number
Replacer,
Remove
Decorator,
Unary Operator
Replacement,
Zero Iteration
For Loop

AugAssign,
BinOp,
BinOp Bitwise
Comparison,
BinOp Bitwise
Shift, BoolOp,
Compare,
Compare In,
Compare Is,
If, Index,
NameConstant,
Slice

Can select operators Ë é Ë Ë
Test framework unittest, pytest any unittest, pytest pytest
Report yaml, html xml html —
Fully automated Ë Ë Ë Ë

tion9 for each quantum gate call. Listing 4 shows an example
of the QMI operator.

LISTING 4. Example of the QMI operator.
153 circuit.x(qubits[0])
154 + measurement_cr =

ClassicalRegister(circuit.num_qubits)
155 + circuit.add_register(measurement_cr)
156 + circuit.measure(qubits[0], measurement_cr)

5) Quantum Measurement Deletion (QMD)

Contrary to QMI, the QMD operator removes each measure-
ment from a QP, one at a time. Without a measure call, the
QP keeps the superposition state and as a consequence does
not converge the qubit to either 1 or 0. Listing 5 shows an
example of the QMD operator.

LISTING 5. Example of the QMD operator.
258 up_cqreg = ClassicalRegister(2 * self._n, name=’m’)
259 circuit.add_register(up_cqreg)
260 - circuit.measure(self._up_qreg, up_cqreg)
260 + pass

B. QMutPy TOOLSET

QPs written in Python and using Qiskit library are a mix of
classical operations (e.g., initialization of variables, loops),
and quantum operations (e.g., initialization of quantum cir-
cuits, measuring qubits). Thus, we foresee that the most
suitable mutation tool for QPs would be one that
• Supports Python programs and the two widespread test-

ing frameworks for Python: unittest and pytest.

9https://qiskit.org/documentation/stubs/qiskit.circuit.library.Measure.html

• Supports various classical mutation operators (e.g., As-
signment Operator Replacement, Conditional Operator
Insertion).

• Supports the creation of a report that could be shown to a
developer or easily parsed by an experimental infrastruc-
ture (as the one described in Section III).

• Fosters wide adoption, the learning curve to install, con-
figure and use the tool ought to be low.

In this section, we first describe the most relevant mutation
testing tools out there and which requirements they fulfil.
Then we selected a tool to build upon, and describe its
workflow and added features.

1) Python-based Mutation Testing Tools

Mutatest [38], mutmut [36], MutPy [35] and CosmicRay [37]
are the most popular mutation testing tools for Python that
are available through pip10 (the package installer for Python).
Table 1 reports the most relevant features of each mutation
tool. In the following subsections, we describe their ad-
vantages and disadvantages. Albeit being open-source, fully
automated, and supporting classical mutation operators, not
all tools fulfil all our requirements.

Mutatest [38] only supports pytests whereas, e.g.,
the programs in the Qiskit-Aqua’s repository11 require
unittest. It neither produces a report of a mutation test-
ing session. Thus, any post-mortem analysis (e.g., statistical
analysis) could not be easily performed.

mutmut [36] does not allow one to instantiate the tool
with a single mutation operator or a defined set of mutation
operators. Thus, a developer that decides to use it would
have to wait for all mutants to be analyzed. This can be
severely time-consuming as a program could have thousands
of mutants and, more importantly, a developer would not be
able to, e.g., only select quantum mutation operators. Thus,
using mutmut would be unproductive.

MutPy [35] and Cosmic Ray [37] are similar in nature.
Both provide a reporting system, support unittest and
pytest, and allow one to select a subset of mutation op-
erators. However, from our own experience installing and
running the tools, MutPy’s learning curve is more gradual
than Cosmic Ray’s.

The tool that better fulfils all requirements we aimed for in
a mutation tool is MutPy [35] which we extended and named
QMutPy (details in Section II-B3).

2) MutPy Flow

MutPy’s workflow is composed by four main steps. Given
a Python program P , its test suite T , and a set of mutation
operators M , MutPy’s workflow is as follows: (1) MutPy
firstly loads P ’s source code and test suite; (2) Executes T
on the original (unmutated) source code; (3) Applies M and
generates all mutant versions of P ; (4) Executes T on each

10https://pypi.org/project/pip
11https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9

4 VOLUME 4, 2016

https://qiskit.org/documentation/stubs/qiskit.circuit.library.Measure.html
https://pypi.org/project/pip
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9

Fortunato et al.: Mutation Testing of Quantum Programs

mutant and provides a summary of the results either as a yaml
or html report.

Since steps one and two are self-explanatory, we will focus
on steps three and four. In step three, MutPy parses the code
and for each mutation operator12 checks if there are mutants
to be generated. Mutants in MutPy are generated through
the Python Abstract Syntax Tree (AST). When a possible
mutation is found, the corresponding node from the AST is
removed and a mutated node is created and injected into the
unmutated source code.

In step four, MutPy executes T on the mutated version
and produces a report. Each report includes information such
as the number of mutants, whether each mutant was either
killed, survived, incompetent (e.g., mutants that make the
source code uncompilable.), or timeout, the time it took to
run the T on P , the time it took to run T on each mutant.

3) QMutPy
QMutPy13 is built on top of the open-source Python mutation
testing tool MutPy. Installing and using QMutPy is simple
and straightforward. One only needs to clone QMutPy’s
repository and follow the installation and usage instructions
available in the README14 file.

We extended MutPy by implementing the quantum muta-
tion operators described in Section II-A which developers can
freely use to perform mutation testing on their QPs written in
Qiskit. Notwithstanding, addressing the technical challenges
of implementing the quantum operators, we added support
to MutPy to mutate AST calls15, which is not possible in its
original version. Interested readers can find more information
on the technical challenges we faced to implement the quan-
tum mutation operators described in Section II-A and how
we addressed them in Fortunato et al. [39]’s recent work.

III. EMPIRICAL STUDY
We have conducted an empirical study to evaluate QMutPy’s
effectiveness and efficiency at performing mutation testing
on QPs. In particular, in this study, we aim to answer the
following research questions:

RQ1: How efficient is QMutPy at creating quantum
mutants?
RQ2: How many quantum mutants are generated by
QMutPy?
RQ3: How do test suites for QPs perform at killing quantum
mutants?
RQ4: How many test cases are required to kill or timeout a
quantum mutant?
RQ5: How are quantum mutants killed?

12MutPy supports 20 classical mutation operators and seven experimental
mutation operators. If a user does not specify any mutation operator,
MutPy applies all of them in alphabetical order.

13QMutPy is publicly available at https://github.com/danielfobooss/mutpy.
14https://github.com/danielfobooss/mutpy/blob/master/README.rst
15https://docs.python.org/3/library/ast.html#ast.Call

TABLE 2. Details of QPs used in the empirical evaluation. The
test suite of each QP was identified and selected based on each
program’s name. In Qiskit, a QP is named after the algorithm it
implements and to its test suite is given the prefix “test”. For example,
the test suite test_shor.py corresponds to the program shor.py.
Code coverage was measured using the Coverage.py tool.

Algorithm LOC # Tests Time (seconds) % Coverage

adapt_vqe 151 5 85.66 82.78
bernstein_vazirani 80 33 4.28 98.75
bopes_sampler 91 2 320.51 81.32
classical_cplex 210 1 0.04 81.43
cobyla_optimizer 75 4 1.60 94.67
cplex_optimizer 60 3 0.70 81.67
deutsch_jozsa 85 64 4.18 98.82
eoh 70 2 34.71 100.00
grover 381 593 153.77 95.54
grover_optimizer 197 6 21.14 96.45
hhl 341 21 630.65 93.26
iqpe 231 3 20.38 93.51
numpy_eigen_solver 220 5 0.10 76.36
numpy_ls_solver 56 1 0.00 92.86
numpy_minimum_eigen_solver 73 5 0.24 94.52
qaoa 96 18 49.45 95.83
qgan 226 11 349.72 84.51
qpe 197 3 21.27 94.92
qsvm 303 8 266.19 78.22
shor 265 13 251.76 93.21
simon 89 48 17.21 98.88
sklearn_svm 88 4 0.13 76.14
vqc 443 13 1626.38 85.55
vqe 386 19 811.27 85.49

Average 183.92 36.88 194.64 89.78

As a baseline, we have compared the results achieved
by QMutPy’s quantum mutation operators with MutPy’s
classical mutation operators16. Note that works [40, 41, 42,
43] on quantum mutation are very preliminary and no other
classical or quantum mutation tool could have been used in
our empirical study as a baseline (see Sections II-B1 and VI
for more information).

We show our commitment to open science [44] by mak-
ing QMutPy and our experimental infrastructure (data and
scripts) available to the research community to assist in future
research. The QMutPy tool is available at https://github.com/
danielfobooss/mutpy and all data and scripts are available at
https://github.com/jose/qmutpy-experiments.

A. EXPERIMENTAL SUBJECTS

To conduct our empirical study, we require (1) real QPs
written in the Qiskit’s framework [26] (as, currently, QMutPy
only supports Qiskit’s quantum operations), (2) QPs written
in Python17, (3) an open-source implementation of each QP,
and (4) a test suite of each QP. To the best of our knowledge,
there are four primary candidate sources of QPs that fulfil
(1): the Qiskit-Aqua’s repository18 itself, the “Programming
Quantum Computers” book’s repository19 from O’Reilly,
the “Qiskit Textbook Source Code”’s repository20 from the

16https://github.com/mutpy/mutpy#mutation-operators
17Although Jupyter notebooks include Python source code, they are not

supported by QMutPy.
18https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/

algorithms
19https://github.com/oreilly-qc/oreilly-qc.github.io/tree/1b9f4c1/samples
20https://github.com/qiskit-community/qiskit-textbook/tree/3ffedf9

VOLUME 4, 2016 5

https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy/blob/master/README.rst
https://docs.python.org/3/library/ast.html#ast.Call
https://coverage.readthedocs.io/en/coverage-5.5
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy
https://github.com/jose/qmutpy-experiments
https://github.com/mutpy/mutpy#mutation-operators
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms
https://github.com/oreilly-qc/oreilly-qc.github.io/tree/1b9f4c1/samples
https://github.com/qiskit-community/qiskit-textbook/tree/3ffedf9

Fortunato et al.: Mutation Testing of Quantum Programs

Qiskit Community, and the official “Qiskit tutorials”’s repos-
itory21.

Qiskit-Aqua’s22 repository provides the implementation
of 24 QPs in Python, including the successful Shor [28],
Grover [29], and HHL [45], and a fully automated test suite
for each program. Hence, it fulfils all our requirements.

O’Reilly’s book provides the implementation of 182 QPs,
29 written using the Qiskit’s framework. However, no test
suite is provided for any of the 182 programs. Hence, it does
not fulfil (4). “Qiskit Textbook Source Code”’s and “Qiskit
tutorials”’s repositories provide Jupyter Python notebooks
with examples on how to interact with the Qiskit’s frame-
work. No test suite is available for any of the examples.
Hence, it does not fulfil (2) nor (4).

Table 2 lists all QPs used in our empirical evaluation.
For each program it provides the number of Lines of Codes
(LOCs), the number of correspondent test cases, the time
required to run the tests, and the code coverage at line level
of the tests.

In the Qiskit-Aqua’s repository, 24 QPs meet our cri-
teria. We argue that including all QPs, i.e., purely classi-
cal (e.g., classical_cplex, cplex_optimizer), hy-
brid (e.g., vqe, qaoa), and purely quantum (e.g., shor,
bernstein_vazirani) was relevant to evaluate the ef-
fectiveness of (i) our tool at generating classical and quantum
mutants and (ii) tests designed for QPs at killing classical and
quantum mutants.

On average, the considered QPs have 184 LOC, where
the smallest program has 56 LOC (numpy_ls_solver)
and the largest has 443 (vqc). The number of tests and the
time required to run all tests differs significantly. The num-
ber of tests ranges from 1 test (classical_cplex and
numpy_ls_solver) to 593 tests (grover), and the run-
time ranges from nearly 0 seconds (numpy_ls_solver)
to 1627 seconds (vqc).

Regarding code coverage, on average, QPs’ test suites
cover 90% of all LOCs. This is in accordance with best
practices [46] and also with a previous study conducted by
Fingerhuth et al. [25], where the ratio of code exercised by
QPs’ tests was slightly above the industry-expected standard.

B. EXPERIMENTAL SETUP
All experiments were executed on a machine with an AMD
Opteron 6376 CPU (64 cores) and 64 GB of RAM. The oper-
ating system installed on this machine was CentOS Linux 7.
We used Python version 3.7.0 in our experiments because it
is the version supported by QMutPy and one of the required
versions of Qiskit. We used the GNU Parallel tool [47] to run
all experiments in parallel.

21https://github.com/Qiskit/qiskit-tutorials/tree/eb189a6
22Although Qiskit-Aqua’s repository has been deprecated as of April 2021,

all its functionalities “are not going away” and have been migrated to either
new packages or to other Qiskit packages. For example, core algorithms
and operators’ functions have been moved to the Qiskit-Terra’s repository.
More info in https://github.com/Qiskit/qiskit-aqua/#migration-guide.

In our experiments, we ran QMutPy with two config-
urations: with classical mutation operators only and with
quantum mutation operators. For both configurations, we
used MutPy’s default parameters.

For each QP / test suite, we collected the number of
generated mutants, the number of mutated LOC, and the
ratio of mutants per LOC, the number of mutants killed, the
number of mutants that survived and were exercised as well
as that survived and were not exercised by the test suite,
the number of incompetent mutants, the number of timeout
mutants, the mutation score calculated with the number of
survived mutants exercised and not exercised by the test suite
and finally, the time it took to run all mutants.

C. EXPERIMENTAL METRICS
To be able to compare the effectiveness of each test suite at
killing mutants, we first compute its mutation score [19], i.e.,
ratio of killed mutants to total number of mutants (exclud-
ing incompetent mutants, e.g., mutants that introduce non-
compiling changes). Formally, the mutation score of a test
suite T is given by:

∑
o ∈ O

|Ko|
|Mo|−|Io| , |Mo| − |Io| > 0

|O| × 100% (1)

where O represents the set of mutation operators and o a sin-
gle mutation operator, |Mo| the number of mutants injected
by o, |Io| the number of incompetent mutants generated by o,
and |Ko| the number of mutants (of o) killed by T .

As some mutants might not be killed by T because the
mutated code is not even executed by T , in our empirical
analysis we also report a mutation score which ignores mu-
tants that are not executed by T . This score would allow
one to assess the maximum mutation score T could achieve.
Formally, this score is computed as:

∑
o ∈ O

|Ko|
|Eo|−|Io| , |Eo| − |Io| > 0

|O| × 100% (2)

where |Eo| represents the number of mutants injected by m
and exercised by T .

Regarding time, we compute and report three different
runtimes: (1) total time to perform mutation analysis on test
suite T which includes the time to create the mutants and run
all tests on all mutants (Runtime column in Table 4), (2) time
to inject a mutant in a non-mutated code (Generate mutant in
Figure 3), (3) time to create a mutated module after injecting
the mutant (Create mutated module in Figure 3).

We also perform the Kruskal-Wallis non-parametric
test [48], with a significance level of 0.01, and Cohen’s d
effect-size measure to evaluate the statistical significance of
the results reported in Section IV. Note that, in Section V, we
performed ad-hoc experiments on specific tests, and therefore
there are not enough data points to perform a statistical
analysis.

D. THREATS TO VALIDITY
Based on the guidelines in [49], we discuss the threats to
validity.

6 VOLUME 4, 2016

https://github.com/Qiskit/qiskit-tutorials/tree/eb189a6
https://github.com/Qiskit/qiskit-aqua/#migration-guide

Fortunato et al.: Mutation Testing of Quantum Programs

Threats to External Validity: The QPs used in our empirical
evaluation might not be representative of the whole QPs
population. Moreover, the state of test cases selected for each
QP might not be complete (i.e., we may have missed other
test cases in Qiskit-Aqua that test the QPs’ code). Note that
the lack of real-world QPs is a well-known challenge [50,
40]. Another threat is that we compared the results for only
one yet popular quantum framework (Qiskit). Caution is
required when generalizing to other frameworks (e.g., Cirq).

Threats to Internal Validity: The main threat to internal va-
lidity lies in the complexity of the underlying tools leveraged
to build QMutPy as well as the ones supporting our experi-
mental infrastructure. To mitigate this threat, the authors have
peer-reviewed the code before making the changes final.

Threats to Construct Validity: The parameters for drawing
our conclusions may not be sufficient. In particular, by de-
fault, MutPy (hence, QMutPy) runs a test case t on a mutant
m for 5 times the time t takes to run on the non-mutated
version. Increasing this number may lead to different results
(i.e., fewer timeouts).

IV. RESULTS
Section III defines the methodology and protocol for our
mutation analysis and poses a set of research questions
related to QMutPy’s effectiveness and efficiency. The fol-
lowing subsections answer these questions in detail. Figure 2
summarizes our results, detailing and classifying all of our
mutation operations for each QP and mutation operator.

A. RQ1: HOW EFFICIENT IS QMutPy AT CREATING
QUANTUM MUTANTS?
Figure 3 shows the distribution of time QMutPy takes to
generate a mutant using classical and quantum mutation
operators. On the one hand, the time taken to remove or inject
new nodes into the program’s AST is higher on all quantum
mutation operators (except QMD) than on classical mutation
operators. The latter takes up to a maximum of 2.68s (SCD)
whereas the former takes up to 5.53s (QGD), 11.36s (QMI),
61.13s (QGR), and 75.04s (QGI). On the other hand, the time
taken to create a mutated version, i.e., to convert the mutated
AST back to Python code, is relatively small (less than 0.1s)
for all classical and quantum mutation operators. According
to Figure 3, there is no runtime difference between creating
a mutated version with a classical mutation operator or a
quantum mutation operator.

QMutPy is statistically significantly slower (p-value <
2.20e−16 for an effect-size measure of 2.03), up to
16x times more, at generating quantum mutants than
at generating classical mutants.

We hypothesize the following reasons to explain its perfor-
mance while developing our quantum operators:
1) Mutation operators based on functions calls (i.e., calls

to quantum gates). Our set of quantum mutation op-
erators, conversely to the classical ones, are based on

function calls. Mutating a function is more complex than
mutating, for example, a constant or a logical operator
(e.g., “+”) since specific grammar exists (e.g., ast.BinOp)
for these types of mutations. It is worth noting that clas-
sical mutation operators that also modify function calls
(e.g., SCD) are also more time consuming than operators
that work at, e.g., logical operator level, as the LOD.

2) Search for quantum gates. Quantum mutation operators
QGR, QGD, QGI, and QMI first visit all nodes of the
AST and for each function call checks whether it is
a call to a quantum gate. As the number of function
calls in a program is typically high, we estimate that
the consecutive checking is time-consuming. Possible
solutions to address this problem would be to create a new
type of operation in the Python AST, analogous to logical
operators, but dedicated explicitly to quantum gates.

3) Modifying or adding nodes in the AST. Although
quantum mutation operators QGR, QMD, and QGD only
modify one node of the program’s AST, QGI and QMI
not only modify one node but also add another to the end
of the AST. We estimate this to increase the runtime of
these operators.

B. RQ2: HOW MANY QUANTUM MUTANTS ARE
GENERATED BY QMutPy?
To answer this research question, we analyze our data at
two different levels: (i) mutation operator, i.e., how many
mutants are generated by each quantum mutation operator
(see Table 3), and (ii) program level, i.e., how many quantum
mutants are generated per program (see Table 4). For these
sub research questions, we focus on the columns “# Mutants”
and “# Mutated LOC” on both tables.

1) RQ2.1: How many mutants are generated by each
quantum mutation operator?
As shown in Table 3 (column “# Mutants”), on average, our
set of quantum mutation operators generated 140 mutants.
The operator that generated fewer mutants is QMD (12
mutants), whereas QGI (328 mutants) is the one generating
more mutants. These results show that
• Quantum measurements are not that common in QPs (as

only 12 measurements were mutated).
• Out of the 40 quantum gates with at least one syntactical

equivalent gate, 28 appear in the evaluated QPs.
• The insertion and replacement of quantum gates with

their syntactical equivalent ones represent 90% of all
quantum mutants. This shows the importance of syn-
tactically equivalent gates, tailored for QPs, in mutation
testing.

It is worth noting that the average number of mutants gener-
ated by our quantum mutation operators is slightly below the
number of mutants generated by classical mutation operators
(140 vs. 186, which CRP highly dominates). As there are
many more LOCs that could be targeted by classical mutation
operators (e.g., usage of constants) and many more classical
operators (18 vs. our set of 5 quantum ones), it is expected

VOLUME 4, 2016 7

Fortunato et al.: Mutation Testing of Quantum Programs

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

incompetent killed survived_covered survived_not_covered timeout NA

CRP

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

AOR

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

ASR BCR COD EHD IOP LOD SCI SIR

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

AOD COI IOD LOR SCD

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

DDL EXS IHD LCR ROR

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

QGI

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

QGD QGR QMD QMI

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

incompetent killed survived_covered survived_not_covered timeout NA

CRP

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

AOR

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

ASR BCR COD EHD IOP LOD SCI SIR

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

AOD COI IOD LOR SCD

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

DDL EXS IHD LCR ROR

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

QGI

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

QGD QGR QMD QMI

vqe
vqc

sklearn_svm
simon

shor
qsvm

qpe
qgan
qaoa

numpy_minimum_eigen_solver
numpy_ls_solver

numpy_eigen_solver
iqpe
hhl

grover_optimizer
grover

eoh
deutsch_jozsa

cplex_optimizer
cobyla_optimizer

classical_cplex
bopes_sampler

bernstein_vazirani
adapt_vqe

FIGURE 2. Detailed analysis and classification of all mutation operations performed in our study per algorithm and mutation operator.

8 VOLUME 4, 2016

Fortunato et al.: Mutation Testing of Quantum Programs

1.99 1.56
2.07 1.88 2.19 1.72 1.48

2.53

1.27 1.03

2.02 2.14 2.12
1.26

2.12 1.72
2.68 2.64 2.31

5.53

75.04 61.13

2.05

11.36

Classic Quantum

AOD AOR ASR BCR COD COI CRP DDL EHD EXS IOD IOP LCR LOD LOR ROR SCD SCI SIR QGD QGI QGR QMD QMI

0.1

0.5

1.0

2.5

5.0

10.0

25.0

50.0

100.0

Operator

T
im

e
 (

s
e
c
o
n
d
s
)

Generate mutant Create mutated module

FIGURE 3. Distribution of the time required to inject a mutant and create a mutated target version. For each mutation operator, the purple text
reports the maximum time of the ‘Generate mutant’ phase, i.e., time to inject or remove nodes from the AST, the green star reports the average
time a mutation operator takes to create a mutated module (i.e., Python code), and the orange circle reports the median time a mutation operator
takes to generate a mutant and create a mutated module.

TABLE 3. Results per mutation operator. (Refer to Table 4 for an
explanation of each column.)

Operator # Mutants # Killed # Survived # Incompetent # Timeout

Classic mutants
AOD 42 15 12 / 4 0 11
AOR 421 169 105 / 41 0 106
ASR 67 5 23 / 4 0 35
BCR 11 2 1 / 5 0 3
COD 63 34 10 / 6 0 13
COI 397 221 53 / 19 0 104
CRP 1860 634 551 / 256 0 419
DDL 147 15 55 / 0 44 33
EHD 2 0 0 / 1 0 1
EXS 4 0 0 / 2 0 2
IOD 100 10 17 / 0 10 63
IOP 31 3 25 / 0 0 3
LCR 38 11 11 / 0 0 16
LOD 1 0 0 / 0 0 1
LOR 1 0 0 / 1 0 0
ROR 185 79 47 / 11 0 48
SCD 31 8 21 / 0 0 2
SCI 69 34 25 / 0 0 10
SIR 57 24 15 / 3 0 15

Average 185.63 66.53 51.11 / 18.58 2.84 46.58

Quantum mutants
QGD 28 18 8 / 0 0 2
QGI 328 102 196 / 0 0 30
QGR 300 170 102 / 0 0 28
QMD 12 8 1 / 2 0 1
QMI 28 27 0 / 0 0 1

Average 139.20 65.00 61.40 / 0.40 0.00 12.40

that there are more classical mutants than quantum mutants.
Nevertheless, the top-2 quantum mutation operators (i.e.,
QGI and QGR) generated more mutants than 15 out of the
18 classical mutation operators.

On average, for 11 out of 24 QPs, QMutPy mutates
4 LOCs and generates 14 different quantum mutants
per mutated line. It generates a total of 696 quantum
mutants, 140 per mutation operator. Overall, the num-
ber of quantum mutants generated by QMutPy is not
statistically significantly lower (p-value = 5.98e−06 for

an effect-size measure of 0.17) than the number of
classical mutants.

2) RQ2.2: How many quantum mutants are generated on
each program?
As we can see in Table 4 (column “# Mutants”), QMutPy
generates at least one quantum mutant for 11 out of the
24 QPs. This means that the remaining programs neither
use quantum gates nor measurements. It is worth noting
that the quantum technique used impacts the number of
generated quantum mutants, e.g., fewer (or no) mutants were
generated for hybrid algorithms (e.g., vqe, qaoa) compared
to purely quantum algorithms (e.g., classical_cplex,
cplex_optimizer). Thus, more quantum mutation oper-
ators should be investigated and developed to support those
QPs.

On average, QMutPy generated 64 quantum mutants (e.g.,
1 mutant for vqe and qsvm, 207 mutants for shor). Given
that our set of mutation operators targets function calls which
might not occur as often as, e.g., classical arithmetic oper-
ations in a program, on average, QMutPy only mutated 4
LOCs with an average of 13 mutants per line (see column “#
Mutated LOC”). In contrast, at least one classical mutant was
generated for all programs. 147 mutants on average (+83) and
64 LOCs mutated (+60) with an average of 3 mutants per line
(-10). Note that QPs are composed of more traditional pro-
gramming blocks such as conditions, loops, and arithmetic
operations than calls to the quantum API. Thus, and as there
are many more LOCs that can be mutated using classical
mutation operators than using quantum mutation operators,
it is expected to have fewer quantum mutants in a QP.

C. RQ3: HOW DO TEST SUITES FOR QPs PERFORM AT
KILLING QUANTUM MUTANTS?
The question aims to analyze the quality and resilience of
test suites designed to verify QPs. As mentioned before, the
idiosyncrasies underlying QPs (e.g., superposition, entangle-

VOLUME 4, 2016 9

Fortunato et al.: Mutation Testing of Quantum Programs

TABLE 4. Summary of our results per QP. Note that although 24 QPs were considered in our study, here we only list the ones for which QMutPy
was able to generate at least one mutant (either classical or quantum). Column “Quantum Program” lists the subjects used in our experiments.
Column “# Mutants” reports the number of mutants per subject. Column “# Mutated LOC” reports the number of LOCs with at least one mutant
and the ratio of mutants per line of code. Column “# Killed” reports the number of mutants killed by the subject’s test suite. Column “# Survived”
reports the number of mutants that survived and were exercised by the test suite, and the number of mutants that survived and were not exercised
by the test suite. Note that any buggy code or mutant that is not exercised by the test suite cannot be detected or killed. Column “# Incompetent”
reports the number of mutants considered incompetent, e.g., mutants that make the source code uncompilable. Column “# Timeout” reports the
number of mutants for which the subject’s test suite ran out of time. Column “% Score” reports the mutation score considering all mutants killed
and survived (but excluding incompetents), and reports the mutation score considering all mutants killed by the test suite and all mutants that
survived and were exercised by the test suite. Column “Runtime” reports the time, in minutes, QMutPy took to run all mutants and each mutant
on average.

Quantum Program # Mutants # Mutated LOC # Killed # Survived # Incompetent # Timeout % Score Runtime

Classic mutants
adapt_vqe 142 64 (2.22) 3 0 / 0 3 136 7.31 / 7.31 1023.66 (6.33)
bernstein_vazirani 19 10 (1.90) 13 4 / 0 0 2 67.14 / 67.14 3.51 (0.06)
bopes_sampler 38 22 (1.73) 0 0 / 0 0 38 0.00 / 0.00 1119.35 (26.44)
classical_cplex 212 82 (2.59) 88 69 / 44 0 11 49.50 / 53.77 4.54 (0.01)
cobyla_optimizer 50 25 (2.00) 24 11 / 8 0 7 51.31 / 55.44 4.35 (0.04)
cplex_optimizer 23 14 (1.64) 1 7 / 10 1 4 4.17 / 4.17 1.96 (0.02)
deutsch_jozsa 27 11 (2.45) 18 5 / 0 0 4 47.50 / 47.50 4.21 (0.10)
eoh 34 14 (2.43) 10 21 / 0 0 3 22.02 / 22.02 36.61 (1.28)
grover 270 137 (1.97) 100 89 / 28 5 48 31.90 / 32.28 1031.75 (5.12)
grover_optimizer 187 73 (2.56) 8 0 / 0 1 178 6.65 / 6.65 329.12 (1.62)
hhl 266 121 (2.20) 127 102 / 26 5 6 39.14 / 41.04 1998.06 (9.22)
iqpe 287 93 (3.09) 162 94 / 12 5 14 43.31 / 43.73 81.05 (0.27)
numpy_eigen_solver 214 94 (2.28) 76 73 / 42 6 17 21.37 / 23.83 5.90 (0.01)
numpy_ls_solver 36 14 (2.57) 10 13 / 6 1 6 14.86 / 17.16 1.60 (0.01)
numpy_minimum_eigen_solver 41 19 (2.16) 13 12 / 0 5 11 35.42 / 35.42 2.28 (0.03)
qaoa 15 9 (1.67) 4 8 / 0 2 1 45.00 / 45.00 29.94 (0.95)
qgan 186 80 (2.33) 59 0 / 0 2 125 23.98 / 23.98 3779.19 (21.59)
qpe 189 68 (2.78) 79 73 / 6 8 23 29.59 / 29.80 82.51 (0.39)
qsvm 141 88 (1.60) 57 34 / 38 1 11 45.94 / 48.50 674.82 (5.19)
shor 331 123 (2.69) 153 136 / 30 0 12 40.78 / 44.99 1011.41 (4.23)
simon 58 21 (2.76) 37 13 / 0 0 8 63.40 / 63.40 23.94 (0.24)
sklearn_svm 38 20 (1.90) 6 17 / 12 1 2 28.75 / 28.75 1.25 (0.01)
vqc 411 181 (2.27) 116 175 / 91 2 27 27.25 / 30.52 8630.39 (26.07)
vqe 312 136 (2.29) 100 15 / 0 6 191 31.87 / 31.87 13419.82 (38.01)

Average 146.96 63.29 (2.25) 52.67 40.46 / 14.71 2.25 36.88 32.42 / 33.51 1387.55 (6.14)

Quantum mutants
bernstein_vazirani 93 5 (18.60) 74 19 / 0 0 0 91.32 / 91.32 7.29 (0.01)
deutsch_jozsa 93 5 (18.60) 66 27 / 0 0 0 87.68 / 87.68 7.70 (0.01)
grover 93 5 (18.60) 17 76 / 0 0 0 50.32 / 50.32 212.24 (1.31)
grover_optimizer 52 2 (26.00) 2 0 / 0 0 50 25.00 / 25.00 118.56 (1.41)
hhl 2 2 (1.00) 1 0 / 1 0 0 50.00 / 100.00 97.70 (8.62)
iqpe 105 5 (21.00) 82 19 / 0 0 4 90.56 / 90.56 31.07 (0.14)
qsvm 1 1 (1.00) 1 0 / 0 0 0 100.00 / 100.00 47.85 (0.03)
shor 207 9 (23.00) 50 150 / 0 0 7 53.34 / 53.34 779.68 (2.70)
simon 47 3 (15.67) 32 15 / 0 0 0 86.36 / 86.36 13.45 (0.10)
vqc 2 2 (1.00) 0 1 / 1 0 0 0.00 / 0.00 170.21 (12.24)
vqe 1 1 (1.00) 0 0 / 0 0 1 0.00 / 0.00 144.21 (61.95)

Average 63.27 3.64 (13.22) 29.55 27.91 / 0.18 0.00 5.64 57.69 / 62.23 148.18 (8.05)

ment) make testing far from trivial. We argue that QMutPy’s
mutants can be used as benchmarks to assess the quality
of tests designed to verify QPs. Table 4 reports the results
of performing mutation testing on the 24 QPs described in
Table 2, whereas Table 3 summarizes the results per mutation
operator.

As we can see in Table 3, out of the 696 mutants gen-
erated by our quantum mutation operators, 325 (46.70%)
were killed by the programs’ test suites. QGI, the mutation
operator that generated more mutants, killed 102 mutants
out of 328, followed by QGR with 170 killed mutants out
of 300 generated. The non-killed mutants either survived to
the test suites (307, 44.11%), were not even exercised by the
test suites (2 QMD mutants, 0.29%), or resulted in a timeout
(62, 8.91%). In comparison, out of the 3527 generated by
classical mutation operators, 1264 (35.84%) were killed, 971
(27.53%) survived, 353 (10.01%) were not exercised by the
test suites, and 885 (25.10%) timeout. Note that +10.86%

more quantum mutants are killed than classical ones and that
only 0.29% of all quantum mutants are not exercised by the
test suites, as opposed to 10.01% (+9.72%) of all classical
mutants. These results show that the programs’ test suites
might have been designed to mainly verify the quantum
aspect of each program.

To verify whether quantum mutants are not killed by
chance and that instead the tests were tailored to verify
quantum behavior, we conducted a small experiment on two
QPs, i.e., shor and grover. We first removed all assertions
from shor’s and grover’s test suites, then re-ran our
mutation analysis on each QP, and finally re-computed muta-
tion scores. The mutation scores achieved in this experiment
dropped from 53.34% to 24.22% (shor) and from 50.32%
to 20.00% (grover). This further shows that the intention
of testing specific quantum behavior is the main reason tests
kill quantum mutants.

10 VOLUME 4, 2016

Fortunato et al.: Mutation Testing of Quantum Programs

5
6

8

5
4

2

5
6

19 19

5 5
6

19

5

3

1

12

5

16

25

6

55 53

23

56

19 19

27

5

51

19
15

64

4

12

17

593 593

11

593 593 593 591

19 19

593

11

593

19

592 577

19 20
26

5
6

3

14

1

9 9 8

17

3

65 65 65 73

13

9

Classic Quantum

AOD AOR ASR BCR COD COI CRP DDL EHD EXS IOD IOP LCR LOD ROR SCD SCI SIR QGD QGI QGR QMD QMI

1

2

3

4
5

10

25

50

100

250

500

Operator

#
 T

e
s
ts

(a) Distribution of the number of tests that must be executed to kill or timeout a mutant per mutation operator.

19

3

1

17

7

1 1

11

1

5

1

4

1

12
6

578

1 1

3
2

1
2

1

5

13

5

2

17

8

3
2

8
4 4

1

3

1

9
6

314

1

14

3 3

1
2

8
5

19
13

4

48

13
8

3

11
18

5

1

5
3

21

6

593

2

64

3 4

1
2

33

5

18

19 17

7

1 1

14

6

65

3

1

19 16
8

1 1

14

6

50

9
5

19 18
13

1

3

14

6

73

18
33

13

C
la

s
s
ic

Q
u
a
n
tu

m

vqe
vqc

sklearn_svm
sim

on
shor

qsvm qpe
qgan

qaoa

numpy_minim
um_eigen_solve

r

numpy_ls_solve
r

numpy_eigen_solve
r

iqpe hhl

grove
r_optim

izer

grove
r

eoh

deutsch_jozsa

cplex_optim
izer

cobyla_optim
izer

classical_cplex

bopes_sampler

bernstein_va
zira

ni

adapt_vqe

1

5

10

25

50

100

250

500

1

5

10

25

50

100

250

500

Algorithm

#
 T

e
s
ts

(b) Distribution of the number of tests that must be executed to kill or timeout a mutant per program.

FIGURE 4. Distribution of the number of tests that must be executed to kill or timeout each mutant. The purple text reports the maximum number
of tests needed to kill a mutant, the green star reports the median of the number of tests needed to kill a mutant, and the orange circle reports
the average number of tests needed to kill a mutant. The red line represents the overall average number of tests needed to kill a classical mutant
or a quantum mutant.

At program level, on average, the mutation score achieved
by all programs’ test suites was 57.69% if all mutants are
considered (Equation (1)) and 62.23% if only mutants cov-
ered by the test suite are considered (Equation (2)). Recall
that noncovered mutants would never be killed by any test
as the mutated code is never executed. The mutation score
achieved by each test suite ranged from 0% (vqc and vqe,
more on this in Section V-A) to 100% (hhl and qsvm).
The mutation score achieved by all programs’ test suites on
classical mutants was 33.51% on average (considering all
programs) and 41.61% if we only consider the same set of 11
programs for which quantum mutation operators were able
to generate at least one mutant. The programs’ test suites
achieved a higher mutation score on quantum mutants than
on classical mutants, +20.62% (62.23% vs. 41.61%). Hence,
reinforcing the idea that the test suites have been designed to
mainly verify the quantum characteristics of each QP.

Regarding the time required to run mutation testing, on
average, test suites took 148.18 minutes to run on quantum
mutants. Note that although different programs have more /
less mutants or test cases, the runtime of each QP’s test suite
on quantum mutants differs largely. For instance, shor’s

test suite, the QP with more quantum mutants, took 779.68
minutes; qsvm, the QP with fewer mutants and tests, took
47.85 minutes; and grover, the QP with more tests, took
212.24 minutes. In comparison to classical mutants, pro-
grams’ test suites took longer to run on quantum mutants
than on classical. For example, qsvm’s test suite took 47.85
minutes to run on the only generated quantum mutant and
4.79 minutes on average (674.82 minutes

141 classical mutants) on each classical
mutant. The reasons behind these time differences are ex-
plained in Section IV-A.

Test suites for QPs achieved a mutation score sta-
tistically significantly higher than the mutation score
achieved on classical mutants (62.23% vs. 33.51%), p-
value = 2.00e−05 for an effect-size measure of 0.92.

D. RQ4: HOW MANY TEST CASES ARE REQUIRED TO
KILL OR TIMEOUT A QUANTUM MUTANT?

The questions aims to understand the effectiveness of current
quantum test suites. Figure 4 shows the distribution of the

VOLUME 4, 2016 11

Fortunato et al.: Mutation Testing of Quantum Programs

13
2

85 84

5 1 1 7
27

47

174

109

525

1
14 10 3 2 9

33
46

8
34

6
18 15

3

65

37

128

42

5 3
27

Classic Quantum

AOD AOR ASR BCR COD COI CRP DDL IOD IOP LCR ROR SCD SCI SIR QGD QGI QGR QMD QMI

0

100

200

300

400

500

Operator

#
 O

c
c
u
rr

e
n
c
e
s

Assertion Error

FIGURE 5. Number of mutants killed by an assertions or an error per mutation operator. In our experiments we found three types
of errors thrown by the test suites. (1) Qiskit-related: AquaError, QiskitOptimizationError, QiskitError, and CircuitError.
(2) Python: NotImplementedError, IndexError, ValueError, AttributeError, IsADirectoryError, ZeroDivisionError,
OverflowError, UnboundLocalError, RuntimeError, NameError, and KeyError. (3) Third-party: CplexSolverError, DQCPError,
AxisError, and LinAlgError.

number of tests required to kill or timeout each mutant per
mutation operator and per QP.

At the mutation operator level, the average number of tests
needed to kill or timeout each quantum mutant is 9 (e.g., 1
test for QMI and 73 tests for QMD). The average number
of tests needed to kill or timeout each classical mutant is 26,
with 10 out of 18 classical mutation operators executing more
than 500 tests.

At program level, the average number of tests needed
to kill or timeout a quantum mutant is 13 (e.g., 1 test for
bernstein_vazirani, iqpe, and qsvm, and 73 for
grover). Regarding classical mutants, the average number
of tests needed to kill or timeout each classical mutant was 18
(considering all programs) or 64 if only the 10 programs for
which at least one quantum mutant was generated and killed
or timeout are considered.

Although on average quantum mutants require -65.38%
tests to be killed or timeout than classical mutants (9
vs. 26), there is no statistically significant difference
(p-value = 0.52 for an effect-size measure of -0.10)
between the number of tests required to either kill or
timeout a classical mutant and a quantum mutant.

E. RQ5: HOW ARE QUANTUM MUTANTS KILLED?
With this question, we aim to analyze what kills quantum
mutants. Figure 6 depicts the overall number of mutants
killed by an assertion or an error. Figure 5 shows us the same
but by mutation operation.

Out of the 1589 killed mutants, we observed that two-
thirds of mutants were killed by errors (1067) and the
other one-third by test assertions (522). Figure 5 reports the
number of mutants killed by errors and test assertions per
mutation operator. Overall, the majority of classical mutants
are killed by errors. As already mentioned, we argue that

522

1067

Assertion

Error

0 300 600 900

Occurrences

FIGURE 6. Overall number of mutants killed by an assertions
or an error, e.g., an exception. In our experiments we
found three types of errors thrown by the test suites. (1)
Qiskit -related: AquaError, QiskitOptimizationError,
QiskitError, and CircuitError. (2) Python:
NotImplementedError, IndexError, ValueError,
AttributeError, IsADirectoryError, ZeroDivisionError,
OverflowError, UnboundLocalError, RuntimeError,
NameError, and KeyError. (3) Third-party: CplexSolverError,
DQCPError, AxisError and LinAlgError.

Qiskit’s test suites are mainly designed to check for the
correct behavior of QPs. Therefore, they are less resilient to
classical mutations and likely to be killed by errors instead of
test assertions. This observation does not hold for quantum
mutants.

QGD, QGR, QGI, and QMD mutants are killed more often
by test assertions than by errors. We also observed that QMI
mutants, as expected, are killed by errors only. The reason is
that Qiskit does not have a fail-safe mechanism for inserting
measurements. When a measurement operation is inserted in
a random position, the circuit may become unprocessable
and an error is thrown. Developing better approaches to
reduce the number of design errors of QMI mutants remains,
however, as future work.

On the one hand, classical mutants are mainly killed
by errors. Quantum mutants, on the other hand, are sta-
tistically more likely (p-value = 0.01 for an effect-size

12 VOLUME 4, 2016

Fortunato et al.: Mutation Testing of Quantum Programs

measure of 0.80) and mainly killed by test assertions
(with the exception of QMI mutants).

V. IMPROVING QUANTUM TEST SUITES
The results in Section IV suggest that there is room for im-
provement in Qiskit’s test suites. For example, we observed
that 150 out of the 207 quantum mutants generated for shor
survived.

We draw on two hypotheses to guide our discussion on
how to improve QPs’ test suites to kill more quantum mu-
tants:
h1 The low mutation score achieved by each test suite is due

to their low coverage.
h2 The low mutation score achieved by each test suite is due

to their low number of test assertions.
Note that the described mutations and improvements to the
test suites are available at https://github.com/jose/qmutpy-
experiments.

A. IMPROVING COVERAGE
Figure 7 shows the relation between coverage and mutation
score overall, of each test suite and for each mutation opera-
tion. We computed the Spearman-rank correlation coefficient
between coverage and mutation score of each test suite, and
observed that mutation score and coverage are correlated
(+0.28, i.e., mutation score increases with coverage, p-value
1.02e−06). Thus, with this first hypothesis, we aim to inves-
tigate whether increasing the coverage of QPs, e.g., covering
mutated LOCs that are not exercised by the program’s test
suite, leads to a higher mutation score.

Table 4 shows that there are two QPs (hhl and vqc)
that have one mutant, generated by the QMD operator, that
survived the test suites and are not covered by any test.
The mutants are generated by the QMD operator and are in
uncovered methods: construct_circuit (see Listing 6)
and get_optimal_vector (see Listing 8), respectively.
We extended hhl’s and vqc’s test suite2324, as shown in
Listings 7 and 9 respectively, to cover these methods and
added a more specific test assertion to each test. The test
assertions verify that the number of combinations of qubits
measurements is correct, which it would not be if no mea-
surement was performed. We verified that our hypothesis
holds by rerunning the mutation analysis using the aug-
mented test suites. In both QPs, the mutants that survived
our initial mutation analysis are killed by the augmented test
suites. That is, hhl’s mutation score increased from 50%
to 100% (coverage increased from 86.55% to 89.16%), and
vqc’s mutation score from 0% to 50% (coverage increased
from 93.26% to 94.43%).

LISTING 6. Mutant not exercised by hhl’s original test suite and
therefore not killed.

23https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_hhl.py
24https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_vqc.

py

0

20

40

60

80

60 70 80 90 100

% Coverage

%
 M

u
ta

ti
o
n
 S

c
o
re

adapt_vqe bernstein_vazirani bopes_sampler classical_cplex cobyla_optimizer cplex_optimizer

deutsch_jozsa eoh grover grover_optimizer hhl iqpe

numpy_eigen_solver numpy_ls_solver numpy_minimum_eigen_solver qaoa qgan qpe

qsvm shor simon sklearn_svm vqc vqe

QGI QGR QMD QMI

SCD SCI SIR QGD

LCR LOD LOR ROR

EHD EXS IOD IOP

COD COI CRP DDL

AOD AOR ASR BCR

60 70 80 90 100 60 70 80 90 100 60 70 80 90 100 60 70 80 90 100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

% Coverage

%
 M

u
ta

ti
o
n
 S

c
o
re

adapt_vqe bernstein_vazirani bopes_sampler classical_cplex cobyla_optimizer cplex_optimizer

deutsch_jozsa eoh grover grover_optimizer hhl iqpe

numpy_eigen_solver numpy_ls_solver numpy_minimum_eigen_solver qaoa qgan qpe

qsvm shor simon sklearn_svm vqc vqe

FIGURE 7. % Mutation score vs. % Coverage.

194 def construct_circuit(self, measurement: bool =
False) -> QuantumCircuit:

...
229 if measurement:
230 c = ClassicalRegister(1)
231 qc.add_register(c)
232 - qc.measure(s, c)
232 + pass
233 self._success_bit = c

LISTING 7. Augmented hhl’s test suite.
066 @data([0, 1], [1, 0], [1, 0.1], [1, 1], [1, 10])
067 def test_hhl_diagonal(self, vector):

...
109 self.log.debug(’fidelity HHL to algebraic: %s’,

fidelity)
110 self.log.debug(’probability of result: %s’,

hhl_result.probability_result)
111 + qc = algo.construct_circuit(True)
112 + result = execute(qc, backend =

BasicAer.get_backend(’qasm_simulator’), shots =
1000).result()

113 + counts = result.get_counts()
114 + self.assertTrue(len(counts) == 2)

LISTING 8. Mutant not exercised by vqc’s original test suite and
therefore not killed.
527 def get_optimal_vector(self):

...

VOLUME 4, 2016 13

https://github.com/jose/qmutpy-experiments
https://github.com/jose/qmutpy-experiments
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_hhl.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_vqc.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_vqc.py

Fortunato et al.: Mutation Testing of Quantum Programs

539 else:
540 c = ClassicalRegister(qc.width(), name=’c’)
541 q = find_regs_by_name(qc, ’q’)
542 qc.add_register(c)
543 qc.barrier(q)
544 - qc.measure(q, c)
544 + pass
545 ret = self._quantum_instance.execute(qc)
546 self._ret[’min_vector’] = ret.get_counts(qc)

LISTING 9. Augmented vqc’s test suite.
140 def test_minibatching_gradient_free(self):

...
156 self.log.debug(result[’testing_accuracy’])
157

self.assertAlmostEqual(result[’testing_accuracy’],
0.3333333333333333)

158 + vector = vqc.get_optimal_vector()
159 + self.assertTrue(len(vector) == 4)

B. IMPROVING TEST ASSERTIONS
As mentioned before, QPs are probabilistic in nature. Sup-
pose a quantum circuit with 2 qubits. When read, these qubits
could either be 00, 01, 10, or 11. Suppose that the correct
behavior is to observe 00 with 25% probability and 11 with
75%. If instead, we observe a survived mutant that measured
00, 01, 10, and 11 with some probability, then we would have
a false negative since the mutant should have been killed.

We argue that asserting the number of measurements in
the test suites is necessary to avoid these false negatives—
hence, improving the mutation score. To verify this intuition,
we augmented shor’s test suite25 (the QP with the most
generated quantum mutants, see Table 4) with additional
test assertions, as shown in Listing 10. The added assertions
check the correctness of the number of obtained measure-
ment values.

LISTING 10. Augmented test_shor with four additional assertions.
032 def test_shor_factoring(self, n_v, backend,

factors):
...

035 result_dict =
shor.run(QuantumInstance(BasicAer.get_backend(backend),
shots=1000))

036 self.assertListEqual(result_dict[’factors’][0],
factors)

037 self.assertTrue(result_dict["total_counts"] >=
result_dict["successful_counts"])

038 + self.assertTrue(result_dict["total_counts"] >=
55)

039 + self.assertTrue(result_dict["total_counts"] <=
75)

040 + self.assertTrue(result_dict["successful_counts"]
>= 10)

041 + self.assertTrue(result_dict["successful_counts"]
<= 25)

Similar to h1, we re-run the mutation analysis using the
augmented test suites to verify that h2 holds. Mutation score
achieved by shor’s original test suite was 53.34% (50
mutants killed and 150 survived out of 207). The augmented
test suite achieved a mutation score of 72.81% (109 mutants

25https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_shor.
py

killed and 91 survived). In detail, the augmented test suite
killed 6 out of 8 QGD mutants (+3 than the original test
suite), 32 out of 99 QGI mutants (+19), 63 out of 91 QGR
mutants (+37), and the same QMD and QMI mutants (1 out
of 1 and 7 out of 8, respectively) as the original test suite.

VI. RELATED WORK
To the best of our knowledge, there are four works in the
literature that have performed quantum mutation on QPs [40,
41, 42, 43]. However, these are preliminary attempts to
conduct quantum mutation testing, empirically evaluating
these prior works on the same set of quantum programs and
tests and comparing those tools’ performance with QMutPy
is impossible due to several limitations.

Ali et al. [40] performed mutation analysis on automat-
ically generated tests for QPs to assess their effectiveness
at finding seeded faults. Their study introduces four mu-
tation operators: QGD, QGI and QGR (with no concept
of syntactically equivalent gates), and a classical operator
named ‘replace mathematical operator’. Such studies could
further benefit from a fully automated tool such as QMutPy
which supports a more extensive set of mutation operators,
including 20 classical operators.

Mendiluze et al. [41] proposed Muskit, a Python mutation
tool for Qiskit QPs. Muskit supports the mutation of 19
Qiskit’s gates, the mutation operator QGD as defined in Sec-
tion II-A2, and the mutation operators QGI and QGR but with
no concept of syntactically equivalent gates. QMutPy, on the
other hand, supports two additional mutation operators, i.e.,
QMD and QMI, which can mutate measurement calls,
and is able to mutate 40 gates (+21 than Muskit). To use
Muskit, one must provide the specification of the QP so that
Muskit is able to assess whether a mutant has been killed by
a test. This requires expertise in quantum computing and/or
on Qiskit. As the manually-written tests used in our study
are equipped with test assertions, QMutPy does not require
any program specification to assess whether a test kills a
mutant. Mendiluze et al. [41] also conducted an experimental
evaluation of Muskit on four QPs, one shared with our
study, the Bernstein-Vazirani cryptography algorithm. They
reported that Muskit generated 343 mutants for that algo-
rithm (255 generated by the QGI operator, 9 QGD, and 79
QGR) and achieved a mutation score of 77.35%. In our study,
QMutPy only generated 88 mutants (44 generated by the
QGI operator, 4 QGD, and 40 QGR) but achieved a mutation
score of 91.32%. These differences can be explained by the
following:
1) Mendiluze et al. [41]’s implementation of the Bernstein-

Vazirani algorithm is 14 lines long and contains 9 gates26,
and the implementation available on Qiskit-Aqua’s repos-
itory (and used in our study) is 80 lines long and contains
4 gates27 only.

26https://github.com/Simula-COMPLEX/muskit/blob/c148ad7/
Experimental%20Data/LittleBV/LittleBV_program.py

27https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/
algorithms/education/bernstein_vazirani.py

14 VOLUME 4, 2016

https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_shor.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_shor.py
https://github.com/Simula-COMPLEX/muskit/blob/c148ad7/Experimental%20Data/LittleBV/LittleBV_program.py
https://github.com/Simula-COMPLEX/muskit/blob/c148ad7/Experimental%20Data/LittleBV/LittleBV_program.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/algorithms/education/bernstein_vazirani.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/algorithms/education/bernstein_vazirani.py

Fortunato et al.: Mutation Testing of Quantum Programs

2) We performed mutation analysis with the 33 manually-
written tests as opposed to the 64 automatically generated
tests used by Mendiluze et al. [41]. As the manually-
written tests achieved a higher mutation score, further
research on the automatic generation of tests for QPs
should be conducted (e.g., [40]).

3) As put forward by Mendiluze et al. [41], the large number
of mutants generated by the mutation operators QGI
and QGR that survived might be equivalent/irrelevant
mutants. QMutPy only injects or replaces syntactically
equivalent gates, thus keeping the number of equivalent
mutants, if any, low.

Wang et al. [42] proposed an approach named QDiff,
to perform differential testing [51] on quantum software
(e.g., Qiskit). QDiff generates semantically equivalent ver-
sions by applying equivalent gate transformations and mu-
tations (QGI/QGD/QGR of random gates, gate swap, and
qubit change). To identify whether a sequence of gates is
semantically equivalent to another, both are executed and
their measurements compared. This is time-consuming for
programs with a large number of gates. QMutPy, on the other
hand, generates syntactically equivalent versions which do
not require the execution of any other program version to
assess equivalency.

Finally, MTQC [43] is a Java quantum mutation tool that
supports Qiskit and Q# QPs. MTQC supports the mutation
of 17 Qiskit’s gates (vs. 40 in QMutPy) and a subset of
operations performed by our QGR operator (52 vs. 225, see
dark squares in Figure 1). At the time of writing this paper, no
study has been conducted with MTQC. We could not include
MTQC in our study as (1) it does not support unittest,
a requirement to run Qiskit-Aqua’s manually-written tests,
and (2) it requires one to manually use its GUI to perform
the mutation analysis, one program at a time, which is time-
consuming and prone to mistakes.

VII. CONCLUSION
In this paper, we propose a mutation-based technique to test
QPs, coined QMutPy, that is capable of mutating QPs for
Qiskit, the IBM quantum framework. This is a first attempt
to perform mutation testing on QPs with a tool that is easy to
use and works at scale. Furthermore, QMutPy offers classical
and more quantum mutation operators than the approaches /
tools proposed in the literature.

To demonstrate the effectiveness of QMutPy, we carried
out an empirical study with 24 real QPs (selected from
Qiskit). We observed several issues that may lead to future
failures—non-optimal code coverage; low mutation scores;
minimal number of test cases. Furthermore, we observed that
quantum mutants required fewer test cases to be killed than
classical mutants. This is likely due to the objective of the
designed test suites—checking for the QP’s behavior. As a
consequence of our observations, we draw on two potential
ways to improve test suites: coverage and assertion improve-
ments. We show how both improvements can increase the

mutation score significantly on the QPs considered in our
study28.

As for future work, we plan to extend QMutPy with other
mutation operators, offer it to other quantum frameworks
(e.g., Cirq and Q#), and run our mutation analysis on real
quantum computers.

REFERENCES
[1] Andrew Steane. “Quantum computing”. In: Reports on Progress in

Physics 61.2 (1998), p. 117.
[2] Noson S Yanofsky and Mirco A Mannucci. Quantum computing for

computer scientists. Cambridge University Press, 2008.
[3] John Preskill. “Quantum Computing in the NISQ era and beyond”.

In: Quantum 2 (Aug. 2018), p. 79. ISSN: 2521-327X. DOI: 10 .
22331 / q - 2018 - 08 - 06 - 79. URL: https : / / doi . org / 10 . 22331 / q -
2018-08-06-79.

[4] Jianjun Zhao. Quantum Software Engineering: Landscapes and Hori-
zons. 2020. arXiv: 2007.07047 [cs.SE].

[5] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
1st ed. USA: Cambridge University Press, 2016. ISBN: 0521880386.

[6] Gordon Fraser and José Miguel Rojas. “Software Testing”. In: Hand-
book of Software Engineering. Ed. by Sungdeok Cha, Richard N.
Taylor, and Kyochul Kang. Cham: Springer International Publishing,
2019, pp. 123–192. ISBN: 978-3-030-00262-6. URL: https://doi.org/
10.1007/978-3-030-00262-6_4.

[7] Natalia Juristo, Ana M Moreno, and Wolfgang Strigel. “Guest edi-
tors’ introduction: Software testing practices in industry”. In: IEEE
software 23.4 (2006), pp. 19–21.

[8] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri,
and Jundefinednis Benefelds. “An Industrial Evaluation of Unit Test
Generation: Finding Real Faults in a Financial Application”. In:
Proceedings of the 39th ICSE-SEIP. 2017. ISBN: 9781538627174.

[9] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Im-
ran Ghani. “Effective Regression Test Case Selection: A Systematic
Literature Review”. In: ACM Comput. Surv. 50.2 (May 2017). ISSN:
0360-0300.

[10] Alessio Gambi, Marc Mueller, and Gordon Fraser. “Automatically
Testing Self-Driving Cars with Search-Based Procedural Content
Generation”. In: Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. ISSTA
2019. Beijing, China: Association for Computing Machinery, 2019,
318–328. ISBN: 9781450362245. DOI: 10.1145/3293882.3330566.
URL: https://doi.org/10.1145/3293882.3330566.

[11] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. “Feedback-Directed Random Test Generation”. In: Proceed-
ings of the 29th International Conference on Software Engineer-
ing. ICSE ’07. USA: IEEE Computer Society, 2007, 75–84. ISBN:
0769528287. DOI: 10.1109/ICSE.2007.37. URL: https://doi.org/10.
1109/ICSE.2007.37.

[12] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. “Achieving Scal-
able Model-Based Testing through Test Case Diversity”. In: 22.1
(Mar. 2013). ISSN: 1049-331X. DOI: 10.1145/2430536.2430540.
URL: https://doi.org/10.1145/2430536.2430540.

[13] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and
Yuan Xie. “Projection-Based Runtime Assertions for Testing and
Debugging Quantum Programs”. In: Proc. ACM Program. Lang.
4.OOPSLA (Nov. 2020). DOI: 10.1145/3428218. URL: https://doi.
org/10.1145/3428218.

[14] Jiyuan Wang, Ming Gao, Yu Jiang, Jianguang Lou, Yue Gao, Dong-
mei Zhang, and Jiaguang Sun. QuanFuzz: Fuzz Testing of Quantum
Program. 2018. arXiv: 1810.10310 [cs.SE].

[15] Shahin Honarvar, Mohammad Reza Mousavi, and Rajagopal Na-
garajan. “Property-Based Testing of Quantum Programs in Q#”.
In: Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops. ICSEW’20. Seoul, Republic
of Korea: Association for Computing Machinery, 2020, 430–435.
ISBN: 9781450379632. DOI: 10 . 1145 / 3387940 . 3391459. URL:
https://doi.org/10.1145/3387940.3391459.

28We are currently discussing with the IBM Qiskit developers how to
integrate our findings into their codebase.

VOLUME 4, 2016 15

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/2007.07047
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2430536.2430540
https://doi.org/10.1145/2430536.2430540
https://doi.org/10.1145/3428218
https://doi.org/10.1145/3428218
https://doi.org/10.1145/3428218
https://arxiv.org/abs/1810.10310
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1145/3387940.3391459

Fortunato et al.: Mutation Testing of Quantum Programs

[16] Andriy V. Miranskyy and Lei Zhang. “On Testing Quantum Pro-
grams”. In: CoRR abs/1812.09261 (2018). arXiv: 1812.09261. URL:
http://arxiv.org/abs/1812.09261.

[17] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation
and Quantum Information: 10th Anniversary Edition. Cambridge
University Press, 2010.

[18] Yipeng Huang and Margaret Martonosi. “QDB: from quantum al-
gorithms towards correct quantum programs”. In: arXiv preprint
arXiv:1811.05447 (2018).

[19] Yue Jia and Mark Harman. “An analysis and survey of the de-
velopment of mutation testing”. In: IEEE transactions on software
engineering 37.5 (2010), pp. 649–678.

[20] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just.
“Does Mutation Testing Improve Testing Practices?” In: Proc. of the
43rd IEEE/ACM ICSE. 2021.

[21] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Ma-
teusz Machalica, Satish Chandra, and Erik Meijer. What It Would
Take to Use Mutation Testing in Industry–A Study at Facebook.
2021. arXiv: 2010.13464 [cs.SE].

[22] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just.
“Practical Mutation Testing at Scale: A view from Google”. In: IEEE
TSE (2021).

[23] Goran Petrović and Marko Ivanković. “State of Mutation Testing at
Google”. In: Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice. ICSE-SEIP
’18. Gothenburg, Sweden: Association for Computing Machinery,
2018, 163–171. ISBN: 9781450356596. DOI: 10 . 1145 / 3183519 .
3183521. URL: https://doi.org/10.1145/3183519.3183521.

[24] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst,
Reid Holmes, and Gordon Fraser. “Are Mutants a Valid Substitute for
Real Faults in Software Testing?” In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software En-
gineering. FSE 2014. Hong Kong, China: Association for Computing
Machinery, 2014, 654–665. ISBN: 9781450330565. DOI: 10.1145/
2635868.2635929. URL: https://doi.org/10.1145/2635868.2635929.

[25] Mark Fingerhuth, Tomáš Babej, and Peter Wittek. “Open source
software in quantum computing”. In: PLOS ONE (2018).

[26] Gadi Aleksandrowicz et al. Qiskit: An Open-source Framework for
Quantum Computing. Version 0.7.2. Jan. 2019. DOI: 10 . 5281 /
zenodo.2562111. URL: https://doi.org/10.5281/zenodo.2562111.

[27] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M.
Gambetta. Open Quantum Assembly Language. 2017. arXiv: 1707.
03429 [quant-ph].

[28] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factoriza-
tion and Discrete Logarithms on a Quantum Computer”. In: SIAM
Review 41.2 (1999), pp. 303–332. URL: https: / /doi .org/10.1137/
S0036144598347011.

[29] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for
Database Search”. In: Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing. STOC ’96. Philadelphia,
Pennsylvania, USA: Association for Computing Machinery, 1996,
212–219. ISBN: 0897917855. URL: https://doi.org/10.1145/237814.
237866.

[30] Daniel Fortunato, José Campos, and Rui Abreu. “Mutation Testing
of Quantum Programs Written in QISKit”. In: 2022 IEEE/ACM
44th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). 2022, pp. 358–359. DOI: 10.1109/
ICSE- Companion55297.2022.9793776. URL: https:/ /doi.org/10.
1109/ICSE-Companion55297.2022.9793776.

[31] Jean-Luc Brylinski and Ranee Brylinski. “Universal quantum gates”.
In: Mathematics of quantum computation. Chapman and Hall/CRC,
2002, pp. 117–134.

[32] P. Liu, S. Hu, M. Pistoia, C. R. Chen, and J. M. Gambetta. “Stochastic
Optimization of Quantum Programs”. In: Computer 52.6 (2019),
pp. 58–67.

[33] Pengzhan Zhao, Jianjun Zhao, and Lei Ma. “Identifying Bug Patterns
in Quantum Programs”. In: Proc. of the 2nd Q-SE. 2021.

[34] Python Software Foundation. Python – pass statement. https://docs.
python.org/3/tutorial/controlflow.html#pass- statements. Accessed:
2021-08-24. 2021.

[35] Konrad Hałas. MutPy: A Mutation Testing Tool for Python 3.x
Source Code. https : / / github. com / mutpy / mutpy. Accessed: 2021-
01-18. Mar. 2011.

[36] Anders Hovmöller. Mutmut: a Python mutation testing system. https:
//github.com/boxed/mutmut. Accessed: 2021-01-18. Nov. 2016.

[37] Austin Bingham. Cosmic Ray: mutation testing for Python. https :
//github.com/sixty-north/cosmic-ray.

[38] Evan Kepner. mutatest: Python mutation testing. https://github.com/
EvanKepner/mutatest.

[39] Daniel Fortunato, José Campos, and Rui Abreu. “QMutPy: A Mu-
tation Testing Tool for Quantum Algorithms and Applications in
Qiskit”. In: Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA 2022. Virtual,
South Korea: Association for Computing Machinery, 2022, 797–800.
ISBN: 9781450393799. DOI: 10 . 1145 / 3533767 . 3543296. URL:
https://doi.org/10.1145/3533767.3543296.

[40] Shaukat Ali, Paolo Arcaini, Xinyi Wang, and Tao Yue. “Assessing
the Effectiveness of Input and Output Coverage Criteria for Testing
Quantum Programs”. In: 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST). 2021, pp. 13–23. DOI:
10.1109/ICST49551.2021.00014.

[41] Eñaut Mendiluze, Shaukat Ali, Paolo Arcaini, and Tao Yue. “Muskit:
A Mutation Analysis Tool for Quantum Software Testing”. In: 2021
36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2021, pp. 1266–1270. DOI: 10.1109/ASE51524.
2021.9678563.

[42] Jiyuan Wang, Qian Zhang, Guoqing Harry Xu, and Miryung Kim.
“QDiff: Differential Testing of Quantum Software Stacks”. In: 2021
36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2021, pp. 692–704. DOI: 10.1109/ASE51524.
2021.9678792.

[43] Javier Pellejero. MTQC: Mutation Testing for Quantum Computing.
https://javpelle.github.io/MTQC. Accessed: 2021-01-18. June 2020.

[44] Daniel Méndez Fernández, Martin Monperrus, Robert Feldt, and
Thomas Zimmermann. “The open science initiative of the Empirical
Software Engineering journal”. In: Empirical Software Engineering
24.3 (2019), pp. 1057–1060. ISSN: 1573-7616. DOI: 10 . 1007 /
s10664 - 019 - 09712 - x. URL: https : / / doi . org / 10 . 1007 / s10664 -
019-09712-x.

[45] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum
Algorithm for Linear Systems of Equations”. In: Phys. Rev. Lett. 103
(15 2009), p. 150502. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.103.150502.

[46] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser.
“Code coverage at Google”. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2019,
pp. 955–963.

[47] O. Tange. “GNU Parallel - The Command-Line Power Tool”. In:
;login: The USENIX Magazine 36.1 (Feb. 2011), pp. 42–47. DOI:
10.5281/zenodo.16303. URL: http://www.gnu.org/s/parallel.

[48] William H. Kruskal and W. Allen Wallis. “Use of Ranks in One-
Criterion Variance Analysis”. In: Journal of the American Statistical
Association 47.260 (1952), pp. 583–621. DOI: 10.1080/01621459.
1952.10483441. eprint: https://www.tandfonline.com/doi/pdf/10.
1080/01621459 .1952 .10483441. URL: https : / /www. tandfonline .
com/doi/abs/10.1080/01621459.1952.10483441.

[49] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineer-
ing. Springer Science & Business Media, 2012.

[50] J. Campos and A. Souto. “QBugs: A Collection of Reproducible
Bugs in Quantum Algorithms and a Supporting Infrastructure to
Enable Controlled Quantum Software Testing and Debugging Ex-
periments”. In: 2021 IEEE/ACM 2nd International Workshop on
Quantum Software Engineering (Q-SE). Los Alamitos, CA, USA:
IEEE Computer Society, 2021, pp. 28–32. URL: https : / / doi .
ieeecomputersociety.org/10.1109/Q-SE52541.2021.00013.

[51] William M McKeeman. “Differential Testing for Software”. In: Dig-
ital Technical Journal 10.1 (1998), pp. 100–107.

16 VOLUME 4, 2016

https://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
https://arxiv.org/abs/2010.13464
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1109/ICSE-Companion55297.2022.9793776
https://doi.org/10.1109/ICSE-Companion55297.2022.9793776
https://doi.org/10.1109/ICSE-Companion55297.2022.9793776
https://doi.org/10.1109/ICSE-Companion55297.2022.9793776
https://docs.python.org/3/tutorial/controlflow.html#pass-statements
https://docs.python.org/3/tutorial/controlflow.html#pass-statements
https://github.com/mutpy/mutpy
https://github.com/boxed/mutmut
https://github.com/boxed/mutmut
https://github.com/sixty-north/cosmic-ray
https://github.com/sixty-north/cosmic-ray
https://github.com/EvanKepner/mutatest
https://github.com/EvanKepner/mutatest
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://javpelle.github.io/MTQC
https://doi.org/10.1007/s10664-019-09712-x
https://doi.org/10.1007/s10664-019-09712-x
https://doi.org/10.1007/s10664-019-09712-x
https://doi.org/10.1007/s10664-019-09712-x
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://doi.org/10.5281/zenodo.16303
http://www.gnu.org/s/parallel
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1952.10483441
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1952.10483441
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1952.10483441
https://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
https://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
https://doi.ieeecomputersociety.org/10.1109/Q-SE52541.2021.00013
https://doi.ieeecomputersociety.org/10.1109/Q-SE52541.2021.00013

	I Introduction
	II Mutation Testing of Quantum Programs
	II-A Quantum Mutation Operators
	II-A1 Quantum Gate Replacement (QGR)
	II-A2 Quantum Gate Deletion (QGD)
	II-A3 Quantum Gate Insertion (QGI)
	II-A4 Quantum Measurement Insertion (QMI)
	II-A5 Quantum Measurement Deletion (QMD)

	II-B QMutPy Toolset
	II-B1 Python-based Mutation Testing Tools
	II-B2 MutPy Flow
	II-B3 QMutPy

	III Empirical study
	III-A Experimental Subjects
	III-B Experimental Setup
	III-C Experimental Metrics
	III-D Threats to Validity

	IV Results
	IV-A RQ1: How efficient is QMutPy at creating quantum mutants?
	IV-B RQ2: How many quantum mutants are generated by QMutPy?
	IV-B1 RQ2.1: How many mutants are generated by each quantum mutation operator?
	IV-B2 RQ2.2: How many quantum mutants are generated on each program?

	IV-C RQ3: How do test suites for QP perform at killing quantum mutants?
	IV-D RQ4: How many test cases are required to kill or timeout a quantum mutant?
	IV-E RQ5: How are quantum mutants killed?

	V Improving Quantum Test Suites
	V-A Improving coverage
	V-B Improving test assertions

	VI Related Work
	VII Conclusion

