
Science of Computer Programming 00 (2024) 1–53

Science of
Computer
Program-

ming

An Exploratory Study on the Usage of
Quantum Programming Languages

Felipe Ferreiraa, José Camposa,b,∗

aLASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
bFaculty of Engineering, University of Porto, Porto, Portugal

Abstract

As in the classical computing realm, quantum programming languages in quantum computing allow one to instruct a quantum
computer to perform certain tasks. In the last 25 years, many imperative, functional, and multi-paradigm quantum programming
languages with different features and goals have been developed. However, to the best of our knowledge, no study has investigated
who uses quantum languages, how practitioners learn a quantum language, how experience are practitioners with quantum lan-
guages, what is the most used quantum languages, in which context practitioners use quantum languages, what are the challenges
faced by quantum practitioners while using quantum languages, are program written with quantum languages tested, and what are
quantum practitioners’ perspectives on the variety of quantum languages and the potential need for new languages. In this paper,
we first conduct a systematic survey to find and collect all quantum languages proposed in the literature and/or by organizations.
Secondly, we identify and describe 37 quantum languages. Thirdly, we survey 251 quantum practitioners to answer several re-
search questions about their quantum language usage. Fourthly, we conclude that (i) 58.2% of all practitioners are 25–44 years old,
63.0% have a master’s or doctoral degree, and 86.2% have more than five years of experience using classical languages. (ii) 60.6%
of practitioners learn quantum languages from the official documentation. (iii) Only 16.3% of practitioners have more than five
years of experience with quantum languages. (iv) Qiskit (Python) is the most used quantum language, followed by Cirq (Python)
and QDK (Q#). (v) 42.8% use quantum languages for research. (vi) Lack of documentation and usage examples are practition-
ers’ most challenging issues. Practitioners prefer open-source quantum languages with an easy-to-learn syntax (e.g., based on an
existing classical language), available documentation and examples, and an active community. (vii) 76.4% of all participants test
their quantum programs, and 42.6% test them automatically. (viii) A standard quantum language, perhaps high-level language,
for quantum computation could accelerate the development of quantum programs. Finally, we present a set of suggestions for
developers and researchers on the development of new quantum languages or enhancement of existing ones.

Keywords: Quantum computing, Quantum programming languages, Survey

1. Introduction

Quantum computing leverages the principles of quantum mechanics, like superposition and entanglement, to
solve complex problems practically intractable in classical computing [1]. For instance, quantum computing has the
potential to solve computational problems in research areas such as cryptography [2], computational physics [3],
and machine learning [4] that were previously unattainable due to computational limitations [5]. Unlike classical
computers that use bits to represent 0s and 1s, quantum computers use qubits (the fundamental unit of quantum

∗Corresponding author
Email addresses: fc55895@alunos.fc.ul.pt (Felipe Ferreira), jcmc@fe.up.pt (José Campos)

1

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 2

information), which can exist in a superposition of states, allowing them to represent multiple values simultaneously
and consequently perform specific calculations much faster than classical counterparts [6, 7].

To harness the full potential of quantum computing, there arises a distinct need for quantum programming lan-
guages. These languages provide a bridge between theoretical quantum concepts and practical quantum computing
implementations, enabling researchers and developers to express quantum algorithms in a way that aligns with the
unique principles of quantum mechanics. Some quantum languages adopt the form of dedicated programming lan-
guages, e.g., OpenQASM [8] or Q# [9], analogous to their classical counterparts. In contrast, others manifest as
libraries developed on top of established classical programming languages such as Python, e.g., the Cirq library [10]
developed by Google and the Qiskit library [11] developed by IBM.

In this paper, “quantum language is referred to, with no distinction, both as a quantum equivalence of
a programming language and as a library to write quantum programs supported by some well-known
classical programming language”, as suggested by Cervera-Lierta [12].

Over the last 25 years, at least 37 quantum languages have been proposed (see Figure 1 in Section 2). It is
likely that many others are under development, given the rapid development of the quantum computing area. This
number of languages calls attention further to investigate the usage of quantum languages across different dimensions.
Such investigation could provide a comprehensive view of quantum languages’ impact, potential, challenges, and
opportunities. This knowledge can improve language design, user experience, educational resources, and the broader
quantum technology ecosystem.

Hence, this paper sheds light on the usage of 37 quantum languages and puts forward several research questions
(Section 3.1 describes in detail the set of RQs) which aim

• To help understand who uses quantum languages and the relationships between demographic factors, program-
ming experience, education, and quantum physics knowledge. (Section 3.1.1)

• To provide a comprehensive perspective on participants’ preferences, challenges, and motivations related to
quantum languages. By examining these aspects, researchers can gain insights into the broader trends and
dynamics within the quantum programming community, ultimately informing the development of better tools,
resources, and strategies for learners and practitioners. (Section 3.1.2)

• To delve into the practices, preferences, and needs of testing programs written with quantum languages. By
exploring these aspects, researchers can gain insights into the challenges programmers face, the tools they
find valuable or lacking, and the broader strategies for enhancing the reliability and correctness of quantum
programming. (Section 3.1.3)

• To explore users’ perspectives on the variety of quantum languages and the potential need for new languages.
Understanding these viewpoints can shed light on the perceived gaps, preferences, and motivations related to
language proliferation in the quantum computing domain. (Section 3.1.4)

To answer all our research questions, we first conducted a systematic survey to find and collect all quantum
languages that have been proposed, see Section 2.1. Secondly, we analyzed each language in detail and identified the
main functionalities and characteristics (e.g., year of inception, type, and whether it is active). Section 2.1.4 describes
the outcome of the systematic survey, Figure 1 and Table 1 list all quantum languages found, and Sections 2.2 to 2.4
briefly describe each quantum language. Thirdly, we surveyed 251 quantum developers / researchers familiar with
quantum languages to assess their usage, experience, and opinion on the languages. Section 3 describes the survey
in great detail, and Section 4 answers all our research questions using the data gathered from the survey. Finally, we
provided a detailed set of suggestions for the further development / enhancement of quantum languages (Section 5).

2. Quantum programming languages

Quantum programming languages are specialized systems of syntax and rules designed to express instructions for
quantum computers. These languages enable programmers to develop algorithms that harness the unique properties

2

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 3

of quantum mechanics, such as superposition and entanglement, to solve complex problems efficiently. Quantum
languages provide an interface for writing code that manipulates quantum bits (qubits) and orchestrates quantum
operations. They abstract the underlying complexities of quantum physics, making it easier for programmers to
develop quantum software without delving into the intricacies of quantum physics. These languages are a crucial tool
for realizing the potential of quantum computing and expanding its applications across various fields.

In this section, we describe the systematic survey we conducted to gather all quantum languages that have been
proposed, and then we briefly present all quantum languages.

2.1. Systematic survey of quantum languages
A systematic literature review aims to identify, evaluate, and discuss all existing research pertinent to a specific

domain of interest. The execution of a systematic literature review necessitates a meticulous and impartial search
strategy, which guarantees the thoroughness of the search process for evaluation purposes [13].

In this context, we therefore used an evidence-based systematic methodology. We identified 37 quantum languages
proposed either by researchers (e.g., on research papers) and/or individuals in open-source software repositories. The
methodology provides a systematic selection and evaluation process with a rigorous and repeatable evidence-based
studies selection process.

2.1.1. Data sources
We considered seven data sources for retrieving research documents, thesis, reports, and version control systems

that describe or propose a quantum language.

• ACM digital library1, IEEE Xplore2, and Springer Link3, which have been recommended by Kitchenham and
Charters [13] and Petersen et al. [14] and used in many other systematic mapping studies (e.g., [15, 16]).

• Two recent open-access journals on quantum computing: IEEE Transactions on Quantum Engineering4 and
Quantum5.

• arXiv6, given that there is a trend in quantum computing to first disseminate knowledge on arXiv, even if those
have not yet been peer-reviewed.

• GitHub7, given that some quantum languages might exist in a version control system without a formal research
document describing it.

2.1.2. Search
In order to conduct a thorough and efficient search for relevant artifacts, the use of appropriate search terms is

essential. Kitchenham and Charters [13] have suggested population, intervention, comparison, and outcome view-
points in this regard. Several systematic literature reviews and mapping studies have broadly used these view-
points [17, 18, 19, 16]. In our context, the relevant terms for population and intervention are:

• Population: quantum

• Intervention: programming, language

To maintain the consistency of search on the seven data sources, given that different data sources have different
interfaces for advanced search, the search was carried out by applying the following generic search string:

((quantum) AND (programming OR language))

The period for the search was defined from April 1980 (when Paul Benioff described the first quantum mechanical
model of a computer [20]) to December 2021 (when this study was conducted) in order to try to ensure that all
quantum languages were included.

1http://www.dl.acm.org
2http://www.ieeexplore.ieee.org
3http://link.springer.com
4https://tqe.ieee.org
5https://quantum-journal.org
6https://arxiv.org
7https://github.com

3

http://www.dl.acm.org
http://www.ieeexplore.ieee.org
http://link.springer.com
https://tqe.ieee.org
https://quantum-journal.org
https://arxiv.org
https://github.com

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 4

2.1.3. Procedure
In order to perform the search for quantum languages, we first defined the following inclusion criteria. An artifact

is considered (and therefore included in our study) iff it matches all criteria.

• Artifacts (papers, reports, repositories, etc.) that present or propose a quantum language.

• Artifacts (papers, reports, software repositories, etc.) that are written in English.

To ensure an unbiased annotation process, the two authors independently evaluated the artifacts using two grades
matching the inclusion criteria (met or not met). They discussed their evaluation afterward to reach a consensus. The
decision on whether a research document was included was taken based on title, keywords, abstract, and optionally
partial reading (e.g., introduction and conclusions) or full reading it to dismiss any question. The decision on whether
a software repository was included was taken based on its description and any markdown file (e.g., README.md).

Then, for the elected artifacts, we collected the following metadata:

• Year of inception.

• Whether it is open-source (yes or no).

• Whether it is active (yes or no). A language is considered active iff

– there is a comment or commit on its version control system in the last two years, in case there is a version
control system.

– or, there is any update on its webpage in the last two years, if any.

• Author’s name.

• Whether it was firstly proposed by academics or industrials.

• Whether it is an imperative, functional, or multi-paradigm language.

2.1.4. Search results
Overall, we found 37 artifacts, each describing a quantum language.
Table 1 lists the quantum languages along with the metadata collected. Note that the columns without a concrete

answer (i.e., ‘—’) mean we could not collect such metadata. In detail, the oldest quantum language is λq, a functional
language proposed by Maymin [70] in 1997. The youngsters are Ket (an imperative language proposed by Da Rosa
and De Santiago [21]) and QHAL (a multi-paradigm language proposed by Riverlane [24]), both in 2021. Both are
available as open-source projects, but only Ket is currently active. In summary, although the first quantum language
was proposed in 1996 (28 years ago at the time of writing this paper), 60% of all quantum languages (22 out of 37)
were proposed between 2011 and 2021.

• 26 languages out of 37 (70%) are available on GitHub as open-source projects, and 16 are currently active
(43%).

• 24 languages were proposed by academics (65%) and 13 by industrials (35%).

• 15 languages are characterized as multi-paradigm (41%), 14 as imperative (38%), and 8 as functional (22%).

Additionally, Figure 1 reports the evolution and root of quantum languages over time. As we can see, most
quantum languages were built on top of the Python language (12, 32%), followed by Haskell (7, 19%), and C++
(5, 14%). Two popular examples in Python are Cirq [10] proposed by Google and Qiskit [11] proposed by IBM.
According to the TIOBE Index for 2021, Python is the most used classical language. This could explain why most
quantum languages are based on Python.

In the following subsections, we group quantum languages by their type (imperative, functional, and multi-
paradigm) as suggested by Sofge [71], and briefly describe each language.

4

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 5

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

QLanguage

Silq

QPAlg

CQP

QHaskell

QML

Quipper

Cove (C#)

Sabry's
Language

cQPL

Scaffold

ProjectQ
(Python)

QUAFL

OpenQAMS

Qiskit
(Python)

QASM

LanQ

Strawberry
Fields (Python
and Blackbird)

Quil

Forest
(Python)

Cirq

Orquestra
(Python)

Braked SDK
(Python)

qGCL

QPL and
QFC

QCL

QHAL

cQASM

𝑄|𝑆𝐼 ⟩

𝐿𝐼𝑄𝑈𝑖|⟩
QDK(Q#, Python,

and .NET)

Cirq
(Python)

Ocean So�ware
(Python)

𝜆𝑞

QCL

QSEL

Ket

NDQJava

NDQFP

Pascal

π-
calculus

pGCL

Standard
ML

Python

Visual
Basic

Visual
C++

Java C# F#

Assembly

C

C++

Haskell

FP FL

Figure 1: Evolution of quantum programming languages.
Background colors represent the type of a programming language, i.e., classical languages are colored with gray, functional languages with yellow,
imperative languages with red, and multi-paradigm languages with green.
Dot-based-arrows represent quantum languages that evolve to new quantum languages and full-arrows represent quantum languages originated
from classical languages. Note that some quantum languages have been built on top of classical languages, e.g., Qiskit (Python), and others are
syntactically related, e.g., Q# is syntactically related to both C# and F# yet also has some significant differences.

2.2. Imperative quantum programming languages

Imperative programming languages are a category of programming languages that provide explicit, step-by-step
instructions for a computer to follow. In imperative programming, the emphasis is on describing how a program should
accomplish a task, often by specifying sequences of statements that modify the program’s state. This programming
style is rooted in giving the computer a set of commands to execute, similar to a recipe or a set of directions. Common
examples of classical imperative languages include C/C++ and Java. In the following subsubsections, we briefly
describe imperative quantum languages.

2.2.1. QCL
QCL (Quantum Computation Language) [67] was the first quantum language created. It was developed and

improved by Bernhard Ömer between 1998 and 2003. The language allows for the simulation and implementation
of quantum algorithms and is independent of the high-level architecture of computers. The language’s syntax is
based on classical C and Pascal and has a coherent formalism. Among the main features of QCL, we can highlight
flow control, functions, classical data types, quantum data types (qubit registers), quantum operators, functions to
manipulate quantum registers, and quantum memory management, among others.

2.2.2. QASM
QASM (Quantum Macro Assembler) [44] is a low-level quantum language developed in Python to be used in

D-Wave’s quantum computers. It aims to create an abstraction, so developers do not need to know specific hardware
details; developers can use it to have high control over the hardware or high-level language compilers.

5

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 6

Name Year Open source Active Academic or Industrial Author Type

Ket [21, 22, 23] 2021 Yes Yes Academic Rosa et al. Imperative
QHAL [24] 2021 Yes No Industrial Riverlane Multi-paradigm
Silq [25, 26] 2020 Yes Yes Academic Bichsel et al. Imperative
Braket SDK (Python) [27, 28] 2020 Yes Yes Industrial Amazon Multi-paradigm
Strawberry Fields (Python and
Blackbird) [29]

2019 Yes Yes Industrial Killoran et al. (Xanadu) Multi-paradigm

cQASM [30, 31] 2018 Yes Yes Academic Khammassi et al. Imperative
Ocean Software (Python) [32,
33]

2018 Yes Yes Industrial D-Wave Multi-paradigm

Cirq (Python) [10, 34] 2018 Yes Yes Industrial Google AI Quantum
Team

Multi-paradigm

QSEL [35] 2018 Yes No Academic Bacon Imperative
Orquestra (Python) [36] 2017 Yes Yes Industrial Zapata Multi-paradigm
Forest (Python) [37] 2017 Yes Yes Industrial Rigetti Multi-paradigm
Quil [38] 2017 Yes Yes Industrial Smith et al. Imperative
QDK (Q#, Python and .NET
Languages) [39, 9, 40, 41]

2017 Yes Yes Industrial Microsoft Multi-paradigm

Qiskit (Python) [11, 42] 2017 Yes Yes Industrial IBM Multi-paradigm
Q|S I⟩ [43] 2017 - - Academic Duan et al. Imperative
OpenQASM [8] 2017 Yes Yes Industrial Bishop et al. Imperative
QASM [44, 45] 2016 Yes Yes Academic Pakin Imperative
ProjectQ (Python) [46] 2016 Yes Yes Academic Han̈er et al. Multi-paradigm
LIQUi|⟩ [47, 48, 49, 50] 2014 Yes No Industrial Wecker et al. Functional
Quipper [51] 2013 Yes No Academic Green et al. Functional
QUAFL [52] 2013 - - Academic Lapets et al. Multi-paradigm
Scaffold [53] 2012 Yes Yes Industrial Abhari et al. Imperative
Cove (C#) [54] 2009 Yes No Academic Purkeypile Multi-paradigm
NDQFP [55] 2008 No No Academic Xu et al. Functional
LanQ [56] 2007 Yes No Academic Mlnarı́k Imperative
QHaskell [57] 2006 - - Academic Vizzotto et al. Functional
NDQJava [58] 2006 No No Academic Xu et al. Imperative
cQPL [59] 2005 Yes No Academic Mauerer Multi-paradigm
QML [60] 2005 Yes No Academic Altenkirch et al. Functional
CQP [61] 2005 - - Academic Gay et al. Multi-paradigm
QPAlg [62] 2004 - - Academic Jorrand et al. Multi-paradigm
QPL and QFC [63] 2004 - - Academic Selinger Functional
Q Language [64] 2003 Yes No Academic Bettelli et al. Imperative
Sabry’s Language [65] 2003 - - Academic Sabry Functional
qGCL [66] 2000 - - Academic Sanders et al. Imperative
QCL [67, 68, 69] 1998 Yes No Academic Ömer et al. Imperative
λq [70] 1996 - - Academic Maymim et al. Functional

Table 1: Quantum programming languages, ordered descending by year, that have been proposed by others.

2.2.3. Silq
Silq [25] is a high-level quantum language, developed at ETH Zürich, and whose main features are a robust static

type system, variable assignment, conditionals, generic parameters, classic types, loops, superposition, and others. It
was published in 2021, written in the D language, and designed to automatically compute temporary values without
inducing an implicit measurement.

2.2.4. Q
Bettelli presents an extension of the C++ language as a model for a high-level quantum language [72]. It has a set

of quantum primitives and a simulator with a runtime environment to calculate and optimize quantum operations. The
language has register handling, manipulation of quantum operators (like QHadamard, QFourier, QNot, and QSwap,
new operators can also be defined using C++ class mechanism), and low-level primitives.

6

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 7

2.2.5. qGCL
The language for quantum programs specification, qGCL [73] (Quantum Guarded Command Language), pre-

sented by Sanders and Zuliani, was based on Dijkstra’s Guarded Command Language. It is used to express quantum
algorithms and contains resources to develop a “universal” quantum computer. It exhibits several features such as
expressivity, simplicity, control structures, data structures, formal semantics, and uniform observation treatment. It
also contains a new datatype with a vector from a finite-dimensional Hilbert space.

2.2.6. LanQ
Mlnarik [56] introduced in 2007 a high-level quantum language called LanQ. The language has a syntax similar to

C, which is used to prove the correctness of quantum algorithms. The main features of the language are the possibility
of combining quantum and classical calculations, communication, and parallel execution of processes.

2.2.7. Q|S I⟩
Q|S I⟩ [43] is a quantum programming environment embedded in the .Net language. It is an extension of while-

language that includes a compiler and a suite of tools for simulation quantum programs. The language has a measurement-
based case statement and a measurement-based while-loop, and these two features help developers describe large-scale
quantum algorithms.

2.2.8. OpenQASM
OpenQASM [8] (open quantum assembly language) is a simple language that defines different gate sets using

a mechanism to specify unitary gates. It was created with syntax with elements of C and assembly and provides
instructions to quantum devices. OpenQASM is based on QASM, a language that describes quantum circuits and
is used by IBM through Qiskit, which has functionality for generating OpenQASM code from a specific quantum
circuit.

2.2.9. Scaffold
Scaffold [53] is a programming language for expressing quantum algorithms that compiles QASM and Open-

QASM. It is very similar to the C language and facilitates the expression of quantum algorithms in data types and
operations. Although Scaffold provides a coding style similar to C, it also incorporates features that make it appropri-
ate for coding quantum algorithms. The main features provided by the language are quantum and classical data types
(e.g., quantum registers, arrays, quantum struct, and quantum union), quantum gates, loops, and control constructs.

2.2.10. cQAMS
The cQASM [30, 31] (Common Quantum Assembly Language) language describes simple circuits, ensuring

interoperability between quantum compilation and simulation tools, and also aims to abstract details from qubit tech-
nology. This assembly language is based on QASM, which originated to define a quantum circuit to render images
for visualization purposes. The syntax definition is also based on QASM for language standardization. The cQASM
instructions can be used as input to a quantum computer simulator or a low-level compiler that generates specific
hardware instructions suitable for execution by the target quantum computer.

2.2.11. Quil
The Quil [38] language is a quantum instruction language analogous to an assembly language on classical com-

puters. It has an abstract machine architecture for quantum computers that instructs the quantum computer on which
physical ports implement specific qubits. Quil was created by Smith et al. and introduced a shared quantum and
classical memory model that can be used for many quantum algorithms. It has classic feedback and control and is
used as an intermediate format to be a compilation target for quantum languages. Quil’s main features are arbitrary
quantum gates, measuring qubits and saving measurements in classical memory, and synchronizing the execution of
classical and quantum algorithms, among others.

7

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 8

2.2.12. QSEL
QSEL [35] (Quantum Super Entangled Language) is a quantum language focused on superposition and entangle-

ment. The language compiler was written in Python with a model where the circuits can create superpositions and
entanglement. QSEL only describes three commands: superposition, entanglement, and measurement.

2.2.13. Ket
Ket [22, 23, 21] is a high-level classical-quantum language that provides rapid learning development and testing of

quantum programs using Python constructs with the addition of quantum specifics. As a Python-embedded language,
Ket offers Python types and two new quantum types, which implement an array reference of qubits and another for
storing variables in a quantum computer. Ket provides a universal set of quantum gates and a quantum measurement
that does not directly return the result but rather a future variable with the promise that the value will be available
when needed.

2.2.14. NDQJava
NDQJava [58] is a quantum language created in 2006 based on Java. The language has two parts: a classical

part, just Java, and a quantum part, which has quantum components (quantum data type, quantum variable, quantum
declaration, and quantum expressions). NDQJava was implemented by simulation on classical computers.

2.3. Functional quantum programming languages

Functional programming languages are a category of programming languages that focus on describing what needs
to be accomplished rather than specifying how to achieve it. In contrast to imperative programming, which emphasizes
giving step-by-step instructions, functional programming allows developers to state the desired outcome and let the
underlying system figure out the best way to achieve it. Examples of classical functional languages include Haskell
and Prolog.

2.3.1. QPL and QFC
QFC and QPL are two functional quantum languages introduced by Selinger [63] in 2004. The main difference

between the two languages is that QFC uses a syntax based on flowcharts and QPL uses a textual syntax as a base.
QFC flowcharts consist of elementary building blocks having multiple input and output edges, representing the flow
of program control. Loops and recursion, for example, can be represented by blocks where one of the output edges
is simultaneously the input edge. In QPL, its syntactic structures are represented through textual representation.
Both languages have classical control flow and can operate quantum and classical data, with unitary operations and
measures safely integrated into the language. There are no runtime type checks or errors.

2.3.2. QML
Altenkirch [60] developed a functional Haskell-like quantum language called QML, the same as QFC and QPL

from Selinger. QML is based on linear logic and supports classical and quantum operators, allowing both data and
program control to be quantum. The language allows an if-then-else to be used with a classical condition or condition
that measures the qubit value. The language does not support duplication of quantum data, but two or more variables
are allowed to relate to the same quantum system.

2.3.3. Sabry’s
Sabry [65] created a functional quantum computing model embedded in Haskell to write quantum algorithms.

Sabry’s model differs from classical programming languages, where expressions can be grouped into introduction
constructs and elimination constructs for the language’s type connectives. While in the quantum model, it can only
have virtual elimination constructs since the elements of an entangled data structure cannot be divided.

8

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 9

2.3.4. Lambda calculi (λq)
Lambda calculi (λq) languages were defined to describe quantum algorithms, and they are based on the classic

lambda calculus introduced in 1930. This type of language supports high-order computational functions, and it was
first defined for quantum calculations in 1996.

In 2004, Van Tonder [74] made the first effective effort to create a functional quantum language, λ-calculus.
This language uses quantum lambda calculus for quantum computation. It has a variable substitution rule and a
function definition scheme; as a rule, any computable function can be expressed using language formalism. The only
disadvantage is that it has no measurements.

In 2006, Selinger and Valiron [75], developed a λ-calculus language that is contrary to van Tonder’s language,
supports the measurement of a quantum program as a primitive in the language. The type of system is differentiated
between the types in which the values are duplicated and those that are not. This system guarantees that violating the
principles of not cloning and deleting quantum data occurs. The authors had to build a type-inference algorithm that
can verify whether a particular term is capable of being identified as a particular type in the linear system type and
find its type.

2.3.5. Quipper
Quipper [51] is a functional quantum language, published in 2013, based on Haskell. The language has the

particularity of being suitable for programming physics applications and provides a high-level circuit language as
well as operators for manipulating these circuits. It has libraries for quantum integer and fixed-point arithmetic
manipulation. One of the language’s main features is that it has all Haskell calculations and is not dependent on any
specific quantum hardware.

2.3.6. NDQFP
NDQFP [55] is a modular functional quantum language created in 2008, where each program is composed of one

or several modules. It is a language with classical and quantum data types, and there are also input/output components
and an exception feature defined. The design considered languages like FP, FL, Haskell, and NDQJava, but with
differences in the language overview.

2.3.7. LIQUi|⟩
LIQUi|⟩ [47, 48, 49, 50] is a quantum language created by Microsoft for quantum computing. The name stands

for Language-Integrated Quantum Operations and translates quantum algorithms into low-level machine instructions
for a quantum device. It is an extension of F# language and was designed to simulate complex quantum circuits in
different environments. The language has many gates that can be overridden or extended and three different classes of
simulators for different run times.

2.3.8. QHaskell
QHaskell [57] is a functional quantum language implemented in Haskell and inspired by QML that follows the

“quantum data and control” paradigm. The language has a syntax for handling potentially entangled quantum data
based on Haskell’s arrow notation. It has the typing rules of QML with a type system that is based on linear logic to
control the use of quantum variables.

2.4. Multi-paradigm and domain-specific languages

A programming language can be described as a multi-paradigm when it supports more than one different pro-
gramming paradigm. The objective of a language being a multi-paradigm is to offer the developers several different
paradigms in the same language, in which they can freely mix the paradigms, making it possible to develop pro-
grams more effectively and efficiently. The following subsubsections briefly describe quantum languages that are
multi-paradigm.

9

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 10

2.4.1. QDK (Q#, Python, and .NET)
QDK (Quantum Development Kit) [9], developed by Microsoft, provides tools to support developers in quantum

development. This quantum SDK includes libraries to help developers create quantum operations and have simulators
to execute and test quantum programs that can run in several environments. The programs can use Python or .NET
host programs to execute as a console application, as QDK supports interoperability with Python and other .Net
languages. The quantum language Q# is part of the Microsoft QDK. QDK also has an integration functionality that
allows developers working with Qiskit and Cirq to integrate with QDK and execute their programs on Azure Quantum,
the Microsoft cloud service for quantum computing.

Q# [40, 41] is a multi-paradigm quantum language developed by Microsoft. It is open-source and part of the
Quantum Development Kit (QDK). The language is used to implement and execute quantum algorithms, exploring
quantum computing phenomena, such as superposition, entanglement, Grover’s quantum algorithm, and others.

QDK provides a quantum simulator for running and testing Q# programs. In Q#, qubits are an opaque data type
that refers to a two-state quantum system, and both states can be physical or logical and are used to perform quantum
operations. The Q# programs describe how a classical control computer interacts with qubits rather than directly
modeling the quantum state.

With Q#, the developers can implement quantum algorithms using qubits that use uncontrolled gates, Hadamard
gates, and others. The language uses quantum properties for qubits like entanglement and superposition and has many
quantum operations.

2.4.2. cQPL
Mauerer’s [76] presents an extended version of QPL, a functional language defined by Peter Selinger, called cQPL.

This language is used to support communication between distributed processes, which allows the exchange of data
(classical and quantum) between an arbitrary number of members. A language compiler is also defined to generate
code to be used in a quantum simulator.

2.4.3. QPAlg
QPAlg (Quantum Process Algebra) was created by Jorrand and Lalire [62] to describe the interactions between

quantum and classical processes using an algebraic process approach. The processes communicate over named gates
that are static and given before the process execution. The language is based on π-calculus. From a quantum point
of view, some of the features of the language are variable entanglement and management; unitary operations; mea-
surement and probabilistic processes; and communication and physical transport of qubits to classical or quantum
systems.

2.4.4. CQP
CQP [61] (Communicating Quantum Processes) is a quantum process algebra like QPAlg, defined by Gay and

Nagarajan. The language’s syntax is based on an expression language and π-calculus. CQP was created for modeling
the communication of classical and quantum processes. It has a static type and formal operational semantics to
transmit a qubit using a communication channel. The language can be used to analyze and verify quantum protocols.

2.4.5. QualFL
QualFL, created by Lapets et al., is a type of domain-specific quantum language (not designed for a general

purpose) that have as targets physicists and mathematicians to work on quantum algorithms by focusing on the abstract
description of quantum computation. It can be compiled into logical quantum circuits and defines superposition and
unitary transformations on data.

2.4.6. QHAL
QHAL [24] is a hardware abstraction layer for quantum computers created by Riverlane to be a universal quantum

language. The main object was to define a multi-level hardware abstraction layer (HAL) to build software portable
across platforms and allows developers to abstract the hardware implementation by providing a set of commands
which could be implemented on most quantum devices. The main features of the language are: define a multi-level
HAL; be portable with minimal loss of performance; have typical features; and minimum hardware-dependent features
and have support to advanced features, like optimization, measurement-based control, and error correction.

10

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 11

2.4.7. QISKIT (Python)
Qiskit [11], founded by IMB, is an open-source SDK (software development kit) used to perform quantum compu-

tations using the main properties of quantum mechanical principles at the level of quantum circuits. Qiskit uses Python
programming language and allows the developers to use their tool to create quantum programs and execute them on
a quantum device on IBM Quantum Experience, an online platform to access the cloud-based quantum computing of
IBM.

2.4.8. Cirq (Python)
Cirq [10, 34] is an open-source framework developed by Google AI Quantum Team, which is a Python library for

manipulating quantum circuits. The framework provides valuable hardware abstractions, where the developers can
run their codes on quantum computers and simulators. The developers can build quantum circuits from gates acting
on qubits. Cirq has built-in simulators, such as a wave function simulator called qsim. Google provides a quantum
computer service to run experiments in their quantum processors using Cirq.

2.4.9. Braket SDK (Python)
Amazon Braket [27, 28] is an open-source Python library with a fully managed quantum computing service.

The Braket SDK provides tools to build, test, and run quantum algorithms on AWS. It can be used to design and
build quantum circuits and send them as quantum tasks to Amazon Braket devices. The framework has two types of
simulators, a fully managed one available through Amazon services and a local simulator within the SDK. The main
features are:

• Hardware-independent developer framework to simplify the process of designing and running quantum algo-
rithms.
• Fully managed runs of classical-quantum algorithms with hybrid jobs.
• Fully managed Jupyter notebooks to build quantum algorithms and manage experiments.
• Use quantum processing units from different vendors such as IonQ, Rigetti, or D-Wave.

2.4.10. Strawberry Fields (Blackbird and Python)
Strawberry field [29] is an open-source, cross-platform Python library developed by Xanadu to simulate and

run quantum programs. The platform has three main components: an API for quantum programming based on the
Blackbird quantum language, three virtual quantum computer backends, and an engine that can compile Blackbird
quantum programs on many different backends. The main features of this platform are:

• Integration with Xanadu Quantum Cloud, where developers can submit their quantum programs to run on
Xanadu’s photonic hardware.
• High-level functions to aid in the development of quantum programs.
• A simulator for photonic algorithms.

Blackbird [29] is a quantum assembly language for basic continuous variables states, gates, and measures. The
Strawberry Fields framework uses it and is designed to represent continuous-variable quantum programs that can run
on photonic quantum hardware. The Blackbird language is built into Strawberry Fields but also exists as a separate
Python package. Blackbird has four types of operations (state preparation, port application, metering, and subsystem
addition and removal).

2.4.11. Forest (Python)
Forest [37] is a quantum software framework developed by Rigetti. The Forest suite includes a QUIL compiler

(quilc), a quantum virtual machine (qvm), and pyQuil, an open-source Python library, for constructing, analyzing,
and running quantum programs. The pyQuil library is built on top of Quil, a quantum instruction language explicitly
designed for near-term quantum computers and based on a shared classical/quantum memory model, which means
that the memory has both qubits and classical bits. The main pyQuil functions are: generating Quil programs from
quantum gates, classical operations Compiling and simulating Quil programs, and the Quantum Virtual Machine to
execute Quil programs on real quantum processors.

11

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 12

2.4.12. DWave Ocean (Python)
Ocean software development kit (SDK) [32, 33] in an open-source framework written in Python developed by

D-Wave. It is used for developing quantum applications to run in the D-Wave quantum computer. D-Wave provides a
quantum cloud service where the developers can submit problems to their quantum computers using Ocean’s frame-
work. Ocean provides packages for quadratic models, building hybrid solvers, simulated annealing samplers, maps
constraints to binary quadratic models, and others.

2.4.13. Orquestra (Python)
Orquestra [36] is a framework developed by Zapata Computing. It is a unified workflow-based toolset for quantum

computing. It enables developers to build and run quantum workflows across multiple quantum and classical devices
in a unified quantum operating environment. Orchestra is based on Python code and libraries and integrates with many
vendors, e.g., Qiskit (IBM), Amazon Braket, IonQ, Rigetti, Cirq (Google), D-Wave, and others.

2.4.14. Cove (C#)
Cove [54] is a software framework that allows quantum computing to be performed using a classical language. It

is an object-oriented framework implemented in C# that targets commercial software developers. Cove has two main
components: interfaces that specify what must be provided to program quantum computers and implementations that
determine how. Cove is designed to be independent of quantum hardware and for users not to worry about error
correction.

2.4.15. ProjectQ (Python)
ProjectQ [46] is a framework for quantum computing that allows developers to implement quantum algorithms

using Python. This open-source framework was started at ETH Zurich. It can translate quantum programs to many
backends such as IBM Quantum Experience chip, AQT devices, AWS Braket, or devices provided by the IonQ service.
The main features that ProjectQ offers are:

• Developers can use Python, a high-level language, to write quantum programs.
• Users can implement their own compiler engine.
• Many backends such as simulator, emulator, resource counter, drawing engine, and command printer.
• A library to help developers solve fermionic problems.

3. Study

In this section, we described our set of research questions and the survey conducted to collect data that would
allow us to answer each research question.

3.1. Research questions

We formulated 15 research questions and organized them in four groups. The following subsection describe in
detail each group of RQs using the Goal Question Metric approach proposed by Basili et al. [77].

3.1.1. Group I – Who uses quantum languages
Firstly, our goal is to help understand who uses quantum languages and the relationships between demographic

factors, programming experience, education, and quantum physics knowledge. By

• Knowing who uses a quantum language could help researchers, developers, and organizations understand
users’ demographics, backgrounds, expertise, and the diversity and profiles of those users within the quantum
programming community. Such knowledge can guide the development of learning resources, tutorials, and
documentation tailored to the specific needs of different user groups.

• One can map the evolving quantum computing ecosystem by understanding where quantum languages are
used geographically and in various industries. This insight can be valuable for collaborations, partnerships,
and investment decisions related to quantum technology.

12

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 13

• Educators and platform providers can design more effective learning pathways by understanding how people
learn and adopt quantum languages. This could include creating structured curricula, interactive coding
environments, and hands-on projects that cater to different learning styles and levels of expertise.

RQ1 What is the profile of individuals who use quantum languages?

RQ2 How do the learning pathways for classical and quantum languages overlap or diverge?

RQ3 How do individuals’ experiences differ between classical languages and quantum languages?

3.1.2. Group II – Participants’ preferences, challenges, and motivations
Secondly, our goal is to provide a comprehensive perspective on participants’ preferences, challenges, and mo-

tivations related to quantum languages. By examining these aspects, researchers can gain insights into the broader
trends and dynamics within the quantum programming community, ultimately informing the development of better
tools, resources, and strategies for learners and practitioners. In summary, by

• Understanding how quantum languages are used in different contexts allows developers to refine and expand
language features. For example, if a particular application domain is prevalent, the language could be enhanced
with libraries or functionalities that cater to that domain’s needs.

• Understanding where quantum languages are used can inform policy discussions and ethical considerations.
For example, privacy concerns and regulations must be addressed if quantum computing applications are used
in sensitive areas like cryptography.

• Analyzing the challenges users face, such as barriers to entry, complexity, or lack of resources, can guide the
development of strategies to lower these barriers. This might involve creating more user-friendly interfaces,
better documentation, or educational initiatives.

RQ4 Which classical and quantum languages are used by participants, and how long have they been used?

RQ5 What quantum language do participants primarily use and what specific features or attributes do they appreciate
or find challenging in it?

RQ6 What relation exists between participants’ primary quantum language, their major, their familiarity with quan-
tum physics, and their personal/professional experiences?

RQ7 In what contexts do participants apply quantum languages?

RQ8 What quantum languages are participants interested in trying or using in the future, and why?

RQ9 What are the participants’ perspectives on the importance of learning a quantum language?

RQ10 What are the main challenges participants face when selecting a quantum language?

3.1.3. Group III – Practices, preferences, and needs of testing programs written with quantum languages
Thirdly, our goal is to delve into the practices, preferences, and needs of testing programs written with quantum

languages. By exploring these aspects, researchers can gain insights into the challenges programmers face, the tools
they find valuable or lacking, and the broader strategies for enhancing the reliability and correctness of quantum
programming. In summary, by

• Understanding the needs and gaps in existing tools for writing quantum programs can help researchers and
developers create more efficient, user-friendly, and practical programming environments. This could lead to
improved tools that make quantum programming more accessible, i.e., reduce the barriers for programmers
who want to enter the quantum computing field.

• Identifying the tools commonly used for verification and validation can guide improvements to these tools.
Developers can gain insights into the strengths and weaknesses of existing solutions and work on enhancing or
creating new tools to address user needs.

RQ11 What are the perceived needs and gaps in tools for writing quantum programs?

RQ12 Are quantum programs tested, how often, and how?

RQ13 What tools do users employ for testing quantum programs?
13

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 14

3.1.4. Group IV – Participants’ perspectives on the variety of quantum languages
Fourthly, our goal is to explore users’ perspectives on the variety of quantum languages and the potential need for

new languages. Understanding these viewpoints can shed light on the perceived gaps, preferences, and motivations
related to language proliferation in the quantum computing domain.

RQ14 How do users perceive the diversity of quantum languages?

RQ15 What factors influence participants’ opinions about the necessity of introducing new quantum languages?

3.1.5. Metrics
In all RQs but RQ9, RQ10, and RQ11, we measured the number and percentage of participants that selected

each of the options available in each survey’s question. For example, in RQ1 we measured the number/percentage of
participants that are under 18 years old, 18-24 years old, 25-34 years old, . . . , 65 years or older; the number/percentage
of participants per country, and the number/percentage of participants per education level. In RQ12 we measured
the number/percentage of participants that either test or not their quantum programs, and how. Whenever possible
and relevant, we combined measurements from multiple RQs to show relations and insight details. In RQ9, RQ10,
and RQ11 (which analyze open questions) we did not measure any variable and therefore only report participants’
opinions.

3.2. Survey structure

Following the guidelines proposed by Kuter and Yilmaz [78], Dalati and Gómez [79], Regmi et al. [80] on how to
elaborate questions for questionnaires and how to conduct a survey with human developers, we formulated a total of
35 questions organized in six sections:

• Section 1 briefly describes the questionnaire, its scope, the confidentiality agreement, the estimated duration,
and assesses if the participant has ever used any quantum language.

• Section 2 asks demographic questions, e.g., age, location.

• Section 3 asks questions regarding participants’s education and experience.

• Section 4 asks questions regarding the usage of quantum languages.

• Section 5 asks questions regarding the usage of tools to write programs with quantum languages.

• Section 6 asks questions regarding participants’ perspectives on the variety of quantum languages and the
potential need for new languages.

Table A.2 describes, by section, the questions that were asked in the survey, the reason for each question, and the
type/domain of each answer. Additionally, it also provides a mapping between the questions asked in the survey and
the set of research questions presented in Section 1.

3.3. Survey platform

Although there are several survey platforms one could use to conduct an online survey (e.g., SoGoSurvey [81],
Google Forms [82], Survio [83], MindMiners [84], Typeform [85], and SurveyMonkey [86]), only Google Forms [82]
is free, has no limitation on the number of questions / answers, or the number of collaborators to create/edit the survey.
Thus, we elected Google Forms for the task.

3.4. Survey participants

The survey was mainly published on social networks and mailing lists about quantum computing. Table B.3 lists
the online platforms where we successfully and unsuccessfully8 published the survey. In summary, we published it
on five channels on Facebook, five on LinkedIn, four on Slack, two on Reddit, one on Discord and Twitter, and one

8Not all social networks allow members to post new messages, for example.

14

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 15

mailing list. The survey was also emailed to authors of papers on quantum languages and other researchers in quantum
computing9. The total number of users registered on all platforms is 174,058.

Note that one might be registered on a platform / social network about quantum computing but have never used a
quantum language. Thus, the first question of our survey explicitly asks “Have you ever used any quantum language?”
to roll out participants unfamiliar with quantum languages.

3.5. How was the survey conducted
This survey was conducted in two phases. The first phase was done with only two participants (not authors of this

paper). This phase served as a pre-test for the survey during which the participants validated the survey’s questions.
This aimed to ensure that the questions were clear and ordered accordingly to the topics. Each participant rated each
question from 1 (not clear) to 5 (must have). All participants rated all questions with 5. Additionally, this phase
helped in calibrating the estimated time required for participants to answer the survey, ensuring that it is reasonable
and appropriate. Then, in the second phase, the survey was published on social networks and conducted by 251
participants. The survey was open for 60 days (from March 31, 2022 to May 31, 2022), and one reminder was sent
after ten days. After 60 days, the survey was closed, and the data was collected.

3.6. Data analysis
The data analysis of this survey was made after we collected all data from the question answers. Given our study

is on quantum languages and their usage, we filtered out data / answers from the participants that have never used
quantum languages. Then, we computed and reported raw numbers and percentage values for closed answers, and
manually analyzed the open answers and share some of them in the results section.

Furthermore, to statistically compare the relation between categorical variables (e.g., quantum languages and
participants’ major) we used Fisher’s exact test [87] with a 95% confidence level.

4. Results

In this section, we reported the findings of our study based on the information we gathered from the survey. We
had a total of 251 responses, of which 208 (82.9%) answered that they have used quantum languages and, therefore,
continued answering the questions of the survey. The remaining 43 (17.1%) answered that they have never used
quantum languages and, therefore, did not answer any other question.

4.1. RQ1: What is the profile of individuals who use quantum languages?
Age: 39.9% of all participants are 25–34 years old, while 26.4% are 18–24 years old, and 18.3% are 35–44 years

old. Regarding age outliers, 1.9% are 65 or older, and 2.9% are under 18 (see Figure 2).
Country: Most participants live in the United States of America (22.1%), followed by Spain, India, and Canada

(5.8%), see Figure 3.
Gender: 88.9% of all participants identify as male, 6.2% as woman, 2.9% prefer not to say, and 1.9% are non-

binary.
Education level: 27.9% of all participants have a doctoral degree, 35.1% have a master’s degree, and 21.6% have

a bachelor’s degree (see Figure 4). Figure 5 reports the relation between participants’ age and education level, for
instance, more than 80.0% of the participants that are 25–64 years old and have a master’s or doctorate degree.

Major: As expected, most majors are related to computer science (47.1%) or software engineering (13.8%), and
physics (37.6%), see Figure 6.

Quantum physics knowledge: Given that to successfully develop a quantum algorithm / program, one might
require some knowledge of quantum physics, we asked the participants to rate their knowledge of quantum physics
from 0 (no knowledge) to 5 (expert). We found that all participants have some knowledge of quantum physics, with
the experience level being balanced between 1 and 5. For instance, novices in quantum physics represent 19.2% of all
participants, and experts represent 18.8%.

9In an attempt to find more participants, we also mined the email address of users that have contributed to GitHub projects related to quantum
computing — repositories’ description that match the keywords “quantum algorithms”, or “quantum programs”, or “quantum programming
languages”.

15

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 16

6 (2.9%)

55 (26.4%)

83 (39.9%)

38 (18.3%)

14 (6.7%)

6 (2.9%)

4 (1.9%)

2 (1%)

Under 18 years old

18−24 years old

25−34 years old

35−44 years old

45−54 years old

55−64 years old

65 years or older

Prefer not to say

0 50 100 150 200

participants

Figure 2: Distribution of the 208 participants’ age grouped by category.
Figure discussed in RQ1 (Section 4.1).

1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
1 (0.5%)
2 (1%)
2 (1%)
2 (1%)
2 (1%)
2 (1%)
2 (1%)
2 (1%)
3 (1.4%)
3 (1.4%)
3 (1.4%)
3 (1.4%)
5 (2.4%)
6 (2.9%)
6 (2.9%)
6 (2.9%)
7 (3.4%)
7 (3.4%)
8 (3.8%)
8 (3.8%)
9 (4.3%)
9 (4.3%)
10 (4.8%)
12 (5.8%)
12 (5.8%)
12 (5.8%)

46 (22.1%)

Australia
Belgium

Colombia
Denmark

Greece
Hungary

Indonesia
Ireland

Israel
Laos

Mauritius
Nepal

New Zealand
South Africa
South Korea

Sweden
Thailand
Uruguay

Uzbekistan
Austria

Bangladesh
England
Nigeria
Norway

Singapore
Turkey

Finland
Holland
Mexico

Pakistan
France

Germany
Japan

Russia
Poland

Portugal
Brazil
China

Italy
United Kingdom

Switzerland
Canada

India
Spain

United States of America

0 50 100 150 200

participants

Figure 3: Distribution of the 208 participants’ countries.
Figure discussed in RQ1 (Section 4.1).

1 (0.5%)

1 (0.5%)

1 (0.5%)

2 (1%)

4 (1.9%)

9 (4.3%)

14 (6.7%)

45 (21.6%)

58 (27.9%)

73 (35.1%)

Completed B.A., some graduate school without earning degree

Some graduate study

currently enrolled in PhD program

Primary/elementary school

Professional degree (JD, MD, etc.)

Secondary school

Some college/university study without earning a degree

Bachelor...s degree (B.A., B.S., B.Eng., etc.)

Other doctoral degree (Ph.D., Ed.D., etc.)

Master...s degree (M.A., M.S., M.Eng., MBA, etc.)

0 50 100 150 200

participants

Figure 4: Formal education of the 208 participants’.
Figure discussed in RQ1 (Section 4.1).

1

(16.7%)

3

(50%)

2

(33.3%)

30

(54.5%)

11

(20%)

1

(1.8%)

5

(9.1%)

7

(12.7%)

1

(1.8%)

9

(10.8%)

43

(51.8%)

26

(31.3%)

2

(2.4%)

1

(1.2%)

2

(2.4%)

5

(13.2%)

1

(2.6%)

10

(26.3%)

20

(52.6%)

2

(5.3%)

5

(35.7%)

8

(57.1%)

1

(7.1%)

2

(33.3%)

3

(50%)

1

(16.7%)

1

(25%)

2

(50%)

1

(25%)

1

(50%)

1

(50%)

Under 18 years old

18−24 years old

25−34 years old

35−44 years old

45−54 years old

55−64 years old

65 years or older

Prefer not to say

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Bachelor...s degree (B.A., B.S., B.Eng., etc.)

Completed B.A., some graduate school without earning degree

Master...s degree (M.A., M.S., M.Eng., MBA, etc.)

Other doctoral degree (Ph.D., Ed.D., etc.)

Primary/elementary school

Professional degree (JD, MD, etc.)

Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.)

Some college/university study without earning a degree

Some graduate study

currently enrolled in PhD program

Figure 5: Age and education level of the 208 participants. According
to Fisher’s exact test (p-value 0.00000), we reject the null hypothesis,
i.e., that there is a significant relationship between the two categorical
variables (age and education level). In other words, knowing the value
of one variable helps to predict the value of the other variable.
This figure reports the intersection between Figures 2 and 4’s data, and it is dis-
cussed in RQ1 (Section 4.1).

Learning quantum physics: Most participants learned quantum physics through books (69.6%) and / or at the
university 64.7% (see Figure 8).

Current job: Most of the participants are developers / programmers / software engineers (37.5%), students
(35.1%), or scientists/researchers (33.2%), see Figure 7. As participants were allowed to choose more than one
option, we observed that most participants have more than one job (or more than one role in their organization), for
example, academic researchers are also students or professors.

4.2. RQ2: How do the learning pathways for classical and quantum languages overlap or diverge?
The learning pathways for classical languages and quantum languages diverge and are quite different. On one

hand, most participants have learned classical languages from books (66.8%), using an online forum (61.5%), and at
16

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 17

51 (27.0%)

45 (23.8%)

12 (6.3%)
11 (5.8%)
10 (5.3%)
9 (4.8%)

6 (3.2%)
5 (2.6%)
4 (2.1%)

2 (1.1%)
1 (0.5%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Economics
Art / Humanities
Social Sciences

Other
Other Engineering

Math
Software Engineering

Physics
Computer Science

4 (2.1%)

89 (47.1%)

3 (1.6%)

25 (13.2%)

17 (9.0%)

71 (37.6%)

4 (2.1%)

26 (13.8%)

15 (7.9%)

0 50 100 150

participants

Figure 6: The major subject(s) of 189 participants. (Note that survey question number 12 (see Table A.2) was not a mandatory question and 19
participants did not answer it.)
Figure discussed in RQ1 (Section 4.1).
This figure shows the intersections of sets with an UpSet plot [88] using the UpSetR package [89]. Although the most common approach to visualizing sets is to use
Venn Diagrams, it only scales up to four or five sets. UpSet plots, in contrast, show the intersections of sets as a matrix and are, therefore, well suited for quantitative
data analysis with more than three sets. In an UpSet plot, each row of the matrix (bottom part) corresponds to a set, and the bar charts on the right show the size of
the set. For instance, 89 participants did their major in ‘Computer Science’, followed by ‘Physics’ (71), and ‘Software Engineering’ (26). Each column of the matrix
corresponds to a possible intersection (the filled-in and connected cells / dots show which set is part of an intersection), and the bar charts on top show the cardinality
of the intersections. Recall that each participant’s major might be described by just one label or multiple labels. For instance, 51 participants did their major just in
‘Computer Science’, and 12 participants did their major in ‘Computer Science’ and ‘Software Engineering’ (see the two filled-in and connected cells / dots in the third
column).

school (60.6%), see Figure 9. On the other hand, 60.6% have learned quantum languages from official documentation
(e.g., website, markdown files), 41.3% through online courses, and 38.9% from books (see Figure 10). It is worth
noting that the importance of language documentation concerning learning is evident; the more documentation a
programming language has, the more likely participants will use it.

4.3. RQ3: How do individuals’ experiences differ between classical languages and quantum languages?

On one hand, 86.2% of all participants have more than five years of personal experience with classical languages,
and 50.0% over ten years (see Figure 11). Similarly, 83.7% have over five years of professional experience with
classical languages, and 28.8% over ten years (see Figure 12). On the other hand, 83.7% have less than five years of
personal experience with quantum languages (see Figure 13), 38.0% have never used quantum languages profession-
ally, and 50.5% have less than five years (see Figure 14). Only 16.3% of participants have more than five years of
experience with quantum languages.

Thus, regarding personal/professional experience, the participants have much less experience in quantum lan-
guages than in classical ones. This is not, however, surprising. 60% of all quantum languages listed in Figure 1 were
only proposed in the last 10 years (i.e., between 2011 and 2021). The most used quantum languages (discussed in
RQ4) were only proposed four years ago, between 2017 and 2018.

17

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 18

33 (15.9%)

23 (11.1%)

20 (9.6%)

13 (6.2%)

9 (4.3%)

5 (2.4%)
4 (1.9%)
3 (1.4%)
2 (1.0%)
1 (0.5%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Other

CIO / CEO / CTO

Team Lead

Data Analyst / Data Engineer/ Data Scientist

Instructor / Teacher / Tutor

Academic researcher

Scientist / Researcher

Student

Developer / Programmer / Software Engineer

66 (31.7%)

15 (7.2%)

21 (10.1%)

78 (37.5%)

23 (11.1%)

69 (33.2%)

73 (35.1%)

20 (9.6%)

9 (4.3%)

0 50 100 150

participants

Figure 7: Current job of the 208 participants.
Figure discussed in RQ1 (Section 4.1).

(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

4.4. RQ4: Which classical and quantum languages are used by participants, and how long have they been used?

Regarding classical languages, most participants use the Python programming language (92.3%). It is worth
noting that this is the classical language on which most quantum languages have been built on top of, as shown in
Figure 1. Other classical languages, e.g., C++ (60.1%) and C (55.3%), are also widely used. The least used classical
languages are Groovy (1.4%), COBOL (1.9%), and Delphi/Object Pascal (2.9%), see Figure 15.

Regarding quantum languages, the vast majority of participants, 177 (85.1%), use Qiskit (Python), followed by
Cirq (Python) (91, 43.8%), and OpenQASM (77, 37.0%). Some participants mentioned some other quantum lan-
guages that were not included in our study (see Section 4.16.1 for more details): Xanadu’s Pennylane [90] was
mentioned by 4 participants, QUTIP [91, 92] by 2, and FunQy [93], SQIR [94], Quingo [95], and Perceval [96] once.
Regarding how long, most participants have been mainly using Qiskit (Python) for up to 2 years and several other
languages for less than a year, e.g., QDK (Q#), and Cirq (Python), see Figure 16.

4.5. RQ5: What quantum language do participants primarily use and what specific features or attributes do they
appreciate or find challenging in it?

Primary quantum language: most participants use Qiskit (Python) (64.9%) as their primary quantum language,
followed by Cirq (Python) (5.3%) and QDK (Q#) (4.3%), see Figure 17. Several reasons could explain why Qiskit
(Python) is the most used primary quantum language. We conjecture two reasons. (i) Qiskit (Python) is built on top
of the most used classical language, Python. This would allow one with basic knowledge of Python to quickly start
developing a quantum program and use an extensive and comprehensive set of other frameworks and libraries from
the Python ecosystem in their quantum programs. (ii) The large number of tutorials, course materials, and resources
for learning Qiskit (Python) that are available online could also explain its popularity.

Ease rating: Several reasons could lead a person to choose which programming language he or she wants to use,
e.g., easy-to-learn syntax, online documentation, examples, and support through online forums. We asked participants

18

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 19

30 (14.5%)

27 (13.0%)

19 (9.2%)
18 (8.7%)

15 (7.2%)

13 (6.3%)

7 (3.4%)
6 (2.9%)
5 (2.4%)
4 (1.9%)
3 (1.4%)
2 (1.0%)
1 (0.5%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Other

Work

Search Sites

Online Course

University

Books 144 (69.6%)

86 (41.5%)

56 (27.1%)

134 (64.7%)

54 (26.1%)

15 (7.2%)

0 100 200

participants

Figure 8: Education of 207 participants regarding learning quantum physics. (Note that survey question number 10 (see Table A.2) was not a
mandatory question and one participant did not answer it.)
Figure discussed in RQ1 (Section 4.1).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

to rate their primary language using a scale of 1 (difficult) to 5 (easy) in terms of features, available documentation,
code examples, easy-to-code, and support. Figure 18 reports the results for the most used language, Qiskit (Python).
Overall, Qiskit (Python) was rated as a ≥ 3 by 88.0% of the participants and as ≥ 4 by 56.2%. Most of the participants
that use Qiskit (Python) as their primary quantum language rated its forums and support as a 3, 35.6% and 30.4%,
respectively. And they rated features and easy-to-code, documentation, and code examples as a 4 out of 5 (35.6%,
34.8%, 36.3% respectively). Despite the positive ratings, there is still room for improvement–5.2% rated Qiskit
(Python)’s ease as 1.

Likes: Most participants who elected Qiskit (Python) as their primary quantum language reported that they like
it because it is open-source, easy to understand, easy to code, Python-based, has many tutorials, continuous updates,
operators available, and has a large and active community. Some participants also reported, as positive aspects,
that IBM is leading and supporting its development, and the number of modules the language provides. One of the
participants mentioned: “There are many modules to help us to run real quantum hardware”.

Dislikes: Regarding what participants do not like or miss in Qiskit (Python), we can highlight the performance
and consumption of RAM, over-complicated architecture, still a low-level language, and a few examples to run on
current quantum hardware.

Forums/Communities: An extensive and active community might lead one to choose a particular language. Most
participants use StackOverflow (76.2%), followed by Slack (47.1%), QOSF (22.7%), Other (17.4%), and Devtalk
(1.7%) to interact with the quantum community. As we can see in Figure 19, we can find users of Qiskit (Python) on
all forums (but more likely on StackOverflow), and StackOverflow is the only forum used by users of some languages,
i.e., QML, QHaskell, QASM, Ket, and DWave Ocean (Python).

19

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 20

12 (5.8%)

11 (5.3%)

8 (3.8%)

6 (2.9%)

5 (2.4%)

4 (1.9%)

3 (1.4%)

2 (1.0%)

1 (0.5%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Other

Coding Bootcamp

Friend or family member

Colleague

Online Forum

Online Courses or Certification

School

Other online resources (videos, blogs, etc)

Books / Physical media 139 (66.8%)

23 (11.1%)

64 (30.8%)

42 (20.2%)

87 (41.8%)

82 (39.4%)

128 (61.5%)

126 (60.6%)

17 (8.2%)

0 100 200

participants

Figure 9: How the 208 participants learned classical languages.
Figure discussed in RQ2 (Section 4.2).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

4.6. RQ6: What relation exists between participants’ primary quantum language, their major, their familiarity with
quantum physics, and their personal/professional experiences?

Figure 20 shows from which sources participants learned their primary quantum language. Overall, participants
use a variety of sources to learn more about a specific quantum language. All participants reported documentation for
the Orquestra language, which might indicate that the language provides good documentation or that there is no other
source from which others could learn. QHaskell has been learned mainly at the University.

Figure 21 shows the relation between participants’ primary quantum language and their major. Participants with
specific majors use specific quantum languages, but not exclusively. For instance,

• Strawberry Fields (Python) is exclusively used by participants with a major in physics.

• QHaskell is exclusively used by participants with a major in software engineering.

• QASM and Ket are exclusively used by participants with a major in computer science.

• All languages but Strawberry Fields (Python), QHaskell, Orquestra (Python), and Braket SDK (Python) are
used by participants who have a major in computer science.

• Participants with a major in physics use Strawberry Fields (Python), Silq, Quil, Qiskit (Python), QDK (Q#),
Q|S I⟩, Orquestra (Python), and Cirq (Python).

Results reported in Figure 22 suggest that some quantum languages might be suitable for novices in quantum
physics (e.g., QML, QDK (Q#), QASM, DWave Ocean (Python), and Braket SDK (Python)), while other languages
(e.g., Strawberry Fields (Python), Quipper, Quil, and Cirq (Python)) are mainly used by experts in quantum physics.
Qiskit (Python) is used by participants with different knowledge levels in quantum physics, which may indicate that

20

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 21

11 (5.3%)

8 (3.8%)

7 (3.4%)

6 (2.9%)

5 (2.4%)

4 (1.9%)

3 (1.4%)

2 (1.0%)

1 (0.5%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Other

University

Work

Online Forums

Search Sites

Books

Online Course

Language documentation

81 (38.9%)

126 (60.6%)

86 (41.3%)

63 (30.3%)

64 (30.8%)

54 (26.0%)

54 (26.0%)

18 (8.7%)

0 50 100 150 200 250

participants

Figure 10: How the 208 participants learned quantum languages.
Figure discussed in RQ2 (Section 4.2).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

3 (1.4%)

26 (12.5%)

75 (36.1%)

40 (19.2%)

16 (7.7%)

20 (9.6%)

10 (4.8%)

7 (3.4%)

2 (1%)

5 (2.4%)

2 (1%)

2 (1%)

Less than 1 year

1 to 4 years

5 to 9 years

10 to 14 years

15 to 19 years

20 to 24 years

25 to 29 years

30 to 34 years

35 to 39 years

40 to 44 years

45 to 49 years

More than 50 years

0 50 100 150 200

participants

Figure 11: Personal experience of the 208 participants with classical
languages.
Figure discussed in RQ3 (Section 4.3).

20 (9.6%)

14 (6.7%)

70 (33.7%)

44 (21.2%)

29 (13.9%)

10 (4.8%)

8 (3.8%)

6 (2.9%)

3 (1.4%)

2 (1%)

1 (0.5%)

1 (0.5%)

None

Less than 1 year

1 to 4 years

5 to 9 years

10 to 14 years

15 to 19 years

20 to 24 years

25 to 29 years

30 to 34 years

35 to 39 years

40 to 44 years

45 to 49 years

More than 50 years

0 50 100 150 200

participants

Figure 12: Professional experience of the 208 participants with classical
languages.
Figure discussed in RQ3 (Section 4.3).

its features and functionalities are suitable for participants with different levels of knowledge. This could explain its
popularity.

Figures 23 and 24 show participants’ personal and professional experience with quantum languages. As discussed

21

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 22

53 (25.5%)

121 (58.2%)

27 (13%)

6 (2.9%)

1 (0.5%)

Less than 1 year

1 to 4 years

5 to 9 years

10 to 14 years

15 to 19 years

20 to 24 years

25 to 29 years

30 to 34 years

35 to 39 years

40 to 44 years

45 to 49 years

More than 50 years

0 50 100 150 200

participants

Figure 13: Personal experience of the 208 participants with quantum
languages.
Figure discussed in RQ3 (Section 4.3).

79 (38%)

47 (22.6%)

58 (27.9%)

18 (8.7%)

5 (2.4%)

1 (0.5%)

None

Less than 1 year

1 to 4 years

5 to 9 years

10 to 14 years

15 to 19 years

20 to 24 years

25 to 29 years

30 to 34 years

35 to 39 years

40 to 44 years

45 to 49 years

More than 50 years

0 50 100 150 200

participants

Figure 14: Professional experience of the 208 participants with quantum
languages.
Figure discussed in RQ3 (Section 4.3).

11 (5.3%)

7 (3.4%)

3 (1.4%)

2 (1.0%)

1 (0.5%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Fortran

Julia

Other

Matlab

Bash

Java

C

C++

Python

81 (38.9%)

115 (55.3%)

125 (60.1%)

28 (13.5%)

82 (39.4%)

34 (16.3%)

56 (26.9%)

192 (92.3%)

36 (17.3%)

0 100 200 300

participants

Figure 15: Classical languages used by the 208 participants.
Figure discussed in RQ4 (Section 4.4).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

in RQ4, most participants have less than four years of personal experience or no professional experience, likely
because most languages were created recently.

• Strawberry Fields (Python), Silq, QHaskell, Q|S I⟩, Orquestra (Python), and Ket are exclusively used by partic-
22

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 23

0% 10% 20% 30% 40% 50% 60% 70% 80%

Braket SDK (Python)
Cirq (Python)

Cove (C#)
cQASM

CQP
cQPL

DWave Ocean (Python)
Forest (Python)

Ket
Lambda Calculi

LanQ
LIQUi|>
NDQFP

NDQJava
OpenQASM

Orquestra (Python)
ProjectQ (Python)

Q Language
Q|SI>

QASM
QCL

QDK (Python)
QDK (Q#)

qGCL
QHAL

QHaskell
Qiskit (Python)

QML
QPAlg

QPL and QFC
QSEL

QuaFL
Quil

Quipper
Sabry Language

Scaffold
Silq

Strawberry Fields (Blackbird)
Strawberry Fields (Python)

Other

0.0 20.6 41.2 61.8 82.4 103.0 123.6 144.2 164.8

% participants

participants

Less than 1 year
1 to 2 years

3 to 4 years
5 to 6 years

7 to 8 years
9 to 10 years

More then 11 years

Figure 16: Quantum languages used by the 208 participants and for how long. (See Table C.4 for absolute numbers.)
Figure discussed in RQ4 (Section 4.4).

1 (0.5%)

1 (0.5%)

1 (0.5%)

1 (0.5%)

1 (0.5%)

1 (0.5%)

2 (1%)

2 (1%)

2 (1%)

3 (1.4%)

4 (1.9%)

5 (2.4%)

5 (2.4%)

9 (4.3%)

11 (5.3%)

24 (11.5%)

135 (64.9%)

Ket

Orquestra (Python)

Q|SI>

QASM

QHaskell

Strawberry Fields (Python)

Braket SDK (Python)

QML

Silq

DWave Ocean (Python)

OpenQASM

Quil

Quipper

QDK (Q#)

Cirq (Python)

Other

Qiskit (Python)

0 50 100 150 200

participants

Figure 17: The primary quantum language used by the 208 participants.
Figure discussed in RQ5 (Section 4.5).

7

(5.2%)

11

(8.1%)

34

(25.2%)

49

(36.3%)

34

(25.2%)

7

(5.2%)

9

(6.7%)

28

(20.7%)

47

(34.8%)

44

(32.6%)

5

(3.7%)

7

(5.2%)

41

(30.4%)

48

(35.6%)

34

(25.2%)

5

(3.7%)

14

(10.4%)

39

(28.9%)

48

(35.6%)

29

(21.5%)

10

(7.4%)

22

(16.3%)

41

(30.4%)

36

(26.7%)

26

(19.3%)

8

(5.9%)

19

(14.1%)

48

(35.6%)

31

(23.0%)

29

(21.5%)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

code examples

documentation

easy to code

features

forums

support

0.0 13.5 27.0 40.5 54.0 67.5 81.0 94.5 108.0 121.5 135.0

% participants

participants

1 2 3 4 5

Figure 18: The rate in terms of ease (e.g., features, easy to code, docu-
mentation, code examples, support, forums) of Qiskit, the primary quan-
tum language of 135 out of the 208 participants (see Figure 17).
Figure discussed in RQ5 (Section 4.5).

ipants with 1–4 years of personal experience with quantum languages.

• Quil, Qiskit (Python), DWave Ocean (Python), and Cirq (Python) are mainly used (however, not exclusively)
by participants with 1–4 years of personal experience.

23

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 24

1

(25%)

2

(50%)

1

(25%)

3

(33.3%)

5

(55.6%)

1

(11.1%)

1

(100%)

1

(100%)

1

(12.5%)

1

(12.5%)

2

(25%)

4

(50%)

1

(50%)

1

(50%)

1

(50%)

1

(50%)

1

(100%)

2

(18.2%)

1

(9.1%)

6

(54.5%)

2

(18.2%)

1

(100%)

1

(0.5%)

31

(15.1%)

65

(31.7%)

94

(45.9%)

14

(6.8%)

2

(100%)

1

(50%)

1

(50%)

1

(100%)

2

(100%)

1

(3.1%)

3

(9.4%)

7

(21.9%)

13

(40.6%)

8

(25%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Devtalk Quantum Open Source Foundation Slack

StackOverflow Other

Figure 19: Participants’ primary quantum language and the forums used
by them. According to Fisher’s exact test (p-value 0.05942), we do
not reject the null hypothesis, i.e., that there is a significant relationship
between the two categorical variables (primary quantum language and
forums used).
Figure discussed in RQ5 (Section 4.5).

1

(16.7%)

1

(16.7%)

2

(33.3%)

1

(16.7%)

1

(16.7%)

3

(9.4%)

9

(28.1%)

5

(15.6%)

3

(9.4%)

1

(3.1%)

6

(18.8%)

4

(12.5%)

1

(3.1%)

2

(22.2%)

2

(22.2%)

1

(11.1%)

1

(11.1%)

1

(11.1%)

2

(22.2%)

1

(33.3%)

1

(33.3%)

1

(33.3%)

2

(20%)

2

(20%)

1

(10%)

1

(10%)

1

(10%)

2

(20%)

1

(10%)

1

(100%)

1

(20%)

1

(20%)

1

(20%)

1

(20%)

1

(20%)

1

(100%)

6

(21.4%)

7

(25%)

2

(7.1%)

3

(10.7%)

5

(17.9%)

2

(7.1%)

3

(10.7%)

1

(100%)

60

(16.6%)

78

(21.6%)

71

(19.7%)

46

(12.7%)

42

(11.6%)

35

(9.7%)

23

(6.4%)

6

(1.7%)

1

(16.7%)

2

(33.3%)

1

(16.7%)

1

(16.7%)

1

(16.7%)

1

(10%)

3

(30%)

1

(10%)

4

(40%)

1

(10%)

1

(11.1%)

2

(22.2%)

1

(11.1%)

2

(22.2%)

3

(33.3%)

1

(11.1%)

2

(22.2%)

1

(11.1%)

1

(11.1%)

1

(11.1%)

1

(11.1%)

2

(22.2%)

1

(100%)

5

(9.3%)

15

(27.8%)

3

(5.6%)

5

(9.3%)

7

(13%)

3

(5.6%)

11

(20.4%)

5

(9.3%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Books Language documentation Online Course Online Forums

Search Sites University Work Other

Figure 20: Participants’ primary quantum language and how they
learned it. According to Fisher’s exact test (p-value 0.01074), we reject
the null hypothesis, i.e., that there is a significant relationship between
the two categorical variables (primary quantum language and how par-
ticipants learned it).
This figure reports the intersection between Figures 10 and 17’s data, and it is dis-
cussed in RQ6 (Section 4.6).

1

(50%)

1

(50%)

7

(41.2%)

1

(5.9%)

1

(5.9%)

6

(35.3%)

1

(5.9%)

1

(5.9%)

2

(40%)

1

(20%)

1

(20%)

1

(20%)

1

(100%)

4

(50%)

2

(25%)

2

(25%)

1

(50%)

1

(50%)

1

(50%)

1

(50%)

1

(100%)

5

(45.5%)

1

(9.1%)

1

(9.1%)

2

(18.2%)

2

(18.2%)

1

(100%)

3

(1.9%)

54

(35.1%)

1

(0.6%)

11

(7.1%)

9

(5.8%)

46

(29.9%)

3

(1.9%)

16

(10.4%)

11

(7.1%)

1

(50%)

1

(50%)

2

(33.3%)

1

(16.7%)

1

(16.7%)

1

(16.7%)

1

(16.7%)

2

(33.3%)

3

(50%)

1

(16.7%)

1

(50%)

1

(50%)

1

(100%)

8

(24.2%)

1

(3%)

7

(21.2%)

3

(9.1%)

12

(36.4%)

1

(3%)

1

(3%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Art / Humanities Computer Science Economics

Math Other Engineering Physics

Social Sciences Software Engineering Other

Figure 21: Participants’ primary quantum language and their major. Ac-
cording to Fisher’s exact test (p-value 0.27723), we do not reject the
null hypothesis, i.e., that there is a significant relationship between the
two categorical variables (primary quantum language and participants’
major).
This figure reports the intersection between Figures 6 and 17’s data, and it is dis-
cussed in RQ6 (Section 4.6).

2

(100%)

3

(27.3%)

2

(18.2%)

1

(9.1%)

5

(45.5%)

1

(33.3%)

1

(33.3%)

1

(33.3%)

1

(100%)

1

(25%)

2

(50%)

1

(25%)

1

(100%)

1

(100%)

1

(100%)

4

(44.4%)

1

(11.1%)

3

(33.3%)

1

(11.1%)

1

(100%)

28

(20.7%)

29

(21.5%)

37

(27.4%)

22

(16.3%)

19

(14.1%)

1

(50%)

1

(50%)

2

(40%)

1

(20%)

2

(40%)

2

(40%)

1

(20%)

2

(40%)

1

(50%)

1

(50%)

1

(100%)

3

(12.5%)

6

(25%)

3

(12.5%)

4

(16.7%)

8

(33.3%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

1 (novice) 2 3 4 5 (expert)

Figure 22: Participants’ primary quantum language and their knowledge
in quantum physics. According to Fisher’s exact test (p-value 0.12501),
we do not reject the null hypothesis, i.e., that there is a significant re-
lationship between the two categorical variables (primary quantum lan-
guage and participant’s knowledge in quantum physics).
Figure discussed in RQ6 (Section 4.6).

• Strawberry Fields (Python), Silq, Orquestra (Python), Ket are exclusively used by participants with 1–4 years
of professional experience with quantum languages.

• QHaskell is exclusively used by participants with less than a year of professional experience.

• QASM and Q|S I⟩ are not used by participants professionally.

24

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 25

1

(50%)

1

(50%)

2

(18.2%)

7

(63.6%)

1

(9.1%)

1

(9.1%)

1

(33.3%)

2

(66.7%)

1

(100%)

1

(25%)

2

(50%)

1

(25%)

1

(100%)

1

(100%)

1

(100%)

5

(55.6%)

3

(33.3%)

1

(11.1%)

1

(100%)

36

(26.7%)

81

(60%)

16

(11.9%)

2

(1.5%)

1

(50%)

1

(50%)

4

(80%)

1

(20%)

1

(20%)

1

(20%)

2

(40%)

1

(20%)

2

(100%)

1

(100%)

5

(20.8%)

12

(50%)

6

(25%)

1

(4.2%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Less than 1 year 1 to 4 years 5 to 9 years 10 to 14 years

15 to 19 years 20 to 24 years 25 to 29 years 30 to 34 years

35 to 39 years 40 to 44 years 45 to 49 years More than 50 years

Figure 23: Participants’ primary quantum language and their personal
experience with quantum languages. According to Fisher’s exact test
(p-value 0.20924), we do not reject the null hypothesis, i.e., that there is
a significant relationship between the two categorical variables (primary
quantum language and participants’ personal experience).
This figure reports the intersection between Figures 13 and 17’s data, and it is
discussed in RQ6 (Section 4.6).

1

(50%)

1

(50%)

1

(9.1%)

2

(18.2%)

6

(54.5%)

1

(9.1%)

1

(9.1%)

2

(66.7%)

1

(33.3%)

1

(100%)

2

(50%)

2

(50%)

1

(100%)

1

(100%)

1

(100%)

7

(77.8%)

1

(11.1%)

1

(11.1%)

1

(100%)

56

(41.5%)

33

(24.4%)

35

(25.9%)

9

(6.7%)

2

(1.5%)

1

(50%)

1

(50%)

2

(40%)

2

(40%)

1

(20%)

2

(40%)

1

(20%)

1

(20%)

1

(20%)

2

(100%)

1

(100%)

7

(29.2%)

6

(25%)

5

(20.8%)

5

(20.8%)

1

(4.2%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

None Less than 1 year 1 to 4 years 5 to 9 years

10 to 14 years 15 to 19 years 20 to 24 years 25 to 29 years

30 to 34 years 35 to 39 years 40 to 44 years 45 to 49 years

More than 50 years

Figure 24: Participants’ primary quantum language and their profes-
sional experience with quantum languages. According to Fisher’s ex-
act test (p-value 0.20924), we do not reject the null hypothesis, i.e.,
that there is a significant relationship between the two categorical vari-
ables (primary quantum language and participant’s professional experi-
ence with quantum languages).
This figure reports the intersection between Figures 14 and 17’s data, and it is dis-
cussed in RQ6 (Section 4.6).

4.7. RQ7: In what contexts do participants apply quantum languages?

42.8% of all participants use quantum languages for research, while 34.6% use them because they like to learn
new languages, 16.3% use them for work, and 6.2% for other purposes. The fact that most participants use quantum
languages for research or to acquire new knowledge indicates that quantum computing is still a relatively new field,
mainly conducted at labs and research institutes. This is in line with previous works. For instance, De Stefano
[97] conducted an empirical study on the current adoption of quantum programming in open-source repositories, and
he found out that the primary use of quantum languages (such as Qiskit, Cirq, and Q#) is in research and to assist
teaching. The relation between the quantum languages used by the participants and what for they use them is shown in
Figure 25. Some languages, such as Ket, QASM, Quipper, Silq, and Strawberry Fields, are mainly used for research,
while Orquestra and Quil are mainly used for (industrial/engineering) work.

Participants with different profiles use quantum languages for different reasons. Figure 27 shows the relation be-
tween participants’ major and for what they use quantum languages. Most participants who have a major in economics
use quantum languages to augment their knowledge, while those who have a major in physics, math, or computer sci-
ence use them for research. Interestingly, 50% of the participants who have a major in art/humanities use quantum
languages for other reasons than to learn, research, or work.

Figure 28 shows the relation between participants’ current job and why they use quantum languages. The par-
ticipants working as Architect, Product Managers, Technical Support and Technical Writer use quantum languages
for work, while those working as Academic Research, Instructor/Teacher/Tutors, Scientist/Researchers, and Students
mainly use them for research. Tester/QA Engineer, UX/UI Designer, and DBA (Database Administrator) use quan-
tum languages to learn new languages. Participants working as Marketing Managers use quantum languages for other
reasons than learning, researching, or working.

4.8. RQ8: What quantum languages are participants interested in trying or using in the future, and why?

Participants are willing to try other quantum languages in the future: Cirq (25.5% of all participants), Qiskit
(20.2%), and Q# (18.8%), see Figure 29. These languages are supported by the largest technology companies (Google,
IBM, and Microsoft, respectively), and their development might be aligned, to some extent, with the development of
real quantum computers. As most users would like to work in cutting-edge technology such as quantum computing

25

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 26

1 (50%)1 (50%)

3 (27.3%)8 (72.7%)

2 (66.7%)1 (33.3%)

1 (100%)

2 (50%)1 (25%)1 (25%)

1 (100%)

1 (100%)

1 (100%)

5 (55.6%)4 (44.4%)

1 (100%)

51 (37.8%)58 (43%)20 (14.8%)6 (4.4%)

1 (50%)1 (50%)

4 (80%)1 (20%)

5 (100%)

2 (100%)

1 (100%)

7 (29.2%)7 (29.2%)6 (25%)4 (16.7%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Like to learn Use it for research Use it for work Other

Figure 25: Participants’ primary quantum language and for what they use it. According to Fisher’s exact test (p-value 0.00185), we reject the null
hypothesis, i.e., that there is a significant relationship between the two categorical variables (primary quantum language and their usage).
Figure discussed in RQ7 (Section 4.7).

and using real quantum devices instead of simulators, the language that better aligns with these expectations and with
an easy syntax has significant changes to impose itself over the others.

Most of the participants would like to try a new quantum language out of curiosity, i.e., just because they “heard
about the language” (63.9%), or because it is widely used (24.0%), or read an article about it (23.6%), see Figure 30.
Figure 26 shows the relation between quantum languages and why the participants would like to try them. Note that
34.3% of the participants who have not yet used Qiskit (Python) know it is one of the most widely used.

4.9. RQ9: What are the participants’ perspectives on the importance of learning a quantum language?
The fact that quantum computing is an innovative area with much potential is a significant factor for the partici-

pants to work with a quantum language. In summary, we observed that the most common opinions on the importance
of learning a quantum language reported by participants are:

• “It is an important emerging field.”
• “Development of quantum algorithms.”
• “Features to implement quantum concepts.”
• “Their future application in Software Engineering.”
• “It is necessary in order to manipulate the technology hands-on.”
• “They are the future of programming.”
• “Technological applications, fundamental research, and democratization of quantum computing.”

4.10. RQ10: What are the main challenges participants face when selecting a quantum language?
The main challenges participants encounter are the need for more documentation, usage examples, and the lack

of communities to ask questions about the languages. One participant mentioned “Lack of documentation and ex-
amples” while another mentioned “The lack of documentation and videos, tutorials, etc. showing the basics of these
languages.”. Others reported that quantum languages are so different from each other that it is very difficult to compare
them. One participant mentioned “too many choices, and they are all different.” while another, “There are so many
frameworks. It is difficult to try and find the best one.”.

Participants also reported that most languages lack tools for abstractions and high-level reusability. In addition
to the need for deep knowledge about qubit, measurement, and quantum physics in general, this was reported as a
challenge to successfully develop a quantum algorithm/program.

In summary, the main challenges encountered by the participants are:

• “Lack of online documentation, videos, tutorials, and examples.”
26

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 27

28 (13.5%)

25 (12.0%)

12 (5.8%)

10 (4.8%)

8 (3.8%)
7 (3.4%)

4 (1.9%)
3 (1.4%)
2 (1.0%)
1 (0.5%)

#
 p

a
rt

ic
ip

a
n

ts
(%

 p
a

rt
ic

ip
a

n
ts

)

Heard about the language Is part of a course about the language Other features

Read an article about the language Widely used Other

CQP
QPL and QFC

DWave Ocean (Python)
QPAlg

Sabry Language
cQASM
Scaffold
Quipper

Q Language
ProjectQ (Python)

Quil
QCL

QHaskell
Orquestra (Python)

QASM
QDK (Python)

Silq
Strawberry Fields (Blackbird)

Ket
Lambda Calculi
Forest (Python)

QML
Other

OpenQASM
Braket SDK (Python)

Strawberry Fields (Python)
QDK (Q#)

Qiskit (Python)
Cirq (Python)

42 (20.2%)

80 (38.5%)

8 (3.8%)

4 (1.9%)

6 (2.9%)

27 (13.0%)

23 (11.1%)
23 (11.1%)

40 (19.2%)

19 (9.1%)

13 (6.2%)
12 (5.8%)

19 (9.1%)

14 (6.7%)

22 (10.6%)

59 (28.4%)

17 (8.2%)

70 (33.7%)

31 (14.9%)

7 (3.4%)

4 (1.9%)

13 (6.2%)

10 (4.8%)

7 (3.4%)

9 (4.3%)

22 (10.6%)
22 (10.6%)

44 (21.2%)

36 (17.3%)

0 40 80 120 160
participants

Figure 26: Quantum languages that the 208 participants would like to try and why. According to Fisher’s exact test (p-value 0.00039), we reject the
null hypothesis, i.e., that there is a significant relationship between the two categorical variables (quantum languages and reasons why participants
would like to try them).
This figure reports the intersection between Figures 29 and 30’s data, and it is discussed in RQ8 (Section 4.8).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

• “Lack of conceptual knowledge about quantum physics.”
• “Design limitations and missing features in the languages.”
• “Not having a universal language.”
• “Not enough software engineering concepts.”
• “Manufacturer dependency on the languages and lack of interoperability.”
• “The variety of available languages.”
• “Lack of tooling for abstractions and use of quantum programming languages.”
• “Small community of users to help use the languages and answer questions.”
• “Syntax of the languages is very different from language to language.”
• “Availability to test the languages in real quantum computers instead of simulators.”

4.11. RQ11: What are the perceived needs and gaps in tools for writing quantum programs?

We asked the participants what tools they thought were necessary or missing to use quantum languages better
and develop better quantum programs. Most participants reported that a tailored quantum integrated development
environment and tools for testing and debugging quantum programs still need to be included. As mentioned in the

27

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 28

51 (27.0%)

45 (23.8%)

12 (6.3%)
11 (5.8%)
10 (5.3%)
9 (4.8%)

6 (3.2%)
5 (2.6%)
4 (2.1%)

2 (1.1%)
1 (0.5%)

#
 p

a
rt

ic
ip

a
n

ts
(%

 p
a

rt
ic

ip
a

n
ts

)

Like to learn Use it for research Use it for work Other

Economics

Art / Humanities

Social Sciences

Other

Other Engineering

Math

Software Engineering

Physics

Computer Science

4 (2.1%)

89 (47.1%)

3 (1.6%)

25 (13.2%)

17 (9.0%)

71 (37.6%)

4 (2.1%)

26 (13.8%)

15 (7.9%)

0 50 100 150
participants

Figure 27: Participants’ major and the reason for what they use quantum languages. According to Fisher’s exact test (p-value 0.40102), we do not
reject the null hypothesis, i.e., that there is a significant relationship between the two categorical variables (participants’ major and the reason for
what they use quantum languages).
Figure discussed in RQ7 (Section 4.7).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

previous RQ, some participants indicated that a high-level language is necessary to facilitate the effective development
of quantum programs. The participants also raised some other needs, such as:

• “Quantum integrated development environments, with debugging tools tailored for quantum and with tools to
visualize circuit.”
• “Tools for error correction.”
• “Better device level optimizers, simulators, and device access.”
• “Meaningful standardised benchmark suites.”
• “Easy interoperability between quantum libraries and/or frameworks.”

4.12. RQ12: Are quantum programs tested, how often, and how?
76.4% of all participants test their quantum programs, while 23.6% do not. Figure 31 reports that participants who

write quantum programs using, e.g., Braked SDK, QHaskell, Orquestra, always test their programs, while participants
who use, e.g., QASM and Ket, never perform any kind of testing procedure.

Of the participants who test their quantum algorithms / programs, the majority (64.7%) perform testing every
time the source code is modified, 16.2% only before releasing the program to production, 6.6% every day, and 12.6%
answered other.

28

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 29

33 (15.9%)

23 (11.1%)

20 (9.6%)

13 (6.2%)

9 (4.3%)

5 (2.4%)
4 (1.9%)
3 (1.4%)
2 (1.0%)
1 (0.5%)

#
 p

a
rt

ic
ip

a
n

ts
(%

 p
a

rt
ic

ip
a

n
ts

)

Like to learn Use it for research Use it for work Other

DBA (Database Administrator)

Marketing Manager

Tester / QA Engineer

UX / UI Designer

Business Analyst

Systems Analyst

Product Manager

Developer Advocate

Project Manager

Technical Support

Technical Writer

Architect

Other

DevOps Engineer / Infrastructure Developer

CIO / CEO / CTO

Team Lead

Data Analyst / Data Engineer/ Data Scientist

Instructor / Teacher / Tutor

Academic researcher

Scientist / Researcher

Student

Developer / Programmer / Software Engineer

66 (31.7%)

8 (3.8%)

3 (1.4%)

15 (7.2%)

21 (10.1%)

1 (0.5%)

78 (37.5%)

6 (2.9%)

10 (4.8%)

23 (11.1%)

1 (0.5%)

4 (1.9%)

6 (2.9%)

69 (33.2%)

73 (35.1%)

3 (1.4%)

20 (9.6%)

6 (2.9%)

6 (2.9%)

1 (0.5%)

1 (0.5%)

9 (4.3%)

0 50 100 150
participants

Figure 28: Participants’ current job and the reason for what they use quantum languages. According to Fisher’s exact test (p-value 0.00000), we
reject the null hypothesis, i.e., that there is a significant relationship between the two categorical variables (participants’ current job and reasons for
what they use quantum languages).
Figure discussed in RQ7 (Section 4.7).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

57.4% of all participants test their programs manually, while 42.6% test them automatically (e.g., through the
execution of unit tests), see Figure 32. This might indicate a need for testing tools for quantum programs or a lack of
dissemination of existing testing tools.

Programs written with Silq, QML, Q|S I⟩, and Orquestra (Python), are tested automatically, while programs written
with Strawberry Fields (Python), QHaskell, QASM, Ket, and DWave Ocean (Python) are tested manually. Programs
written with the most used language, i.e., Qiskit (Python), are mainly tested automatically.

4.13. RQ13: What tools do users employ for testing quantum programs?

The tool most used by participants to test their programs is Qiskit - QASM Simulator, used by 77.1% of partici-
pants, followed by Cirq Simulator and Testing - cirq.testing (18.5%), see Figure 33. Given that Qiskit (Python) is the
most used language used by participants, the testing tool provided by language is also the most used one. Worth noting
that participants are starting to use novel tools to automatically generate tests for quantum programs (e.g., Quito [98]),
to fuzz (e.g., QuanFuzz [99]), and mutation testing (e.g., Muskit [100]).

Figure 34 shows the relation between the quantum language and the tool used to ease testing. Although programs
written with Qiskit (Python) are mainly manually tested (Figure 32), 74.8% of the participants use the Qiskit - QASM

29

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 30

23 (11.1%)

20 (9.6%)

9 (4.3%)

7 (3.4%)
6 (2.9%)

4 (1.9%)
3 (1.4%)
2 (1.0%)
1 (0.5%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Quipper

Q Language

Quil

QASM

QHaskell

Silq

Lambda Calculi

Forest (Python)

QML

OpenQASM

Braket SDK (Python)

Strawberry Fields (Python)

Other

QDK (Q#)

Qiskit (Python)

Cirq (Python)

27 (13.0%)

53 (25.5%)

17 (8.2%)

16 (7.7%)

23 (11.1%)

9 (4.3%)

13 (6.2%)

39 (18.8%)

14 (6.7%)

42 (20.2%)

17 (8.2%)

10 (4.8%)

7 (3.4%)

14 (6.7%)

27 (13.0%)

31 (14.9%)

0 25 50 75 100

participants

Figure 29: Quantum languages that the 208 participants would like to try in the future.
Figure discussed in RQ8 (Section 4.8).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

Simulator as a tool to ease the testing procedure. No tool is used to test programs written with QHaskell, QASM, and
Ket.

4.14. RQ14: How do users perceive the diversity of quantum languages?
42.8% of all participants reported that too many quantum languages might have been proposed, 18.3% disagreed,

and 38.9% did not answer this question for different reasons, like they did not know or did not have the knowledge to
answer it. One participant mentioned that, “Too many - there’s a lot of overlap between the languages, most could be
done if a single language was settled on.”. Participants also shared other opinions, for example:

• “There are many languages with overlapping features that are not standardized.”
• “Because quantum programming is still in the early stages of development, there are many different proposals

for languages.”
• “Many of these languages are research languages that do not have great community support.”
• “Many languages are needed until we find which features are required in a quantum programming language.”
• “Many participants want to make their own language or have a better abstraction for them. In classical comput-

ing, everyone tries to write their.” language, interpreter, or compiler, which is the same as quantum computing.
• “The languages have too little interoperability, and too many were created by start-ups that will die soon.”
• “There must be a standard for the creation of a universal language.”
• “Many languages are created because the developers encounter problems within a specific language.”
• “Many companies run hardware platform competitions and create languages for their hardware.”

Figure 35 reports the relation between quantum languages and participants’ opinion regarding the number of quan-
tum languages out there. Most participants that use Quipper, Quil, QML, Qiskit (Python), QASM, OpenQASM, Ket,
DWave Ocean (Python), Cirq (Python), and Braket SDK (Python) reported that too many quantum languages might
have been proposed. Participants that use Strawberry Fields (Python), QHaskell, QDK (Q#), and Q|S I⟩, disagree.

30

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 31

71 (34.1%)

26 (12.5%)

24 (11.5%)

19 (9.1%)

13 (6.2%)

7 (3.4%)

5 (2.4%)
4 (1.9%)
3 (1.4%)
2 (1.0%)
1 (0.5%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Is part of a course about the language

Other features

Other

Read an article about the language

Widely used

Heard about the language 133 (63.9%)

12 (5.8%)

23 (11.1%)

49 (23.6%)

50 (24.0%)

31 (14.9%)

0 50 100 150 200 250

participants

Figure 30: Why do the 208 participants like to try other quantum languages.
Figure discussed in RQ8 (Section 4.8).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

2 (100%)

2 (18.2%)9 (81.8%)

2 (66.7%)1 (33.3%)

1 (100%)

4 (100%)

1 (100%)

1 (100%)

1 (100%)

5 (55.6%)4 (44.4%)

1 (100%)

29 (21.5%)106 (78.5%)

2 (100%)

1 (20%)4 (80%)

1 (20%)4 (80%)

1 (50%)1 (50%)

1 (100%)

6 (25%)18 (75%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

No Yes

Figure 31: Whether testing is performed by quantum language. Accord-
ing to Fisher’s exact test (p-value 0.23619), we do not reject the null
hypothesis, i.e., that there is a significant relationship between the two
categorical variables (quantum languages and whether participants per-
form testing).
Figure discussed in RQ12 (Section 4.12).

1 (50%)1 (50%)

5 (55.6%)4 (44.4%)

1 (100%)

1 (100%)

1 (33.3%)2 (66.7%)

1 (100%)

1 (100%)

1 (100%)

2 (50%)2 (50%)

1 (100%)

45 (37.8%)74 (62.2%)

2 (100%)

3 (60%)2 (40%)

1 (20%)4 (80%)

1 (100%)

1 (100%)

12 (63.2%)7 (36.8%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Automatically (e.g., unit test) Manually

Figure 32: How is testing performed by quantum language. Accord-
ing to Fisher’s exact test (p-value 0.28170), we do not reject the null
hypothesis, i.e., that there is a significant relationship between the two
categorical variables (quantum languages and how participants perform
testing).
Figure discussed in RQ12 (Section 4.12) and RQ13 (Section 4.13).

There are several reasons to justify the number of existing quantum languages and the development of new ones.
For example, several languages could have been created for an application area, and others to take advantage of some
specific quantum computing properties. Another reason might be that a recent and innovative area with great growth

31

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 32

85 (54.1%)

22 (14.0%)

13 (8.3%)

5 (3.2%)
4 (2.5%)
3 (1.9%)
2 (1.3%)
1 (0.6%)

#
 p

a
rt

ic
ip

a
n
ts

(%
 p

a
rt

ic
ip

a
n
ts

)

Muskit: A Mutation Analysis Tool for Quantum Software Testing
QuanFuzz − Fuzz Testing of Quantum Program

Quito − A Coverage−Guided Test Generator for Quantum Programs
ProjectQ Simulator

QDK − xUnit
Straberry Fields using pytest

Forest using pytest
Cirq Simulator and Testing − cirq.testing

Other
Qiskit − QASM Simulator

29 (18.5%)

8 (5.1%)

1 (0.6%)

3 (1.9%)

6 (3.8%)

121 (77.1%)

1 (0.6%)

1 (0.6%)

6 (3.8%)

39 (24.8%)

0 50 100 150 200

participants

Figure 33: Tools used to test quantum programs accordingly to 157 participants. (Note that survey question number 33 (see Table A.2) was not a
mandatory question and 51 participants did not answer it.)
Figure discussed in RQ13 (Section 4.13).
(Please refer to Figure 6 for an explanation of the UpSet plot [88].)

1

(50%)

1

(50%)

10

(58.8%)

2

(11.8%)

5

(29.4%)

1

(50%)

1

(50%)

2

(33.3%)

1

(16.7%)

1

(16.7%)

1

(16.7%)

1

(16.7%)

1

(100%)

1

(50%)

1

(50%)

2

(15.4%)

1

(7.7%)

2

(15.4%)

1

(7.7%)

5

(38.5%)

2

(15.4%)

12

(9.2%)

1

(0.8%)

1

(0.8%)

9

(6.9%)

2

(1.5%)

3

(2.3%)

98

(74.8%)

1

(0.8%)

4

(3.1%)

1

(33.3%)

1

(33.3%)

1

(33.3%)

3

(37.5%)

4

(50%)

1

(12.5%)

3

(75%)

1

(25%)

1

(100%)

1

(100%)

2

(8.3%)

2

(8.3%)

13

(54.2%)

1

(4.2%)

6

(25%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Cirq Simulator and Testing − cirq.testing

Forest using pytest

Muskit: A Mutation Analysis Tool for Quantum Software Testing

Other

ProjectQ Simulator

QDK − xUnit

Qiskit − QASM Simulator

QuanFuzz − Fuzz Testing of Quantum Program

Quito − A Coverage−Guided Test Generator for Quantum Programs

Straberry Fields using pytest

Figure 34: Quantum languages and the tool used to test quantum programs accordingly to 157 participants. According to Fisher’s exact test (p-
value 0.00000), we reject the null hypothesis, i.e., that there is a significant relationship between the two categorical variables (quantum languages
and tools used to perform testing).
Figure discussed in RQ13 (Section 4.13).

potential or new quantum hardware requires a new language. A universal language for quantum computing would be
fascinating, we are not just there yet.

32

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 33

1 (100%)

1 (14.3%)6 (85.7%)

2 (100%)

1 (100%)

2 (100%)

1 (100%)

1 (100%)

5 (62.5%)3 (37.5%)

1 (100%)

19 (25.3%)56 (74.7%)

1 (100%)

1 (25%)3 (75%)

1 (33.3%)2 (66.7%)

1 (50%)1 (50%)

1 (100%)

7 (41.2%)10 (58.8%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

No Yes

Figure 35: Participants’ opinion whether there are too many quantum
languages grouped by participants’ primary language. According to
Fisher’s exact test (p-value 0.24532), we do not reject the null hypoth-
esis, i.e., that there is a significant relationship between the two cate-
gorical variables (primary quantum language and whether participants’
opinion whether there are too many quantum languages).
Figure discussed in RQ14 (Section 4.14).

1 (50%)1 (50%)

1 (16.7%)5 (83.3%)

1 (100%)

1 (100%)

2 (100%)

1 (100%)

2 (28.6%)5 (71.4%)

1 (100%)

33 (46.5%)38 (53.5%)

1 (100%)

2 (50%)2 (50%)

3 (100%)

2 (100%)

1 (100%)

6 (40%)9 (60%)

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

No Yes

Figure 36: Participants’ opinion whether another language is needed
grouped by participants’ primary language. According to Fisher’s exact
test (p-value 0.26281), we do not reject the null hypothesis, i.e., that
there is a significant relationship between the two categorical variables
(primary quantum language and whether participants’ opinion whether
another language is needed).
Figure discussed in RQ15 (Section 4.15).

4.15. RQ15: What factors influence participants’ opinions about the necessity of introducing new quantum lan-
guages?

Regarding the participants’ opinions on whether they would need a new quantum language shortly, 31.7% of par-
ticipants answered affirmatively. One participant mentioned “Yes. Higher-level programming. Right now, everything
is low level with very little optimization for compilation.”. 25.0% of participants disagreed, and one participant men-
tioned “No, it is better to learn the current languages and, if necessary, contribute to their improvement.”. 43.3% did
not answer.

Figure 36 shows that the participant’s opinion regarding the need for another quantum language can differ depend-
ing on the language used. All the participants who use OpenQASM, QHaskell, Silq, and Strawberry Fields (Python)
think there is a need to create a new language. However, the participants that use Quipper, QML, Ket, DWave Ocean
(Python), and Q|S I⟩ disagree.

The main arguments participants reported as being necessary for the creation of a new quantum language are:

• “The creation of a universal language.”
• “More standardized quantum programming languages.”
• “High-level programming languages are needed instead of low-level languages.”
• “The languages are not yet mature enough, and the hardware is quickly changing.”
• “New algorithms will require new languages.”
• “To support cryptography and post-quantum cryptography concepts.”
• “Many ideas need to be explored, especially as the number of qubits scales.”
• “Most of the current programs are based on circuits that are way too low-level.”
• “Languages for handling error correction in real devices.”
• “Many languages overlap, and a standard language for quantum computation could accelerate development.”
• “There is room for a language that enables orchestration between quantum expression and control hardware

more effectively.”

As for the participants who disagreed with the need to create new quantum languages, the arguments are:

• “The problem concerns standard libraries of generic, optimized, and verified subroutines and languages rather
than programming languages.”

33

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 34

• “A new language is unnecessary unless it adds something new to the quantum field.”
• “Too many already, and consolidation is needed.”
• “The popular languages like Qiskit (Python), Q#, and Cirq (Python) are enough.”
• “The existing ones are sufficient.”

4.16. Threats to validity

Based on the guidelines reported by Wohlin et al. [101], we discuss below the threats to the validity of our study.

4.16.1. Threats to external validity
The study may contain only some of the quantum languages ever proposed. However, extensive research was con-

ducted to find as many languages as possible to mitigate this risk. Nevertheless, the survey allowed the participants to
use the “Others” text box to inform a different programming language, and they did mention Xanadu’s Pennylane [90],
QUTIP [91, 92], FunQy [93], SQIR [94], Quingo [95], and Perceval [96]. Although some are available on the same
data sources we used to search for quantum languages, i.e., [90] is available on arXiv, [94] and [95] are available on
the ACM digital library, and [96] is available on the Quantum journal, these works did not match any of our keywords.
Furthermore, [93] is only available as a webpage, and [91] is available on Elsevier ScienceDirect, both sources out of
our radar. We suggest others also consider those in future studies.

The participants who carried out the survey might differ from the quantum developers out there. Still, to minimize
this risk, we tried to reach as many participants as possible by publishing our survey on several quantum computing
platforms with hundreds of thousands of potential participants registered. We can see in Figure 3 the diversity of
countries where the participants live, in Figure 6 the diversity of majors, and in Figure 7 the current job, which might
indicate the diversity of participants.

4.16.2. Threats to internal validity
Although we ensured others could replicate the search procedure described in Section 2, subjective factors during

language selection may hinder the guarantee that others could produce exactly the set of quantum languages. To
minimize this risk, the search procedure was conducted by both authors.

Data was analyzed with scripts written in R [102], which might have bugs. All authors reviewed all scripts to
mitigate this risk.

4.16.3. Threats to construct validity
There is a risk that the questions used in the survey needed to be more comprehensive / deep to analyze and

answer all research questions proposed in this paper. To mitigate this risk, we first analyzed the questions asked in
other surveys [103, 104, 105, 106] and guidelines proposed by others [78, 79, 80] on how to carry out surveys before
we designed our questions. Additionally, the survey was validated with a couple of participants before being made
available to the public so we could obtain feedback and make the necessary adjustments.

5. Implications of our study and suggestions for future work

Given the results presented in the previous section, this section describes some of the implications of our study
and provides suggestions for those planning to developing new quantum languages or enhancing existing ones.

5.1. Know your target audience

Two thirds of the participants are between 18 and 34 years old, live in english speakers countries (USA, India, and
Canada), and have learned quantum languages from official documentation (e.g., website, markdown files) or through
online courses. This implies that the developers of existing or new languages should provide content to be consumed
online and by youngers in order to increse their chance of being used and further adopted. Given the many researchers
using quantum languages, advertising new or existing languages at Universities in the USA, India, and Canada might
also increase their chance of being used.

34

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 35

5.2. Documentation, examples, and community support
The most popular and used quantum languages are the ones that provide comprehensive documentation with

tutorials and usage examples, and have an extensive and active community. Documentation and usage examples are
a must, particularly for novices learning a new language. Documentation is not just a requirement / necessity of
quantum languages, it is also a well-known case for classical language, as stated by Hope [107]. This suggests that
the successful adoption of new or existing languages depends comprehensive and extensive documentation, available
to the general public.

5.3. Quantum languages love classical languages
The most popular and used quantum languages are the ones that have been proposed on top of classical languages.

This is not surprising. A developer would more likely (and more quickly) adopt a quantum language that follows a
syntax similar to one of the developers’ familiar languages, than a language with a different semantic and syntax. A
quantum language based on a well-known classical language makes it easy for developers to build their code and not
limit them only to the features of the quantum language. That is, developers can also use all of the features of the
classical language and its libraries.

5.4. High-level quantum languages
Although almost half of the participants agreed that too many programming have been proposed, one third pointed

out that existing languages are very low-level and new abstractions and high-level languages must be proposed. Such
high-level languages would allow developers to focus more on the quantum programs / algorithms and less on the
low-level interactions with a quantum device, as it happens nowadays with classical programming languages.

5.5. Application domain and new features
Specific quantum programming languages have been used in specific domains. Such information could allow

developers to refine and expand language features. For example, Strawberry Fields (Python) is exclusively used by
participants with a major in physics. Thus, developers of Strawberry Fields (Python) should aim to collect feedback
from physicists and to improve or support more physics-related features.

5.6. Tailored quantum integrated development
Jetbrains’ annual report [104] reported that most developers now use Visual Studio Code or IntelliJ IDEA as their

integrated development environment. The question is whether those environments have the right tools to write a
quantum program with a quantum language (i.e., simple support as source code highlight and auto-complete), to run
and debug a quantum program, or to test a quantum program.

For example, Qiskit provides a drawing functionality that allows one to translate a given quantum circuit into a
graphical image of the circuit. Such feature, if integrated into a development environment, would allow quantum
experts, either developers or not, to understand and discuss the code by just looking at the graphical representation of
the circuit. Others have explored this feature, for example, to study quantum smells [108] (i.e., bad coding practices)
and to perform mutation testing [109, 110, 111]. None has not yet been integrated in any development environment.

5.7. Testing & Debugging tools
Although several tools have been proposed to ease the task of testing a quantum program, more than half of the

participants stated that they test their programs manually. This might indicate a lack of dissemination of existing
testing tools or the need to make the existing ones easier to use. Participants also pointed out that debugging tools
(integrated in the development environment) would be a must.

5.8. Real quantum computers
Although many developers might be willing to learn and try new quantum languages, the fact that most of the

development still occurs in simulators might be a downside and a showstopper for some. Companies like Google,
IBM, and D-Wave Systems which are developing quantum languages and quantum computers, should foster access to
their computers so that developers can try their quantum programs on real devices and try to reach the fully expected
potential behind quantum computing.

35

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 36

6. Related work

In this section, we surveyed the literature that is most related to our main contributions or that is in line with
the research topics studied in this paper. Selinger [112] provide a brief review of quantum language research. Unruh
[113], Sofge [71], Rojas [114] provide an overview of the development of quantum languages. De Stefano et al. [115],
the most similar work to this paper, propose a taxonomy of the quantum technologies used in open-source quantum
projects and investigate the most used quantum programming frameworks.

6.1. Classical programming languages

According to the online historical encyclopedia of programming languages HOPL [116], nearly 9000 languages
have been created since the 18th century. However, according to GitHub [117] only about 370 are still active.

According to Lagutin [118], technological evolution is one of the reasons that many programming languages
were created, considering that with technological advancement, we need new tools to develop new systems for these
technologies. The program can be so unique that to create a solution for it, researchers and companies have to create
a new language to develop it. Another point is that different types of developer jobs need different languages, as
there are different types of software and platforms, and they may require their own tools and resources. Also, some
programming languages have different needs and goals and are better suited for certain types of tasks than others.
Each programming language has certain features and characteristics that make it suitable for specific tasks.

In Sherman [119]’s stack overflow post, there are four primary points that could answer how programming lan-
guages are being used and why they were created. The first point is that different tools are needed for different jobs,
e.g., Ruby is a very popular language for developing websites, and R is very popular in statistics. Second, every
developer has different tastes. As programming languages are used for humans to express ideas to computers, it is
only natural that a developer might like to use a specific language for specific reasons. Third, a language can be used
because if it was the company’s choice based on what the individuals who work there know best. For example, C#
is mainly used on Stack Overflow because it was the primary language used by the founders. Fourth, variety is a
strength, there are many programming languages out there because proposing, implementing, and distributing a new
one is easy and cheap.

Scott [120] pointed out that the main reasons for the variety of programming languages are evolution, how to learn
better ways of doing things, economic advantage factors, such as commercial and industrial, hardware, and unique
purpose orientation; and the diverse ideas of what developers most like to use.

6.2. Quantum programming languages

6.2.1. Towards a quantum programming language by Selinger (2004)
According to Selinger [63], quantum algorithms are often expressed at the hardware level, such as in the quan-

tum circuit model or quantum Turing machines. Structured programming or abstractions such as data types are not
encouraged by these methods. Selinger [63] proposed the design of a quantum language, called QPL, defining the
syntax and semantics of a functional quantum language with characteristics such as loops, recursive procedures, and
structured data types. The language has some essential characteristics, for example, it is statically typed, and the
author guarantees as it is a functional language that any well-type program does not have run-time errors. In terms of
super operators completing partial orders, it has denotational semantics.

Selinger [63] work proposed a point of view where quantum computing is expressed with data and control flow
and does not rely on any specific hardware model. The control stage of the program is classical, but the informa-
tion manipulated by the programs can have quantum superposition. In the language proposed, there is no notion of
quantum branching and the superposition of two distinct statements because even if the manipulated data involves
quantum superposition, the control state is classical. The author used the slogan “quantum date, classical control” for
the language.

The author reviewed some basic concepts from linear algebra and quantum computation, presented a view of
quantum language in terms of flow charts, and presented it in its formal semantics that shows a syntax more textually
for quantum programs. This textual semantics is also more structured in terms of structured programming languages
such as Pascal. Selinger also proposed possible extensions to QPL.

36

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 37

6.2.2. A brief survey of quantum programming languages by Selinger (2004)
Selinger [112] provided a brief review of quantum language research. Some quantum virtual hardware models

are described, such as the quantum circuit model made up of quantum gates in the same way a classical logic circuit
is made up of logic gates. The model emphasizes the unitary transformations with measurements carried out as the
very last step in a computation. Another model that Selinger summarized is the QRAM model of Knill [121], which
permits unitary transformations and measurements. In this model, a quantum device is controlled by a universal
classical computer and contains addressable qubits, like a memory in a classical computer. The model contains a
classical controller that sends a sequence of instructions and a quantum device that passes out these instructions. A
third virtual hardware model is the quantum Turing machine; in this model, the entire operation of the machine is
assumed to be unitary, and measurements are never performed.

The author briefly commented on some semantic projects, such as Girard [122] with the definition of coherent
quantum spaces as possible semantics for higher-order quantum computation. Abramsky and Coecke [123], which
models a high-order function and applications that rely on entanglement and quantum measurement. Edalat [124]
with a domain-theoretic interpretation of Gleason’s theorem and Coecke and Martin [125] with a domain-theoretic
treatment of the von Neumann entropy of a quantum state.

Selinger [112] further raised three challenges for quantum languages; the first is a denotational semantics for
a higher-order quantum programming language; the second is a theory of quantum concurrency, as the network of
quantum processes that exchanges classical and quantum data can be a challenge. The third one is the development
of quantum languages on imperfect hardware. In real hardware implementations, random errors and decoherence can
be predicted, and the challenge is the extent to which known error detection techniques can be automated.

6.2.3. Quantum programming language by Unruh (2006)
Unruh [113] investigated the development of quantum languages and gave an overview of the current work. Quan-

tum programming languages are divided into two types: the first one that targets practical application and the second
one that targets the theoretical analysis of quantum programs.

For practical programming languages, including simulation or programming in quantum computers, there are sev-
eral possible features of quantum languages and some essential features that a language should have from a developer’s
point of view.

• Simple and powerful. Simple means that the language is easy to understand, and no great effort is needed
before using it. Powerful means that it possesses the features necessary so the developer can concentrate their
work on the algorithmic.
• Technology independent. The language should be able to translate the code to a sequence of instructions in a

way that the code is not written depending on this technology.
• Transparently implement optimization and Error correction techniques. The language should handle op-

timization and error corrections transparently from the developer.
• Using simulators. The developers should be able to run the quantum programs using simulators on a classical

computer, making the programs easy to test and debug.

For the formal programming languages, Unruh [113] separated the quantum languages by the syntax and seman-
tics. The author also presented possible features of quantum languages, such as:

• Quantum branching. The problem of branching in quantum languages is that the value of a qubit in a super-
position may be used in the branch conditions. In this case, the measurement would destroy the superposition.
However, the CNOT-gate is a simple example of quantum branching because it flips the value if the other has
value 1.
• Continuous classical output. Some quantum algorithms may require that the output is given before the pro-

gram’s termination, even if most algorithms take the inputs and return the output after its execution.
• Concurrent processes. The language needs to be able to interact with concurrent processes.
• Infinite data types. Most of the languages proposed have data types only for the finite-dimensional Hibert

space. Moreover, thus, elementary data such as integers cannot be represented in this model. In classical
machines, integers are also finite data types, but in designing a new algorithm, it might be necessary to use
unlimited integers in the development stage.

37

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 38

• Higher-order data types. Complex quantum data types, like lists, tuples, and records, can be required for the
future development of quantum algorithms.
• Powerful reasoning about programs. The language must have a collection of rules that allows the developers

to focus on the algorithms instead of the specific details of the language.

6.2.4. Quantum programming language, survey and bibliography by Gay (2006)
Gay [126] briefly summarized the basic concepts of quantum computing, surveyed the literature on quantum

languages, and classified the papers studied according to the central theme of each paper. The classification proposed
is the following: programming language design, semantics, and compilation.

For the programming language design, Gay divided into imperative languages, functional languages, and λ-
calculi and other language paradigms. In the imperative languages, he reviewed the quantum Turing Machines of
Deutch [127] as the first model for general quantum computation, which has the property of superposition of machine
states. Gay also described the work of Knill [121] that defined a proposal for a formalized quantum language that
implements an imperative pseudo-code on a quantum random-access machine (QRAM). The QRAM model consists
of registers that can execute quantum operations. The author also summarized other imperative quantum languages as
QCL [67], Q [72], and qGCL [73].

For the functional languages and Lambda-Calculi, the author summarized both extensions of λ-calculus of Maymin
[128], the quantum λ-calculus of Van Tonder [74] and also the work on the definition of the first-order functional
programming language QML of Altenkich et al. [60]. He also mentions several works that investigated quantum
programming within Haskell.

For the other languages paradigms, he summarized the work of Gay and Nagarajan [61], the definition of the
process calculus CQP (Communication Quantum Process), and Jorrand and Lalire [129], the definition of QPAlg
(Quantum Process Algebra). The two languages describe systems combining classical and quantum computation and
communication, and both aim to support the formal specification and verification of quantum cryptography protocols.

In the semantics classification, Gay referred to denotation techniques as many papers emphasizing language design
also defined semantics in an operational style. The papers which do not define languages (for example, the semantic
studies that focus on protocols) and for papers including language definitions but whose emphasis is on denotational
semantics. He also included papers that apply linear logic to the structural aspects of quantum computation.

For compilation classification, Gay summarized some quantum compilers that can be used to compile quantum
languages. The work proposed by Altenkirch and Grattage [60] have developed a compiler for their QML language
into a representation of quantum circuits, using categorical semantics as an intermediate form.

6.2.5. A survey of quantum programming languages: history, methods, and tools by Sofge (2008)
Sofge [71] researched some of the essential quantum languages in terms of their history, methods, and proposed

tools. He also mentions Feynman’s proposal in 1982 to build a quantum computer to simulate quantum systems.
Making this simulation in a classical computer would require the exponential use of resources in terms of memory
and computational time. He also described the work in linear logic by Girard [130] in 1987, which played an essential
role in designing quantum languages, particularly those based on lambda calculus.

According to Donald, the first step to creating a quantum language was a work from Knill in 1996, which defines
a quantum random-access machine model (QRAM). According to the author, the proposal described by Knill does
not have all the necessary characteristics to be considered a quantum language because of the informal definition of
its structure and also the lack of strong typing, and because it does not represent some of the necessary quantum
properties. Sofge defined a proposal for a taxonomy to represent quantum languages, grouping them into three differ-
ent types: imperative, functional, and other quantum languages (which include mathematical formalism that was not
defined to run on computers).

The author defined some challenges in quantum languages as the lack of quantum computing hardware to execute
quantum algorithms, the lack of a definition regarding the data structures that need to be implemented, and the opera-
tions on top of this data structure. Which operations should be allowed and which should not, and more information
on how to better design a quantum language to better use quantum computing. Another challenge is that quantum me-
chanics is still incomplete and, by extension, the theory concerning quantum computing. There is still much research
going on to understand the physics behind quantum computing better.

38

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 39

6.2.6. The modern state of quantum programming language by Rojas (2019)
Rojas [114] summarized the core ideals found in a successful quantum language as proposed by the community of

authors and developers. Also, a high-level look into domain-specific quantum languages and their different expecta-
tions. He mentioned some important designs that a quantum programming language should have, like completeness,
expressivity, efficiency, and hardware independence.

The author also provided a table with a historical overview of the development of quantum languages. It shares
the conclusion that it is necessary for much more time to be spent focusing on handling quantum error correction
within quantum programs and designing a software framework that can accommodate the various physical constraints
of quantum devices. With so many languages to choose from and build off, it is hard to pick a single language with
the optimal design format for developers and quantum computers.

6.2.7. Quantum programming languages: a systematic review of research topic and top cited languages by Garhwal
et al. (2019)

Garhwal et al. [131] gave an overview of the state of the art in the field of quantum languages and focused on actual
high-level quantum languages, their features, and comparisons. The author also discussed some research questions
(e.g., what are the different types of Quantum Programming Languages; what are the recent trends in the development
of quantum languages; which major Companies, Groups, Institutes, and Universities are working on developing new
quantum languages; what are the most popular publication venues for quantum; and what are the most cited papers in
the area of a quantum language).

The authors divided the types of quantum languages into multi-paradigm, imperative, functional, quantum circuit
language, and quantum object Language. The authors described various types of quantum imperative and quantum
functional languages, respectively. They also showed the year-wise distribution of papers considered in their review
process, showing that in the recent 4 to 5 years, significant progress was made in developing new quantum languages.
However, many research groups are working in the area of quantum languages. Garhwal et al. [131] highlighted the
following groups: Advanced Research Projects Activity (IARPA); Quantum Architectures and Computation Group
(QuArC) at Microsoft; The University of Nottingham QML Harvard University; Center for Quantum Software and
Information at the University of Technology, Sydney, Australia.

They stated that most of the researchers in quantum language prefer to publish on arxiv.org. The top three quantum
languages in terms of the number of citations for the main paper published for quantum languages as per Google and
as per Web of Science based on his study are QFC/QPL, Quantum Lambda Calculus, and Q.

6.2.8. Quantum software engineering: landscapes and horizons by Zhao (2021)
Section 14.1 of the first comprehensive survey on the research of quantum software engineering conducted by

Zhao [5], discusses some works in quantum programming languages also discussed in this section, in particular [112,
126, 113, 71, 131, 62].

6.2.9. Quantum software components and platforms: Overview and quality assessment by Serrano et al. (2022)
Serrano et al. [132] gathered and discussed several quantum languages that have been proposed and grouped

them by paradigm, either imperative, functional, or other; similar to our comprehensive analyze in Sections 2.2
to 2.4. Figure 5 in [132] shows a roadmap of quantum programming languages similar to our Figure 1. Our figure
complements the one in [132] as it shows more languages, whether a language is functional, imperative, or multi-
paradigm, and it also shows whether a language has evolved from any other language (either classical or quantum).

6.2.10. Software engineering for quantum programming: how far are we? by De Stefano et al. (2022)
De Stefano et al. [115] mined project repositories on GitHub that use one of three quantum languages (Qiskit,

Cirq, and Q#)10, and defined a taxonomy of quantum technologies used by those projects. They also conducted a
survey with developers that uses quantum languages to get their opinion on the current adoption and challenges of the
quantum programming field.

10De Stefano et al. [115] stated that Qiskit, Cirq, and Q# are the most widely used and our study confirmed that.

39

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 40

They concluded that (i) most of the quantum technologies are being used for personal projects (41%, which is
inline with our results 48%, see Figure 27), and (ii) the main challenges related to quantum frameworks are the
comprehension of quantum programs and difficulty setting up hardware and software infrastructures.

7. Conclusions and future work

Quantum programming language is an evolving area, and the number of languages developed is growing and
expected to evolve with the development of real quantum computers. In this paper, we conducted an exploratory
study on the usage of quantum languages. Firstly, we conducted an extensive study of quantum languages’ state of
the art and then described each one. Secondly, we surveyed 251 participants on the usage of quantum languages.
This allowed us to gather data to answer our set of research questions. Thirdly, we presented our results regarding
the profile of the participants who are using the languages, how they are being used, which language is most used,
which language tends to be used shortly, and the opinion of the participants about the number of quantum languages
available, and the need to create new languages. We then concluded that quantum languages are mainly used for
learning and research, and that the most popular quantum languages are built on top of the Python classical language.
Finally, we provided a few suggestions for developing a quantum language or improving any existing language.

As future work, we suggest extending this study (i) with additional quantum languages that were not included, and
(ii) with additional new questions, which were only identified later in our study and therefore were not included, e.g.,
what type of quantum projects are developers working on? what type of quantum programs and/or algorithms are
developers writing with quantum languages?, These and other questions might further shed light on the day-to-day
usage of quantum languages and the development of quantum programs.

Data availability

The data generated in this paper and the R scripts created to analyze that data are available at https://github.
com/jose/quantum-languages-data.

Acknowledgments

We would like to express our gratitude to André Souto (Faculdade de Ciências da Universidade de Lisboa, Por-
tugal) and the anonymous reviewers for their feedback on early drafts of this work. This work was supported by
Fundação para a Ciência e Tecnologia (FCT) through the LASIGE Research Unit, ref. UIDB/00408/2020 (https://
doi.org/10.54499/UIDB/00408/2020) and ref. UIDP/00408/2020 (https://doi.org/10.54499/UIDP/00408/
2020).

Appendix A. Survey questions

This appendix describes, by section, the questions that were asked in the survey, the reason for each question, and
the type/domain of each answer.

Survey question RQ Reason Answer type Possible answers

Section 1
1 Have you ever used any Quantum

Programming Language?∗
Identify if the participant worked
with quantum programming lan-
guages and can answer the rest of
the survey

Radio button (Single
Choice)

Yes; No

Section 2
2 What is your age?∗ RQ1 This question was chosen to iden-

tify the participants of this survey
demographically.

Dropdown (Single
Choice)

Under 18 years old; 18-24 years old;
25-34 years old; 35-44 years old; 45-
54 years old; 55-64 years old; 65
years or older; Prefer not to say

3 Where do you live? (Country)∗ RQ1 Identify where the participants are
geographically concentrated.

Dropdown (Single
Choice)

Brazil; Portugal; Spain; etc

4 Which of the following describe
you?

RQ1 Identify the gender of the partici-
pants.

Radio button (Single
Choice)

Man; Woman; Non-binary, gen-
derqueer, or gender non-conforming;
Prefer not to say; Other

Section 3

40

https://github.com/jose/quantum-languages-data
https://github.com/jose/quantum-languages-data
https://doi.org/10.54499/UIDB/00408/2020
https://doi.org/10.54499/UIDB/00408/2020
https://doi.org/10.54499/UIDP/00408/2020
https://doi.org/10.54499/UIDP/00408/2020

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 41

5 How many years have you been
coding?∗

RQ3 Assess the experience and educa-
tion of the participants in terms of
coding.

Dropdown (Single
Choice)

Less than 1 year; 1 to 4 years; 5 to 9
years; 10 to 14 years; 15 to 19 years;
20 to 24 years; 25 to 29 years; 30
to 34 years; 35 to 39 years; 40 to 44
years; 45 to 49 years; More than 50
years

6 How many years have you coded
professionally (as a part of your
work)?∗

RQ3 Assess the professional experience
of the participants.

Dropdown (Single
Choice)

None; Less than 1 year; 1 to 4 years;
5 to 9 years; 10 to 14 years; 15 to 19
years; 20 to 24 years; 25 to 29 years;
30 to 34 years; 35 to 39 years; 40 to
44 years; 45 to 49 years; More than
50 years

7 How did you learn to code?∗ Select
all that apply.

RQ2 Assess the education of the partici-
pants.

Checkboxes (Multiple
Choices)

Books / Physical media; Coding
Bootcamp; Colleague; Friend or
family member; Online Courses or
Certification; Online Forum; Other
online resources (videos, blogs,
etc.); School; Other

8 What are the most used program-
ming, scripting, and markup lan-
guages you have used?∗ Select all
that apply.

RQ4 Identify the languages that the par-
ticipant has used.

Checkboxes (Multiple
Choices)

Assembly; Bash C; Classic Visual
Basic; COBOL C++; C#; Del-
phi/Object Pascal; Fortran; F#; Go;
Groovy; Haskell; Java; JavaScrpit;
Julia; Lisp; Matlab; ML; Objective-
C; Pascal; Perl; pGCL; PHP; Power-
Shell; Prolog; Python; Ruby; SQL;
Standard ML; Swift; Visual Basic;
Visual C++; Other

9 What is your level of knowledge in
Quantum Physics?∗

RQ1 Assess level of education in terms
of knowledge in quantum physics.

Radio button (Single
Choice)

0 (no knowledge); 1 (novice); 2; 3;
4; 5 (expert)

10 Where did you learn Quantum
Physics?

RQ1 Assess the education of the partici-
pants in terms of learning quantum
physics.

Checkboxes (Multiple
Choice)

Books; Online Course; Search Sites;
University; Work; Other

11 Which of the following best de-
scribes the highest level of education
that you have completed?∗

RQ1 Identify the formal education of the
participants.

Radio button (Single
Choice)

Primary/elementary school; Sec-
ondary school (e.g., American
high school, German Realschule
or Gymnasium, etc.); Some col-
lege/university study without
earning a degree; Associate degree
(A.A., A.S., etc.); Bachelor’s degree
(B.A., B.S., B.Eng., etc.); Master’s
degree (M.A., M.S., M.Eng., MBA,
etc.); Professional degree (JD, MD,
etc.); Other doctoral degrees (Ph.D.,
Ed.D., etc.); Other

12 If you have completed a major, what
is the subject?

RQ1 Assess the work field of the partici-
pants.

Checkboxes (Multiple
Choices)

Art / Humanities; Computer Sci-
ence; Economics; Software Engi-
neering; Math; Other Engineering;
Physics; Social Sciences; Other

13 Which of the following describes
your current job?∗ Please select all
that apply.

RQ1 Identify the roles of the partici-
pants.

Checkboxes (Multiple
Choices)

Academic researcher; Architect;
Business Analyst; CIO / CEO /

CTO; DBA (Database Administra-
tor); Data Analyst / Data Engineer/
Data Scientist; Developer Advocate;
Developer / Programmer / Software
Engineer; DevOps Engineer / In-
frastructure Developer; Instructor
/ Teacher / Tutor; Marketing Man-
ager; Product Manager; Project
Manager; Scientist / Researcher;
Student; Systems Analyst; Team
Lead; Technical Support; Technical
Writer; Tester / QA Engineer; UX /
UI Designer; Other

Section 4
14 Where and how did you learn Quan-

tum Programming Languages?∗
RQ2 Assess the education of the partici-

pants in terms of learning quantum
programming languages.

Checkboxes (Multiple
Choices)

Books; Language documentation;
University; Online Course; Online
Forums; Search Sites; Work; Other

15 How many years have you been cod-
ing using Quantum Programming
Languages?∗

RQ3 Assess the experience and educa-
tion of the participants in using
quantum programming languages.

Dropdown (Single
Choice)

Less than 1 year; 1 to 4 years; 5 to 9
years; 10 to 14 years; 15 to 19 years;
20 to 24 years; 25 to 29 years; 30
to 34 years; 35 to 39 years; 40 to 44
years; 45 to 49 years; More than 50
years

41

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 42

16 How many years have you coded
professionally using Quantum Pro-
gramming Languages (as a part of
your work)?∗

RQ3 Assess the professional experience
of the participants regarding quan-
tum programming languages.

Dropdown (Single
Choice)

None; Less than 1 year; 1 to 4 years;
5 to 9 years; 10 to 14 years; 15 to 19
years; 20 to 24 years; 25 to 29 years;
30 to 34 years; 35 to 39 years; 40 to
44 years; 45 to 49 years; More than
50 years

17 What Quantum Programming Lan-
guages have you been using, and for
how long?

RQ4 Assess which quantum program-
ming languages the participants use
and how long.

Radion button (Multiple
Choice Grid)

Rows (Blackbird; Braket SDK;
Cirq; Cove; cQASM; CQP (Com-
munication Quantum Processes);
cQPL; Forest; Ket; LanQ; LIQUi|⟩;
NDQFP; NDQJava; Ocean Soft-
ware; OpenQASM; Orquestra;
ProjectQ; Q Language; QASM
(Quantum Macro Assembler); QCL
(Quantum Computation Language);
QDK (Quantum Development Kit);
QHAL; Qiskit; qGCL; QHaskell;
QML; QPAlg (Quantum Process
Algebra); QPL and QFC; QSEL;
QuaFL (DSL for quantum program-
ming); Quil; Quipper; Q#; Q|S I⟩;
Sabry’s Language; Scaffold; Silq;
Strawberry Fields; λq (Lambda
Calculi); Other) and Columns (Less
than 1 year; 1 to 2 years; 3 to 4
years; 5 to 6 years; 7 to 8 years; 9 to
10 years; More than 11 years)

18 Is there any other Quantum Pro-
gramming Language not listed that
you have been using?

RQ4 Identify other quantum program-
ming languages not listed that the
participant used.

Open Text -

19 Which of the following is your
primary Quantum Programming
Languages?∗

RQ5 Identify the most used quantum
programming language by the par-
ticipants.

Dropdown (Single
Choice)

Blackbird; Braket SDK; Cirq;
Cove; cQASM; CQP (Commu-
nication Quantum Processes);
cQPL; Forest; Ket; LanQ; LIQUi|⟩;
NDQFP; NDQJava; Ocean Soft-
ware; OpenQASM; Orquestra;
ProjectQ; Q Language; QASM
(Quantum Macro Assembler); QCL
(Quantum Computation Language);
QDK (Quantum Development Kit);
QHAL; Qiskit; qGCL; QHaskell;
QML; QPAlg (Quantum Process
Algebra); QPL and QFC; QSEL;
QuaFL (DSL for quantum program-
ming); Quil; Quipper; Q#; Q|S I⟩;
Sabry’s Language; Scaffold; Silq;
Strawberry Fields; λq (Lambda
Calculi); Other

20 In terms of ease, rate your primary
Quantum Programming Language.∗

RQ5 Rate the main characteristics of the
participant’s favorite quantum pro-
gramming languages.

Radio button (Multiple
Choice Grid)

Rows (Features / functionalities of
the language; Documentation avail-
able; Code examples; Several fo-
rums; Support (e.g., GitHub issues);
Easy to code) and Columns (1; 2; 3;
4; 5)

21 Is there anything else you like the
most in your primary Quantum Pro-
gramming Language?

RQ5 Assess the main characteristic that
the participants like in their primary
quantum programming language.

Open Text -

22 Is there anything else you do not like
in your primary Quantum Program-
ming Language?

RQ5 Assess the main characteristic that
the participants do not like in
their primary quantum program-
ming language.

Open Text -

23 Which forums, e.g., to ask for help,
search for examples, do you use? (if
any)

RQ5 Evaluate the most used forums to
ask questions on quantum comput-
ing.

Checkboxes (Multiple
Choices)

Devtalk; Quantum Open Source
Foundation; Slack; StackOverflow;
Other

42

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 43

24 Which Quantum Programming Lan-
guages would you like to work or try
in the near future?∗

RQ8 Identify which is the most like
quantum programming language to
be used in the future.

Checkboxes (Multiple
Choice)

Blackbird; Braket SDK; Cirq;
Cove; cQASM; CQP (Commu-
nication Quantum Processes);
cQPL; Forest; Ket; LanQ; LIQUi|⟩;
NDQFP; NDQJava; Ocean Soft-
ware; OpenQASM; Orquestra;
ProjectQ; Q Language; QASM
(Quantum Macro Assembler); QCL
(Quantum Computation Language);
QDK (Quantum Development Kit);
QHAL; Qiskit; qGCL; QHaskell;
QML; QPAlg (Quantum Process
Algebra); QPL and QFC; QSEL;
QuaFL (DSL for quantum program-
ming); Quil; Quipper; Q#; Q|S I⟩;
Sabry’s Language; Scaffold; Silq;
Strawberry Fields; λq (Lambda
Calculi); Other

25 Why would you like to work or try
those languages?∗

RQ8 The reason why the participant
wants to work with the quantum
programming language.

Checkboxes (Multiple
Choice)

Heard about the language; Is part of
a course about the language; Read an
article about the language; Widely
used; Other features; Other

26 What challenges did you run into
when choosing a Quantum Program-
ming Language?∗

RQ10 Assess the challenges the partici-
pant faces when choosing a quan-
tum programming language.

Open Text -

27 In your opinion, what makes learn-
ing Quantum Programming Lan-
guages important?∗

RQ9 Assess why the participants want
to learn quantum programming lan-
guages.

Open Text -

Section 5
28 How do you use Quantum Program-

ming Languages?∗
RQ7 Assess how the participants use

quantum programming languages.
Radio button (Single
Choice)

Use it for work; Use it for research;
Like to learn; Other

29 What type of tools do you think are
necessary or missing to develop bet-
ter and faster Quantum Programs?∗

RQ11 Evaluate what tools are missing
in the quantum programming lan-
guages.

Open Text -

30 Do you test your Quantum
Programs?∗

RQ12 Identify if the participants perform
tests.

Radio button (Single
Choice)

Yes; No

31 How often do you test your Quantum
Programs?

RQ12 Evaluate the frequency that the par-
ticipant tests their quantum pro-
grams.

Radio button (Single
Choice)

Before go to production; Every day;
Every time you change the code;
Other

32 How do you test your Quantum Pro-
grams?

RQ12 Identity if the participants use auto-
matic or manual tests

Radio button (Single
Choice)

Automatically (e.g., unit test); Man-
ually

33 What tools do you use to test your
Quantum Programs?

RQ13 Identify what the most used tools to
test quantum programs are.

Checkboxes (Multiple
Choice)

Cirq Simulator and Testing -
cirq.testing (https://quantumai.
google/cirq); Forest using
pytest (https://github.com/
rigetti/forest-software);
MTQC - Mutation Testing for
Quantum Computing (https:
//javpelle.github.io/MTQC/);
Muskit: A Mutation Analysis
Tool for Quantum Software Test-
ing (https://ieeexplore.
ieee.org/document/9678563);
ProjectQ Simulator (https:
//arxiv.org/abs/1612.08091);
QDiff - Differential Testing of
Quantum Software Stacks (https:
//ieeexplore.ieee.org/
abstract/document/9678792);
QDK - xUnit (https:
//azure.microsoft.com/en-
us/resources/development-
kit/quantum-computing/);
Qiskit - QASM Simulator
(https://qiskit.org/); Quan-
Fuzz - Fuzz Testing of Quantum
Program (https://arxiv.org/
abs/1810.10310); Quito - A
Coverage-Guided Test Generator
for Quantum Programs (https:
//ieeexplore.ieee.org/
abstract/document/9678798);
Strawberry Fields using pytest
(https://strawberryfields.
ai/); Other

Section 6

43

https://quantumai.google/cirq
https://quantumai.google/cirq
https://github.com/rigetti/forest-software
https://github.com/rigetti/forest-software
https://javpelle.github.io/MTQC/
https://javpelle.github.io/MTQC/
https://ieeexplore.ieee.org/document/9678563
https://ieeexplore.ieee.org/document/9678563
https://arxiv.org/abs/1612.08091
https://arxiv.org/abs/1612.08091
https://ieeexplore.ieee.org/abstract/document/9678792
https://ieeexplore.ieee.org/abstract/document/9678792
https://ieeexplore.ieee.org/abstract/document/9678792
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://qiskit.org/
https://arxiv.org/abs/1810.10310
https://arxiv.org/abs/1810.10310
https://ieeexplore.ieee.org/abstract/document/9678798
https://ieeexplore.ieee.org/abstract/document/9678798
https://ieeexplore.ieee.org/abstract/document/9678798
https://strawberryfields.ai/
https://strawberryfields.ai/

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 44

34 In your opinion, do you think there
are too many or too few Quantum
Programming Languages? Why?

RQ14 Assess the opinion of the partici-
pants on why exists or not several
quantum programming languages.

Open Text -

35 In your opinion, do you think we
would need yet another Quantum
Programming Language in the near
future? Why?

RQ15 Assess if the participant thinks that
it is necessary the development of
another quantum programming lan-
guage

Open Text -

Table A.2: Survey questions. ∗ Indicates a mandatory question.

Appendix B. Social networks contacted for the survey

This appendix shows the information about the social networks contacted for the survey, such as name, type, link,
members and any observations.

Name Type Link # Members Observation

Exploring Quantum Computing Facebook https://www.facebook.com/groups/
525270931156832

2,900

Quantum Computing Now Facebook https://www.facebook.com/groups/
328231110942652

6,900

Quantum Information and Quan-
tum Computer Scientists of the
World Unite

Facebook https://www.facebook.com/groups/qinfo.
scientists.unit

15,900

Quantum AI Facebook https://www.facebook.com/groups/
quantumai/?multi_permalinks=
1398423033952553

5,200

Quantum Computing Facebook https://www.facebook.com/groups/
896233200461905/

25,200

Quantum Open-Source Foundation Linkedin https://www.linkedin.com/company/qosf/ 2,971 Does not allow posts
from group members

Quantum Computing and Quantum
Information

Linkedin https://www.linkedin.com/groups/
1416467/

10,159 Did not accepted group
membership

Quantum Information Science Linkedin https://www.linkedin.com/groups/
1172457/

3,147 Did not accepted group
membership

Quantum Computing Linkedin https://www.linkedin.com/groups/
3748642/

10,378

European Quantum Computing Ap-
plications Community

Linkedin https://www.linkedin.com/groups/
9015002/

2,413

Quantum Computing Technology Linkedin https://www.linkedin.com/groups/
4139130/

2,352

Quantum Computing and AI Pro-
fessionals

Linkedin https://www.linkedin.com/groups/
12083423/

1,049

Quantum programming Linkedin https://www.linkedin.com/groups/
8979014/

13 Did not accepted group
membership

Quantum Computing and Program-
ming

Linkedin https://www.linkedin.com/groups/
7468626/

14 Did not accepted group
membership

IBM Quantum Computing Linkedin https://www.linkedin.com/groups/
12376868/

3,381

Q# Community Discord https://discord.qsharp.community/ 200
@quantum comput Twitter https://twitter.com/quantum_comput 3,008
Quantum Open-Source Foundation Slack https://qosf.slack.com/ 2,546
Strawberry Fields Community Slack https://u.strawberryfields.ai/slack 1,638
Quantum Computing Slack Com-
munity

Slack https://quantum-computing.slack.com 519

myQLM Slack https://myqlmworkspace.slack.com 73
Quantum Foundations Mailing List quantum-foundations@maillist.ox.ac.uk - Did not accepted the e-

mail
Quantum Announcements Mailing List quantum-announcements@cs.ox.ac.uk -
Quantum Computing Institute Mailing List qci-external@elist.ornl.gov - Did not accepted the e-

mail
Quantum Computing StackEx-
change

Forums and Com-
munities

https://quantumcomputing.
stackexchange.com/

- Message rejected by the
forum administrator

Reddit Quantum Computing Forums and Com-
munities

https://www.reddit.com/r/
QuantumComputing/

33,600

Reddit Quantum Forums and Com-
munities

https://www.reddit.com/r/quantum/ 39,100

Researches e-mails E-mails 155
Developers e-mails E-mails GitHub quantum program repositories 1,242

Table B.3: Social networks contact for the survey. Information was obtained in April 2022.

44

https://www.facebook.com/groups/525270931156832
https://www.facebook.com/groups/525270931156832
https://www.facebook.com/groups/328231110942652
https://www.facebook.com/groups/328231110942652
https://www.facebook.com/groups/qinfo.scientists.unit
https://www.facebook.com/groups/qinfo.scientists.unit
https://www.facebook.com/groups/quantumai/?multi_permalinks=1398423033952553
https://www.facebook.com/groups/quantumai/?multi_permalinks=1398423033952553
https://www.facebook.com/groups/quantumai/?multi_permalinks=1398423033952553
https://www.facebook.com/groups/896233200461905/
https://www.facebook.com/groups/896233200461905/
https://www.linkedin.com/company/qosf/
https://www.linkedin.com/groups/1416467/
https://www.linkedin.com/groups/1416467/
https://www.linkedin.com/groups/1172457/
https://www.linkedin.com/groups/1172457/
https://www.linkedin.com/groups/3748642/
https://www.linkedin.com/groups/3748642/
https://www.linkedin.com/groups/9015002/
https://www.linkedin.com/groups/9015002/
https://www.linkedin.com/groups/4139130/
https://www.linkedin.com/groups/4139130/
https://www.linkedin.com/groups/12083423/
https://www.linkedin.com/groups/12083423/
https://www.linkedin.com/groups/8979014/
https://www.linkedin.com/groups/8979014/
 https://www.linkedin.com/groups/7468626/
 https://www.linkedin.com/groups/7468626/
https://www.linkedin.com/groups/12376868/
https://www.linkedin.com/groups/12376868/
https://discord.qsharp.community/
https://twitter.com/quantum_comput
https://qosf.slack.com/
https://u.strawberryfields.ai/slack
https://quantum-computing.slack.com
https://myqlmworkspace.slack.com
https://quantumcomputing.stackexchange.com/
https://quantumcomputing.stackexchange.com/
https://www.reddit.com/r/QuantumComputing/
https://www.reddit.com/r/QuantumComputing/
https://www.reddit.com/r/quantum/

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 45

Appendix C. RQ4 — Additional artifacts

• Table C.4 reports the raw number of participants per quantum language by usage time.

Quantum Programming Language Less than 1 year 1 to 2 years 3 to 4 years 5 to 6 years 7 to 8 years 9 to 10 years More then 11 years Total

Braket SDK (Python) 32 4 0 0 0 0 0 36
Cirq (Python) 54 25 12 0 0 0 0 91
Cove (C#) 21 0 0 0 0 0 0 21
cQASM 23 4 3 0 1 0 0 31
CQP 20 0 0 0 0 0 0 20
cQPL 20 2 0 0 0 0 0 22
DWave Ocean (Python) 22 5 3 0 0 0 0 30
Forest (Python) 28 5 4 2 0 0 0 39
Ket 19 2 0 0 0 0 0 21
λq 21 0 1 0 0 0 0 22
LanQ 20 1 0 0 0 0 0 21
LIQUi|⟩ 25 1 0 1 0 0 0 27
NDQFP 20 0 0 0 0 0 0 20
NDQJava 21 0 0 0 0 0 0 21
OpenQASM 35 18 19 4 1 0 0 77
Orquestra (Python) 20 3 1 0 0 0 0 24
ProjectQ (Python) 24 5 5 1 0 0 0 35
Q Language 23 1 1 0 0 0 0 25
Q|S I⟩ 20 0 0 0 0 0 0 20
QASM 27 10 5 0 0 0 0 42
QCL 22 3 0 1 0 0 0 26
QDK (Python) 26 6 4 0 0 0 0 36
QDK (Q#) 41 12 5 0 0 0 0 58
qGCL 19 1 0 0 0 0 0 20
QHAL 18 1 1 0 0 0 0 20
QHaskell 20 1 1 1 0 0 0 23
Qiskit (Python) 57 67 41 11 1 0 0 177
QML 28 4 3 0 0 0 1 36
QPAlg 20 0 0 0 0 0 0 20
QPL and QFC 21 0 0 0 0 0 1 22
QSEL 20 0 0 0 0 0 0 20
QuaFL 21 0 0 0 0 0 0 21
Quil 25 5 4 2 0 0 0 36
Quipper 20 5 4 0 0 2 2 33
Sabry Language 19 0 0 1 0 0 0 20
Scaffold 21 1 1 0 0 0 1 24
Silq 23 2 3 0 0 0 0 28
Strawberry Fields (Blackbird) 21 1 1 0 0 0 0 23
Strawberry Fields (Python) 33 7 4 1 0 0 0 45
Other 25 7 8 4 0 0 2 46

Table C.4: Number of participants per quantum language by usage time.

Appendix D. New tables

• Figure 18 correspondent table in Table D.5.

• Figures 19 and 20 correspondent tables in Tables D.6 and D.7.

• Figures 21 and 22 correspondent tables in Tables D.8 and D.9.

• Figures 23 and 24 correspondent tables in Tables D.10 and D.11.

• Figure 25 correspondent table in Table D.12.

• Figure 34 correspondent table in Table D.13.

45

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 46

1 2 3 4 5

support 8 (5.9%) 19 (4.1%) 48 (35.6%) 31 (23.0%) 29 (21.5%)
forums 10 (7.4%) 22 (16.3%) 41 (30.4%) 36 (26.7%) 26 (19.3%)
features 5 (3.7%) 14 (10.4%) 39 (28.9%) 48 (35.6%) 29 (21.5%)
easy to code 5 (3.7%) 7 (5.2%) 41 (30.4%) 48 (35.6%) 34 (25.2%)
documentation 7 (5.2%) 9 (6.7%) 28 (20.7%) 47 (34.8%) 44 (32.6%)
code examples 7 (5.2%) 11 (8.1%) 34 (25.2%) 49 (36.3%) 34 (25.2%)

Table D.5: The rate in terms of ease (e.g., features, easy to code, documentation, code
examples, support, forums) of Qiskit, the primary quantum language of 135 out of the
208 participants (see Figure 17).
Table discussed in RQ5 (Section 4.5).

O
th

er

St
ac

kO
ve

rfl
ow

Sl
ac

k

Q
ua

nt
um

O
pe

n
So

ur
ce

Fo
un

da
tio

n

D
ev

ta
lk

Other 8 (25.0%) 12 (40.6%) 7 (21.9%) 3 (9.4%) 1 (3.1%)
Strawberry Fields (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Silq 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Quipper 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Quil 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QML 0 (0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Qiskit (Python) 14 (6.8%) 94 (45.9%) 65 (31.7%) 31 (15.1%) 1 (0.5%)
QHaskell 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QDK (Q#) 2 (18.2.%) 6 (54.5%) 1 (9.1%) 2 (18.2%) 0 (0.0%)
QASM 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Q|SI> 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Orquestra (Python) 0 (0.0%) 0 (0.0%) 1 (50.0%) 1 (50.0%) 0 (0.0%)
OpenQASM 0 (0.0%) 4 (50.0%) 2 (25.0%) 1 (12.5%) 1 (12.5%)
Ket 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
DWave Ocean (Python) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Cirq (Python) 1 (11.1%) 5 (55.6%) 3 (33.3%) 0 (0.0%) 0 (0.0%)
Braket SDK (Python) 0 (0.0%) 1 (25.0%) 2 (50.0%) 1 (25.0%) 0 (0.0%)

Table D.6: Participants’ primary quantum language and the forums used
by them. According to Fisher’s exact test (p-value 0.05942), we do
not reject the null hypothesis, i.e., that there is a significant relationship
between the two categorical variables (primary quantum language and
forums used).
Table discussed in RQ5 (Section 4.5).

O
th

er

W
or

k

U
ni

ve
rs

ity

Se
ar

ch
Si

te
s

O
nl

in
e

Fo
ru

m
s

O
nl

in
e

C
ou

rs
e

L
an

gu
ag

e
do

cu
m

en
ta

tio
n

B
oo

ks

Other 5 (9.3%) 11 (20.4%) 3 (5.6%) 7 (13.0%) 5 (9.3%) 3 (5.6%) 15 (27.8%) 5 (9.3%)
Strawberry Fields (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Silq 0 (0.0%) 2 (22.2%) 1 (11.1%) 1 (11.1%) 1 (11.1%) 1 (11.1%) 2 (22.2%) 1 (11.1%)
Quipper 3 (33.3%) 2 (22.2%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (22.2%) 1 (11.1%)
Quil 1 (10.0%) 4 (40.0%) 0 (0.0%) 1 (10.0%) 0 (0.0%) 0 (0.0%) 3 (30.0%) 1 (10.0%)
QML 0 (0.0%) 0 (0.0%) 1 (16.7%) 1 (16.7%) 1 (16.7%) 0 (0.0%) 2 (33.3%) 1 (16.7%)
Qiskit (Python) 6 (1.7%) 23 (6.4%) 35 (9.7%) 42 (11.6%) 46 (12.7%) 71 (19.7%) 78 (21.6%) 60 (16.6%)
QHaskell 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QDK (Q#) 0 (0.0%) 3 (10.7%) 2 (7.1%) 5 (17.9%) 3 (10.7%) 2 (7.1%) 7 (25.0%) 6 (21.4%)
QASM 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%)
Q|SI> 1 (20.0%) 0 (0.0%) 1 (20.0%) 1 (20.0%) 1 (20.0%) 0 (0.0%) 1 (20.0%) 0 (0.0%)
Orquestra (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%)
OpenQASM 1 (10.0%) 2 (20.0%) 1 (10.0%) 1 (10.0%) 0 (0.0%) 1 (10.0%) 2 (20.0%) 2 (20.0%)
Ket 0 (0.0%) 0 (0.0%) 1 (33.3%) 1 (33.3%) 0 (0.0%) 0 (0.0%) 1 (33.3%) 0 (0.0%)
DWave Ocean (Python) 0 (0.0%) 2 (22.2%) 1 (11.1%) 1 (11.1%) 1 (11.1%) 2 (22.2%) 2 (22.2%) 0 (0.0%)
Cirq (Python) 1 (3.1%) 4 (12.5%) 6 (18.8%) 1 (3.1%) 3 (9.4%) 5 (15.6%) 9 (28.1%) 3 (9.4%)
Braket SDK (Python) 0 (0.0%) 1 (16.7%) 0 (0.0%) 1 (16.7%) 2 (33.3%) 1 (16.7%) 1 (16.7%) 0 (0.0%)

Table D.7: Participants’ primary quantum language and how they
learned it. According to Fisher’s exact test (p-value 0.01074), we reject
the null hypothesis, i.e., that there is a significant relationship between
the two categorical variables (primary quantum language and how par-
ticipants learned it).
This table reports the intersection between Figures 10 and 17’s data, and it is dis-
cussed in RQ6 (Section 4.6).

46

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 47

O
th

er

So
ft

w
ar

e
E

ng
in

ee
ri

ng

So
ci

al
Sc

ie
nc

es

Ph
ys

ic
s

O
th

er
E

ng
in

ee
ri

ng

M
at

h

E
co

no
m

ic
s

C
om

pu
te

rS
ci

en
ce

A
rt
/

H
um

an
iti

es

Other 0 (0.0%) 1 (3.0%) 1 (3.0%) 12 (36.4%) 3 (9.1%) 7 (21.2%) 1 (3.0%) 8 (24.2%) 0 (0.0%)
Strawberry Fields (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Silq 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%) 0 (0.0%)
Quipper 1 (16.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (50.0%) 0 (0.0%) 2 (33.3%) 0 (0.0%)
Quil 0 (0.0%) 1 (16.7%) 0 (0.0%) 1 (16.7%) 1 (16.7%) 1 (16.7%) 0 (0.0%) 2 (33.3%) 0 (0.0%)
QML 0 (0.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%) 0 (0.0%)
Qiskit (Python) 11 (7.1%) 16 (10.4%) 3 (1.9%) 46 (29.9%) 9 (5.8%) 11 (7.1%) 1 (0.6%) 54 (35.1%) 3 (1.9%)
QHaskell 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QDK (Q#) 0 (0.0%) 2 (18.2%) 0 (0.0%) 2 (18.2%) 1 (9.1%) 1 (9.1%) 0 (0.0%) 5 (45.5%) 0 (0.0%)
QASM 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%)
Q|SI> 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%) 0 (0.0%)
Orquestra (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
OpenQASM 0 (0.0%) 2 (25.0%) 0 (0.0%) 0 (0.0%) 2 (25.0%) 0 (0.0%) 0 (0.0%) 4 (50.0%) 0 (0.0%)
Ket 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%)
DWave Ocean (Python) 1 (20.0%) 1 (20.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (20.0%) 0 (0.0%) 2 (40.0%) 0 (0.0%)
Cirq (Python) 1 (5.9%) 1 (5.9%) 0 (0.0%) 6 (35.3%) 0 (0.0%) 1 (5.9%) 1 (5.9%) 7 (41.2%) 0 (0.0%)
Braket SDK (Python) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%)

Table D.8: Participants’ primary quantum language and their major. Ac-
cording to Fisher’s exact test (p-value 0.27723), we do not reject the null
hypothesis, i.e., that there is a significant relationship between the two
categorical variables (primary quantum language and participants’ ma-
jor).
This table reports the intersection between Figures 6 and 17’s data, and it is dis-
cussed in RQ6 (Section 4.6).

1 (novice) 2 3 4 5 (expert)

Other 3 (12.5%) 6 (25.0%) 3 (12.5%) 4 (16.7%) 8 (33.3%)
Strawberry Fields (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%)
Silq 0 (0.0%) 0 (0.0%) 1 (50.0%) 1 (50.0%) 0 (0.0%)
Quipper 0 (0.0%) 2 (40.0%) 0 (0.0%) 1 (20.0%) 2 (40.0%)
Quil 0 (0.0%) 2 (40.0%) 1 (20.0%) 0 (0.0%) 2 (40.0%)
QML 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Qiskit (Python) 28 (20.7%) 29 (21.5%) 37 (27.4%) 22 (16.3%) 19 (14.1%)
QHaskell 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%)
QDK (Q#) 4 (44.4%) 1 (11.1%) 3 (33.3%) 0 (0.0%) 1 (11.1%)
QASM 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Q|SI> 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Orquestra (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%)
OpenQASM 0 (0.0%) 1 (25.0%) 2 (50.0%) 0 (0.0%) 1 (25.0%)
Ket 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%)
DWave Ocean (Python) 1 (33.3%) 0 (0.0%) 1 (33.3%) 1 (33.3%) 0 (0.0%)
Cirq (Python) 0 (0.0%) 3 (27.3%) 2 (18.2%) 1 (9.1%) 5 (45.5%)
Braket SDK (Python) 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Table D.9: Participants’ primary quantum language and their knowledge
in quantum physics. According to Fisher’s exact test (p-value 0.12501),
we do not reject the null hypothesis, i.e., that there is a significant re-
lationship between the two categorical variables (primary quantum lan-
guage and participant’s knowledge in quantum physics).
Table discussed in RQ6 (Section 4.6).

L
es

s
th

an
1

ye
ar

1
to

4
ye

ar
s

5
to

9
ye

ar
s

10
to

14
ye

ar
s

15
to

19
ye

ar
s

20
to

24
ye

ar
s

Other 5 (20.8%) 12 (50.0%) 6 (25.0%) 1 (4.2%) 0 (0.0%) 0 (0.0%)
Strawberry Fields (Python) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Silq 0 (0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Quipper 0 (0.0%) 1 (20.0%) 1 (20.0%) 2 (40.0%) 0 (0.0%) 1 (20.0%)
Quil 0 (0.0%) 4 (80.0%) 1 (20.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QML 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Qiskit (Python) 36 (26.7%) 81 (60.0%) 16 (11.9%) 2 (1.5%) 0 (0.0%) 0 (0.0%)
QHaskell 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QDK (Q#) 5 (55.6%) 3 (33.3%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QASM 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Q|SI> 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Orquestra (Python) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
OpenQASM 1 (25.0%) 2 (50.0%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Ket 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
DWave Ocean (Python) 1 (33.3%) 2 (66.7.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Cirq (Python) 2 (18.2%) 7 (63.6%) 1 (9.1%) 1 (9.1%) 0 (0.0%) 0 (0.0%)
Braket SDK (Python) 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Table D.10: Participants’ primary quantum language and their personal
experience with quantum languages. According to Fisher’s exact test
(p-value 0.20924), we do not reject the null hypothesis, i.e., that there is
a significant relationship between the two categorical variables (primary
quantum language and participants’ personal experience).
Note: Ranges 25 to 29 years, 30 to 34, 35 to 39, 40 to 44, 45 to 49, and more than
50 years were excluded from this table because (i) there was no answer on those
ranges and (ii) to improve table’s readability.
This table reports the intersection between Figures 13 and 17’s data, and it is dis-
cussed in RQ6 (Section 4.6).

N
on

e

L
es

s
th

an
1

ye
ar

1
to

4
ye

ar
s

5
to

9
ye

ar
s

10
to

14
ye

ar
s

15
to

19
ye

ar
s

20
to

24
ye

ar
s

Other 7 (29.2%) 6 (25.0%) 5 (20.8%) 5 (20.8%) 1 (4.2%) 0 (0.0%) 0 (0.0%)
Strawberry Fields (Python) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Silq 0 (0.0%) 0 (0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Quipper 2 (40.0%) 0 (0.0%) 0 (0.0%) 1 (20.0%) 1 (20.0%) 0 (0.0%) 1 (20.0%)
Quil 0 (0.0%) 2 (40.0%) 2 (40.0%) 1 (20.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QML 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Qiskit (Python) 56 (41.5%) 33 (24.4%) 35 (25.9%) 9 (6.7%) 2 (1.5%) 0 (0.0%) 0 (0.0%)
QHaskell 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QDK (Q#) 7 (77.8%) 0 (0.0%) 1 (11.1%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QASM 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Q|SI> 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Orquestra (Python) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
OpenQASM 1 (50.0%) 0 (0.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Ket 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
DWave Ocean (Python) 0 (0.0%) 2 (66.7%) 1 (33.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Cirq (Python) 1 (9.1%) 2 (18.2%) 6 (54.5%) 1 (9.1%) 1 (9.1%) 0 (0.0%) 0 (0.0%)
Braket SDK (Python) 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Table D.11: Participants’ primary quantum language and their profes-
sional experience with quantum languages. According to Fisher’s ex-
act test (p-value 0.20924), we do not reject the null hypothesis, i.e.,
that there is a significant relationship between the two categorical vari-
ables (primary quantum language and participant’s professional experi-
ence with quantum languages).
Note: Ranges 25 to 29 years, 30 to 34, 35 to 39, 40 to 44, 45 to 49, and more than
50 years were excluded from this table because (i) there was no answer on those
ranges and (ii) to improve table’s readability. This table reports the intersection
between Figures 14 and 17’s data, and it is discussed in RQ6 (Section 4.6).

47

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 48

Like to learn Use it for research Use it for work Other

Other 7 (29.2%) 7 (29.2%) 6 (25.0%) 4 (16.7%)
Strawberry Fields (Python) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%)
Silq 0 (0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%)
Quipper 0 (0.0%) 5 (100.0%) 0 (0.0%) 0 (0.0%)
Quil 0 (0.0%) 0 (0.0%) 4 (80.0%) 1 (20.0%)
QML 0 (0.0%) 1 (50.0%) 1 (50.0%) 0 (0.0%)
Qiskit (Python) 51 (37.8%) 58 (43.0%) 20 (14.8%) 6 (4.4%)
QHaskell 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QDK (Q#) 5 (55.6%) 4 (44.4%) 0 (0.0%) 0 (0.0%)
QASM 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%)
Q|SI> 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Orquestra (Python) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%)
OpenQASM 2 (50.0%) 0 (0.0%) 1 (25.0%) 1 (25.0%)
Ket 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%)
DWave Ocean (Python) 2 (66.7%) 1 (33.3%) 0 (0.0%) 0 (0.0%)
Cirq (Python) 3 (27.3%) 8 (72.7%) 0 (0.0%) 0 (0.0%)
Braket SDK (Python) 0 (0.0%) 0 (0.0%) 1 (50.0%) 1 (50.0%)

Table D.12: Participants’ primary quantum language and for what they use it. According to
Fisher’s exact test (p-value 0.00185), we reject the null hypothesis, i.e., that there is a significant
relationship between the two categorical variables (primary quantum language and their usage).
Table discussed in RQ7 (Section 4.7).

C
ir

q
Si

m
ul

at
or

an
d

Te
st

in
g

Fo
re

st
us

in
g

py
te

st

M
us

ki
t

O
th

er

Pr
oj

ec
tQ

Si
m

ul
at

or

Q
D

K
–x

U
ni

t

Q
is

ki
t–

Q
A

SM
Si

m
ul

at
or

Q
ua

nF
uz

z

Q
ui

to

St
ra

be
rr

y
Fi

el
ds

us
in

g
py

te
st

Other 2 (8.3%) 2 (8.3%) 0 (0.0%) 13 (54.2%) 0 (0.0%) 1 (4.2%) 6 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Strawberry Fields (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Silq 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Quipper 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (75.0%) 0 (0.0%) 0 (0.0%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Quil 0 (0.0%) 3 (37.5%) 0 (0.0%) 4 (50.0%) 0 (0.0%) 0 (0.0%) 1 (12.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QML 1 (33.3%) 0 (0.0%) 0 (0.0%) 1 (33.3%) 0 (0.0%) 0 (0.0%) 1 (33.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Qiskit (Python) 12 (9.2%) 1 (0.8%) 1 (0.8%) 9 (6.9%) 2 (1.5%) 3 (2.3%) 98 (74.8%) 0 (0.0%) 1 (0.8%) 4 (3.1%)
QHaskell 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
QDK (Q#) 2 (15.4%) 1 (7.7%) 0 (0.0%) 2 (15.4%) 0 (0.0%) 1 (7.7%) 5 (38.5%) 0 (0.0%) 0 (0.0%) 2 (15.4%)
QASM 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Q|SI> 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Orquestra (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
OpenQASM 2 (33.3%) 0 (0.0%) 0 (0.0%) 1 (16.7%) 1 (16.7%) 0 (0.0%) 1 (16.7%) 1 (16.7%) 0 (0.0%) 0 (0.0%)
Ket 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
DWave Ocean (Python) 0 (0.0%) 1 (50.0%) 0 (0.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Cirq (Python) 10 (58.8%) 0 (0.0%) 0 (0.0%) 2 (11.8%) 0 (0.0%) 0 (0.0%) 5 (29.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Braket SDK (Python) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 5 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Table D.13: Quantum languages and the tool used to test quantum programs accordingly to 157 participants. Accord-
ing to Fisher’s exact test (p-value 0.00000), we reject the null hypothesis, i.e., that there is a significant relationship
between the two categorical variables (quantum languages and tools used to perform testing).
Table discussed in RQ13 (Section 4.13).

48

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 49

References

[1] C. Bernhardt, Quantum computing for everyone, Mit Press, 2019.
[2] C. H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science 560 (2014)

7–11. URL: https://doi.org/10.1016%2Fj.tcs.2014.05.025. doi:10.1016/j.tcs.2014.05.025.
[3] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen,

B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, J. M. Martinis,
Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508 (2014) 500–503. URL: https://doi.org/
10.1038/nature13171. doi:10.1038/nature13171.

[4] M. Benedetti, J. Realpe-Gómez, R. Biswas, A. Perdomo-Ortiz, Estimation of effective temperatures in quantum annealers for sampling
applications: A case study with possible applications in deep learning, Phys. Rev. A 94 (2016) 022308. URL: https://link.aps.org/
doi/10.1103/PhysRevA.94.022308. doi:10.1103/PhysRevA.94.022308.

[5] J. Zhao, Quantum Software Engineering: Landscapes and Horizons, 2021. URL: https://arxiv.org/abs/2007.07047.
arXiv:2007.07047.

[6] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge university press, 2010.
[7] P. Mateus, A. Sernadas, A. Souto, Universality of quantum Turing machines with deterministic control, Journal of Logic and Computation

27 (2017) 1–19. doi:10.1093/logcom/exv008.
[8] A. W. Cross, L. S. Bishop, J. A. Smolin, J. M. Gambetta, Open Quantum Assembly Language, arXiv preprint arXiv:1707.03429 (2017).

URL: https://arxiv.org/abs/1707.03429.
[9] Microsoft, Azure quantum documentation, https://docs.microsoft.com/en-us/azure/quantum/?view=qsharp-preview, 2021.

[Online; accessed December-2021].
[10] Google, Cirq - an open source framework for programming quantum computers, https://quantumai.google/cirq, 2019. [Online;

accessed March-2022].
[11] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen,

C.-F. Chen, J. M. Chow, A. D. Córcoles-Gonzales, A. J. Cross, A. Cross, J. Cruz-Benito, C. Culver, S. D. L. P. González, E. D. L. Torre,
D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M. Everitt, I. F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B. G. Gago, J. Gomez-Mosquera,
D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, Łukasz Herok, H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa,
A. Karazeev, K. Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques, F. J. Martı́n-Fernández, D. T. McClure, D. McKay, S. Meesala, A. Mezza-
capo, N. Moll, D. M. Rodrı́guez, G. Nannicini, P. Nation, P. Ollitrault, L. J. O’Riordan, H. Paik, J. Pérez, A. Phan, M. Pistoia, V. Prutyanov,
M. Reuter, J. Rice, A. R. Davila, R. H. P. Rudy, M. Ryu, N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva, Y. Siraichi,
S. Sivarajah, J. A. Smolin, M. Soeken, H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner, D. Vogt-Lee,
C. Vuillot, J. A. Wildstrom, J. Wilson, E. Winston, C. Wood, S. Wood, S. Wörner, I. Y. Akhalwaya, C. Zoufal, Qiskit: An Open-source
Framework for Quantum Computing, 2019. URL: https://doi.org/10.5281/zenodo.2562111. doi:10.5281/zenodo.2562111.

[12] A. Cervera-Lierta, Quantum computing languages landscape, https://medium.com/@quantum_wa/quantum-computing-

languages-landscape-1bc6dedb2a35, 2018. [Online; accessed December-2021].
[13] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature Reviews in Software Engineering, 2007.
[14] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic mapping studies in software engineering: An up-

date, Information and Software Technology 64 (2015) 1–18. URL: https://www.sciencedirect.com/science/article/pii/
S0950584915000646. doi:https://doi.org/10.1016/j.infsof.2015.03.007.

[15] P. S. Leitao-Junior, D. M. Freitas, S. R. Vergilio, C. G. Camilo-Junior, R. Harrison, Search-based fault localisation: A systematic mapping
study, Information and Software Technology 123 (2020) 106295. URL: https://www.sciencedirect.com/science/article/pii/
S0950584920300458. doi:https://doi.org/10.1016/j.infsof.2020.106295.

[16] A. Zakari, S. P. Lee, R. Abreu, B. H. Ahmed, R. A. Rasheed, Multiple fault localization of software programs: A systematic literature
review, Information and Software Technology 124 (2020) 106312. URL: https://www.sciencedirect.com/science/article/pii/
S0950584920300641. doi:https://doi.org/10.1016/j.infsof.2020.106312.

[17] A. Zakari, S. P. Lee, K. A. Alam, R. Ahmad, Software fault localisation: a systematic map-
ping study, IET Software 13 (2019) 60–74. URL: https://ietresearch.onlinelibrary.

wiley.com/doi/abs/10.1049/iet-sen.2018.5137. doi:https://doi.org/10.1049/iet-sen.2018.5137.
arXiv:https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-sen.2018.5137.

[18] S. Ouhbi, A. Idri, J. L. Fernández-Alemán, A. Toval, Requirements engineering education: a systematic mapping study, Requirements
Engineering 20 (2015) 119–138.

[19] K. A. Alam, R. Ahmad, A. Akhunzada, M. H. N. M. Nasir, S. U. Khan, Impact analysis and change propagation in service-oriented
enterprises: A systematic review, Information Systems 54 (2015) 43–73. URL: https://www.sciencedirect.com/science/article/
pii/S0306437915001179. doi:https://doi.org/10.1016/j.is.2015.06.003.

[20] P. Benioff, The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by
turing machines, Journal of Statistical Physics 22 (1980) 563–591. URL: https://doi.org/10.1007/BF01011339. doi:10.1007/
BF01011339.

[21] E. C. R. Da Rosa, R. De Santiago, Ket quantum programming, J. Emerg. Technol. Comput. Syst. 18 (2021). URL: https://doi.org/
10.1145/3474224. doi:10.1145/3474224.

[22] E. C. R. da Rosa, Ket quantum programming git, https://github.com/quantum-ket/ket, 2021. [Online; accessed March-2022].
[23] R. d. S. Evandro Chagas Ribeiro da Rosa, Ket quantum programming, https://quantumket.org/, 2021. [Online; accessed March-2022].
[24] Riverlane, Qhal - quantum hardware abstraction layer, https://github.com/riverlane/QHAL, 2021. [Online; accessed December-

2021].
[25] B. Bichsel, M. Baader, T. Gehr, M. Vechev, Silq: A high-level quantum language with safe uncomputation and intuitive semantics, in:

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2020, Association for

49

https://doi.org/10.1016%2Fj.tcs.2014.05.025
http://dx.doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
https://link.aps.org/doi/10.1103/PhysRevA.94.022308
https://link.aps.org/doi/10.1103/PhysRevA.94.022308
http://dx.doi.org/10.1103/PhysRevA.94.022308
https://arxiv.org/abs/2007.07047
http://arxiv.org/abs/2007.07047
http://dx.doi.org/10.1093/logcom/exv008
https://arxiv.org/abs/1707.03429
https://docs.microsoft.com/en-us/azure/quantum/?view=qsharp-preview
https://quantumai.google/cirq
https://doi.org/10.5281/zenodo.2562111
http://dx.doi.org/10.5281/zenodo.2562111
https://medium.com/@quantum_wa/quantum-computing-languages-landscape-1bc6dedb2a35
https://medium.com/@quantum_wa/quantum-computing-languages-landscape-1bc6dedb2a35
https://www.sciencedirect.com/science/article/pii/S0950584915000646
https://www.sciencedirect.com/science/article/pii/S0950584915000646
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2015.03.007
https://www.sciencedirect.com/science/article/pii/S0950584920300458
https://www.sciencedirect.com/science/article/pii/S0950584920300458
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2020.106295
https://www.sciencedirect.com/science/article/pii/S0950584920300641
https://www.sciencedirect.com/science/article/pii/S0950584920300641
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2020.106312
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2018.5137
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2018.5137
http://dx.doi.org/https://doi.org/10.1049/iet-sen.2018.5137
http://arxiv.org/abs/https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-sen.2018.5137
https://www.sciencedirect.com/science/article/pii/S0306437915001179
https://www.sciencedirect.com/science/article/pii/S0306437915001179
http://dx.doi.org/https://doi.org/10.1016/j.is.2015.06.003
https://doi.org/10.1007/BF01011339
http://dx.doi.org/10.1007/BF01011339
http://dx.doi.org/10.1007/BF01011339
https://doi.org/10.1145/3474224
https://doi.org/10.1145/3474224
http://dx.doi.org/10.1145/3474224
https://github.com/quantum-ket/ket
https://quantumket.org/
https://github.com/riverlane/QHAL

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 50

Computing Machinery, New York, NY, USA, 2020, p. 286–300. URL: https://doi.org/10.1145/3385412.3386007. doi:10.1145/
3385412.3386007.

[26] B. Bichsel, M. Baader, T. Gehr, M. Vechev, Silq, https://github.com/eth-sri/silq, 2016. [Online; accessed December-2021].
[27] Amazon, Amazon braket documentation, https://docs.aws.amazon.com/braket/?id=docs_gateway, 2020. [Online; accessed

December-2021].
[28] Amazon, Amazon braket github, https://github.com/aws/amazon-braket-sdk-python, 2020. [Online; accessed December-2021].
[29] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, C. Weedbrook, Strawberry fields: A software platform for photonic quantum

computing, Quantum 3 (2019) 129. URL: https://doi.org/10.22331/q-2019-03-11-129. doi:10.22331/q-2019-03-11-129.
[30] N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G. Almudever, K. Bertels, cQASM v1.0: Towards a Common Quantum

Assembly Language, arXiv preprint arXiv:1805.09607 (2018). URL: https://arxiv.org/abs/1805.09607.
[31] Q. Inspire, cqasm: A quantum programming language, https://www.quantum-inspire.com/kbase/cqasm/, 2018. [Online; accessed

March-2022].
[32] D-Wave, D-wave ocean software documentation, https://docs.ocean.dwavesys.com/en/stable/, 2018. [Online; accessed

December-2021].
[33] D-Wave, Ocean is d-wave’s suite of tools for solving hard problems with quantum computers., https://github.com/dwavesystems/

dwave-ocean-sdk, 2018. [Online; accessed December-2021].
[34] Google, Cirq, https://github.com/quantumlib/Cirq, 2019. [Online; accessed March-2022].
[35] D. Bacon, Quantum super entangled language (qsel), https://github.com/dabacon/qsel, 2018. [Online; accessed March-2022].
[36] A. Z. C. Product, Orquestra, https://www.orquestra.io/, 2020. [Online; accessed December-2021].
[37] Rigetti, Projects developed using forest, https://github.com/rigetti/forest-software, 2018. [Online; accessed December-2021].
[38] R. S. Smith, M. J. Curtis, W. J. Zeng, A practical quantum instruction set architecture, arXiv preprint arXiv:1608.03355 (2016). URL:

https://arxiv.org/abs/1608.03355.
[39] Microsoft, Quantum development kit, https://github.com/microsoft/Quantum, 2017. [Online; accessed November-2021].
[40] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov, M. Mykhailova, A. Paz, M. Roetteler, Q#: Enabling

Scalable Quantum Computing and Development with a High-Level DSL, in: Proceedings of the Real World Domain Specific Languages
Workshop 2018, RWDSL2018, Association for Computing Machinery, New York, NY, USA, 2018, pp. 1–10. URL: https://doi.org/
10.1145/3183895.3183901. doi:10.1145/3183895.3183901.

[41] Microsoft, Azure quantum documentation, https://docs.microsoft.com/pt-br/azure/quantum/, 2021. [Online; accessed 26-
October-2021].

[42] IBM, Qiskit: An open-source sdk for working with quantum computers at the level of pulses, circuits, and algorithms, https://github.
com/Qiskit, 2017. [Online; accessed November-2021].

[43] S. Liu, X. Wang, L. Zhou, J. Guan, Y. Li, Y. He, R. Duan, M. Ying, q|si⟩: A quantum programming environment, 2017. URL: https:
//arxiv.org/abs/1710.09500. arXiv:1710.09500.

[44] S. Pakin, A quantum macro assembler, in: 2016 IEEE High Performance Extreme Computing Conference (HPEC), 2016, pp. 1–8.
doi:10.1109/HPEC.2016.7761637.

[45] S. Pakin, Qmasm: A quantum macro assembler, https://github.com/lanl/qmasm, 2017. [Online; accessed December-2021].
[46] D. S. Steiger, T. Häner, M. Troyer, Projectq: an open source software framework for quantum computing, Quantum 2 (2018) 49. URL:

https://doi.org/10.22331/q-2018-01-31-49. doi:10.22331/q-2018-01-31-49.
[47] D. Wecker, K. M. Svore, LIQUi|⟩: A Software Design Architecture and Domain-Specific Language for Quantum Computing, arXiv preprint

arXiv:1402.4467 (2014). URL: https://arxiv.org/abs/1402.4467.
[48] Microsoft, The language-integrated quantum operations (liqui|⟩) simulator, https://github.com/StationQ/Liquid, 2016. [Online;

accessed March-2022].
[49] Microsoft, liqui|⟩ the language integrated quantum operations simulator, http://stationq.github.io/Liquid/, 2016. [Online; ac-

cessed March-2022].
[50] Microsoft, Language-integrated quantum operations: liqui|⟩, https://www.microsoft.com/en-us/research/project/language-

integrated-quantum-operations-liqui/, 2016. [Online; accessed March-2022].
[51] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, B. Valiron, Quipper: A scalable quantum programming language, SIGPLAN Not. 48

(2013) 333–342. URL: https://doi.org/10.1145/2499370.2462177. doi:10.1145/2499370.2462177.
[52] A. Lapets, M. P. da Silva, M. Thome, A. Adler, J. Beal, M. Roetteler, QuaFL: A Typed DSL for Quantum Programming, in:

Proceedings of the 1st Annual Workshop on Functional Programming Concepts in Domain-Specific Languages, FPCDSL ’13, As-
sociation for Computing Machinery, New York, NY, USA, 2013, p. 19–26. URL: https://doi.org/10.1145/2505351.2505357.
doi:10.1145/2505351.2505357.

[53] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black, F. Chong, M. Martonosi,
M. Suchara, K. Brown, M. Pedram, T. Brun, Scaffold: Quantum Programming Language, Department of Computer Science, Princeton
University, Tech. Rep. TR-934-12 (2012). URL: https://apps.dtic.mil/sti/citations/ADA571279.

[54] M. Purkeypile, Cove: A practical quantum computer programming framework, arXiv preprint arXiv:0911.2423 (2009). URL: https:
//arxiv.org/abs/0911.2423.

[55] J. Xu, F. Song, Quantum programming languages: A tentative study, Science in China Series F: Information Sciences 51 (2008) 623–637.
URL: https://doi.org/10.1007/s11432-008-0059-4. doi:10.1007/s11432-008-0059-4.

[56] H. Mlnarik, Operational Semantics and Type Soundness of Quantum Programming Language LanQ, arXiv preprint arXiv:0708.0890
(2007). URL: https://arxiv.org/abs/0708.0890.

[57] J. K. Vizzotto, A. C. da Rocha Costa, Towards Quantum Haskell via Quantum Arrows, in: Workshop-Escola de Computação e Informação
Quântica, volume 52, 2006, pp. 1–10.

[58] J. Xu, F. Song, Quantum programming languages, Frontiers of Computer Science in China 2 (2008) 161–166. URL: https://doi.org/
10.1007/s11704-008-0013-z. doi:10.1007/s11704-008-0013-z.

50

https://doi.org/10.1145/3385412.3386007
http://dx.doi.org/10.1145/3385412.3386007
http://dx.doi.org/10.1145/3385412.3386007
https://github.com/eth-sri/silq
https://docs.aws.amazon.com/braket/?id=docs_gateway
https://github.com/aws/amazon-braket-sdk-python
https://doi.org/10.22331/q-2019-03-11-129
http://dx.doi.org/10.22331/q-2019-03-11-129
https://arxiv.org/abs/1805.09607
https://www.quantum-inspire.com/kbase/cqasm/
https://docs.ocean.dwavesys.com/en/stable/
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/quantumlib/Cirq
https://github.com/dabacon/qsel
https://www.orquestra.io/
https://github.com/rigetti/forest-software
https://arxiv.org/abs/1608.03355
https://github.com/microsoft/Quantum
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
http://dx.doi.org/10.1145/3183895.3183901
https://docs.microsoft.com/pt-br/azure/quantum/
https://github.com/Qiskit
https://github.com/Qiskit
https://arxiv.org/abs/1710.09500
https://arxiv.org/abs/1710.09500
http://arxiv.org/abs/1710.09500
http://dx.doi.org/10.1109/HPEC.2016.7761637
https://github.com/lanl/qmasm
https://doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.22331/q-2018-01-31-49
https://arxiv.org/abs/1402.4467
https://github.com/StationQ/Liquid
http://stationq.github.io/Liquid/
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui/
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui/
https://doi.org/10.1145/2499370.2462177
http://dx.doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2505351.2505357
http://dx.doi.org/10.1145/2505351.2505357
https://apps.dtic.mil/sti/citations/ADA571279
https://arxiv.org/abs/0911.2423
https://arxiv.org/abs/0911.2423
https://doi.org/10.1007/s11432-008-0059-4
http://dx.doi.org/10.1007/s11432-008-0059-4
https://arxiv.org/abs/0708.0890
https://doi.org/10.1007/s11704-008-0013-z
https://doi.org/10.1007/s11704-008-0013-z
http://dx.doi.org/10.1007/s11704-008-0013-z

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 51

[59] W. Mauerer, Semantics and simulation of communication in quantum programming, arXiv e-prints (2005) quant–ph/0511145. URL:
https://arxiv.org/abs/quant-ph/0511145. arXiv:quant-ph/0511145.

[60] T. Altenkirch, J. Grattage, A functional quantum programming language, in: 20th Annual IEEE Symposium on Logic in Computer Science
(LICS’ 05), 2005, pp. 249–258. URL: https://doi.org/10.1109/LICS.2005.1. doi:10.1109/LICS.2005.1.

[61] S. J. Gay, R. Nagarajan, Communicating quantum processes, in: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming languages, 2005, pp. 145–157.

[62] P. Jorrand, M. Lalire, From quantum physics to programming languages: A process algebraic approach, in: J.-P. Banâtre, P. Fradet, J.-L.
Giavitto, O. Michel (Eds.), Unconventional Programming Paradigms, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 1–16. URL:
https://doi.org/10.1007/11527800_1. doi:10.1007/11527800_1.

[63] P. Selinger, Towards a Quantum Programming Language, Mathematical Structures in Computer Science 14 (2004) 527–586. URL: https:
//doi.org/10.1017/S0960129504004256. doi:10.1017/S0960129504004256.

[64] S. Bettelli, T. Calarco, L. Serafini, Toward an architecture for quantum programming, The European Physical Journal D - Atomic, Molecular
and Optical Physics 25 (2003) 181–200. URL: http://dx.doi.org/10.1140/epjd/e2003-00242-2. doi:10.1140/epjd/e2003-
00242-2.

[65] A. Sabry, Modeling quantum computing in haskell, in: Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell, Haskell ’03,
Association for Computing Machinery, New York, NY, USA, 2003, p. 39–49. URL: https://doi.org/10.1145/871895.871900.
doi:10.1145/871895.871900.

[66] J. W. Sanders, P. Zuliani, Quantum programming, in: R. Backhouse, J. N. Oliveira (Eds.), Mathematics of Program Construction, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 80–99. URL: https://doi.org/10.1007/10722010_6. doi:10.1007/10722010_6.

[67] B. Ömer, Procedural Quantum Programming, AIP Conference Proceedings 627 (2002) 276–285. URL: https://doi.org/10.1063/1.
1503695. doi:10.1063/1.1503695. arXiv:https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276 1 online.pdf.

[68] B. Ömer, Qcl – a programming language for quantum computers, http://tph.tuwien.ac.at/~oemer/qcl.html, 2014. [Online; ac-
cessed October-2021].

[69] B. Oemer, Qcl (quantum computing language), https://github.com/aviggiano/qcl, 2018. [Online; accessed November-2021].
[70] P. Maymin, The lambda-q calculus can efficiently simulate quantum computers, arXiv e-prints (1997) quant–ph/9702057. URL: https:

//arxiv.org/abs/quant-ph/9702057. arXiv:quant-ph/9702057.
[71] D. A. Sofge, A survey of quantum programming languages: History, methods, and tools, in: Second International Conference on Quantum,

Nano and Micro Technologies (ICQNM 2008), 2008, pp. 66–71. doi:10.1109/ICQNM.2008.15.
[72] S. Bettelli, L. Serafini, T. Calarco, Toward an architecture for quantum programming, The European Physical Journal D 25 (2001).

doi:10.1140/epjd/e2003-00242-2.
[73] J. W. Sanders, P. Zuliani, Quantum programming, in: R. Backhouse, J. N. Oliveira (Eds.), Mathematics of Program Construction, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 80–99.
[74] A. Van Tonder, A lambda calculus for quantum computation, SIAM Journal on Computing 33 (2004) 1109–1135.
[75] P. Selinger, B. Valiron, A lambda calculus for quantum computation with classical control, in: P. Urzyczyn (Ed.), Typed Lambda Calculi

and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 354–368.
[76] W. Mauerer, Semantics and simulation of communication in quantum programming, arXiv preprint quant-ph/0511145 (2005).
[77] V. R. Basili, G. Caldiera, H. D. Rombach, The goal question metric approach, Encyclopedia of software engineering (1994) 528–532.
[78] U. Kuter, C. Yilmaz, Survey methods: Questionnaires and Interviews, Choosing Human-Computer Interaction (HCI) Appropriate Research

Methods (2001) 1–9.
[79] S. Dalati, J. Gómez, Surveys and Questionnaires, 2018, pp. 175–186. doi:10.1007/978-3-319-74173-4_10.
[80] P. Regmi, E. Waithaka, A. Paudyal, P. Simkhada, E. Van Teijlingen, Guide to the design and application of online questionnaire surveys,

Nepal Journal of Epidemiology 6 (2017) 640. doi:10.3126/nje.v6i4.17258.
[81] SoGoSurvey, Sogosurvey homepage, https://www.sogosurvey.com, 2021. [Online; accessed 12-October-2021].
[82] Google, Google forms homepage, https://www.google.com/forms/about/, 2021. [Online; accessed 12-October-2021].
[83] Survio, Survio homepage, https://www.survio.com, 2021. [Online; accessed 12-October-2021].
[84] MindMiners, Mindminers homepage, https://mindminers.com/, 2021. [Online; accessed 12-October-2021].
[85] TypeForm, Typeform homepage, https://www.typeform.com/, 2021. [Online; accessed 12-October-2021].
[86] SurveyMonkey, Surveymonkey homepage, https://https://www.surveymonkey.com/, 2021. [Online; accessed 12-October-2021].
[87] R. A. Fisher, On the Interpretation of χ2 from Contingency Tables, and the Calculation of P, Journal of the Royal Statistical Society 85

(1922) 87–94. URL: http://www.jstor.org/stable/2340521.
[88] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, H. Pfister, UpSet: Visualization of Intersecting Sets, IEEE Transactions on Visualization

and Computer Graphics 20 (2014) 1983–1992. doi:10.1109/TVCG.2014.2346248.
[89] J. R. Conway, A. Lex, N. Gehlenborg, UpSetR: an R package for the visualization of intersecting sets and their properties, Bioinformatics

33 (2017) 2938–2940. URL: https://doi.org/10.1093/bioinformatics/btx364. doi:10.1093/bioinformatics/btx364.
[90] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, J. M.

Arrazola, U. Azad, S. Banning, C. Blank, T. R. Bromley, B. A. Cordier, J. Ceroni, A. Delgado, O. D. Matteo, A. Dusko, T. Garg, D. Guala,
A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D. Ittah, S. Jahangiri, P. Jain, E. Jiang, A. Khandelwal, K. Kottmann, R. A. Lang, C. Lee, T. Loke,
A. Lowe, K. McKiernan, J. J. Meyer, J. A. Montañez-Barrera, R. Moyard, Z. Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y. Park,
D. Polatajko, N. Quesada, C. Roberts, N. Sá, I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh, I. Strandberg, J. Soni, A. Száva, S. Thabet,
R. A. Vargas-Hernández, T. Vincent, N. Vitucci, M. Weber, D. Wierichs, R. Wiersema, M. Willmann, V. Wong, S. Zhang, N. Killoran,
PennyLane: Automatic differentiation of hybrid quantum-classical computations, 2022. URL: https://arxiv.org/abs/1811.04968.
arXiv:1811.04968.

[91] J. Johansson, P. Nation, F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Computer Physics
Communications 183 (2012) 1760–1772. URL: https://www.sciencedirect.com/science/article/pii/S0010465512000835.
doi:https://doi.org/10.1016/j.cpc.2012.02.021.

51

https://arxiv.org/abs/quant-ph/0511145
http://arxiv.org/abs/quant-ph/0511145
https://doi.org/10.1109/LICS.2005.1
http://dx.doi.org/10.1109/LICS.2005.1
https://doi.org/10.1007/11527800_1
http://dx.doi.org/10.1007/11527800_1
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1140/epjd/e2003-00242-2
http://dx.doi.org/10.1140/epjd/e2003-00242-2
http://dx.doi.org/10.1140/epjd/e2003-00242-2
https://doi.org/10.1145/871895.871900
http://dx.doi.org/10.1145/871895.871900
https://doi.org/10.1007/10722010_6
http://dx.doi.org/10.1007/10722010_6
https://doi.org/10.1063/1.1503695
https://doi.org/10.1063/1.1503695
http://dx.doi.org/10.1063/1.1503695
http://arxiv.org/abs/https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
http://tph.tuwien.ac.at/~oemer/qcl.html
https://github.com/aviggiano/qcl
https://arxiv.org/abs/quant-ph/9702057
https://arxiv.org/abs/quant-ph/9702057
http://arxiv.org/abs/quant-ph/9702057
http://dx.doi.org/10.1109/ICQNM.2008.15
http://dx.doi.org/10.1140/epjd/e2003-00242-2
http://dx.doi.org/10.1007/978-3-319-74173-4_10
http://dx.doi.org/10.3126/nje.v6i4.17258
https://www.sogosurvey.com
https://www.google.com/forms/about/
https://www.survio.com
https://mindminers.com/
https://www.typeform.com/
https://https://www.surveymonkey.com/
http://www.jstor.org/stable/2340521
http://dx.doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1093/bioinformatics/btx364
http://dx.doi.org/10.1093/bioinformatics/btx364
https://arxiv.org/abs/1811.04968
http://arxiv.org/abs/1811.04968
https://www.sciencedirect.com/science/article/pii/S0010465512000835
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.02.021

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 52

[92] J. Johansson, P. Nation, F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Computer Physics
Communications 184 (2013) 1234–1240. URL: https://www.sciencedirect.com/science/article/pii/S0010465512003955.
doi:https://doi.org/10.1016/j.cpc.2012.11.019.

[93] Quarkus, Funqy, https://quarkus.io/guides/funqy, 2021. [Online; accessed December-2021].
[94] K. Hietala, R. Rand, S.-H. Hung, X. Wu, M. Hicks, A Verified Optimizer for Quantum Circuits, Proceedings of the ACM on Programming

Languages 5 (2021). URL: https://doi.org/10.1145/3434318. doi:10.1145/3434318.
[95] X. Fu, J. Yu, X. Su, H. Jiang, H. Wu, F. Cheng, X. Deng, J. Zhang, L. Jin, Y. Yang, L. Xu, C. Hu, A. Huang, G. Huang, X. Qiang, M. Deng,

P. Xu, W. Xu, W. Liu, Y. Zhang, Y. Deng, J. Wu, Y. Feng, Quingo: A Programming Framework for Heterogeneous Quantum-Classical
Computing with NISQ Features, ACM Transactions on Quantum Computing 2 (2021). URL: https://doi.org/10.1145/3483528.
doi:10.1145/3483528.

[96] N. Heurtel, A. Fyrillas, G. d. Gliniasty, R. Le Bihan, S. Malherbe, M. Pailhas, E. Bertasi, B. Bourdoncle, P.-E. Emeriau, R. Mezher, L. Music,
N. Belabas, B. Valiron, P. Senellart, S. Mansfield, J. Senellart, Perceval: A Software Platform for Discrete Variable Photonic Quantum
Computing, Quantum 7 (2023) 931. URL: https://doi.org/10.22331/q-2023-02-21-931. doi:10.22331/q-2023-02-21-931.

[97] M. De Stefano, An empirical study on the current adoption of quantum programming, in: 2022 IEEE/ACM 44th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion), 2022, pp. 310–312. doi:10.1109/ICSE-Companion55297.2022.
9793820.

[98] X. Wang, P. Arcaini, T. Yue, S. Ali, Quito: a Coverage-Guided Test Generator for Quantum Programs, in: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2021, pp. 1237–1241. doi:10.1109/ASE51524.2021.9678798.

[99] J. Wang, F. Ma, Y. Jiang, Poster: Fuzz Testing of Quantum Program, in: 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), 2021, pp. 466–469. doi:10.1109/ICST49551.2021.00061.

[100] E. Mendiluze, S. Ali, P. Arcaini, T. Yue, Muskit: A Mutation Analysis Tool for Quantum Software Testing, in: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2021, pp. 1266–1270. doi:10.1109/ASE51524.2021.9678563.

[101] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, A. Wessln, Experimentation in Software Engineering, Springer Publishing
Company, Incorporated, 2012.

[102] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2022.
URL: https://www.R-project.org/.

[103] S. Overflow, Stack overflow annual developer survey, https://insights.stackoverflow.com/survey, 2021. [Online; accessed
November-2021].

[104] JetBrains, The state of developer ecosystem 2021, https://www.jetbrains.com/lp/devecosystem-2021/, 2021. [Online; accessed
November-2021].

[105] Increment.com, Six questions on programming languages, https://increment.com/programming-languages/six-questions-
on-programming-languages/, 2018. [Online; accessed November-2021].

[106] ComputerScience.org, Computerscience.org website, https://www.computerscience.org/, 2021. [Online; accessed November-2021].
[107] C. Hope, Why are there so many programming language, https://www.computerhope.com/issues/ch000569.htm, 2020. [Online;

accessed March-2022].
[108] Q. Chen, R. Câmara, J. Campos, A. Souto, I. Ahmed, The Smelly Eight: An Empirical Study on the Prevalence of Code Smells in

Quantum Computing, in: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023, pp. 358–370. URL:
https://doi.org/10.1109/ICSE48619.2023.00041. doi:10.1109/ICSE48619.2023.00041.

[109] D. Fortunato, J. Campos, R. Abreu, Mutation Testing of Quantum Programs Written in QISKit, in: Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: Companion Proceedings, ICSE ’22, Association for Computing Machinery, New York,
NY, USA, 2022, p. 358–359. URL: https://doi.org/10.1145/3510454.3528649. doi:10.1145/3510454.3528649.

[110] D. Fortunato, J. Campos, R. Abreu, QMutPy: A Mutation Testing Tool for Quantum Algorithms and Applications in Qiskit, in: Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2022, Association for Computing Machin-
ery, New York, NY, USA, 2022, p. 797–800. URL: https://doi.org/10.1145/3533767.3543296. doi:10.1145/3533767.3543296.

[111] D. Fortunato, J. Campos, R. Abreu, Mutation Testing of Quantum Programs: A Case Study With Qiskit, IEEE Transactions on Quantum
Engineering 3 (2022) 1–17. URL: https://doi.org/10.1109/TQE.2022.3195061. doi:10.1109/TQE.2022.3195061.

[112] P. Selinger, A brief survey of quantum programming languages, in: In Proceedings of the 7th International Symposium on Functional and
Logic Programming, Springer, 2004, pp. 1–6.

[113] D. Unruh, Quantum programming languages, Inform., Forsch. Entwickl. 21 (2006) 55–63. doi:10.1007/s00450-006-0012-y.
[114] D. Rojas, The modern state of quantum programming language (2019).
[115] M. De Stefano, F. Pecorelli, D. Di Nucci, F. Palomba, A. De Lucia, Software engineering for quantum programming: How far are we?,

arXiv preprint arXiv:2203.16969 (2022).
[116] HOPL, Online historical encyclopaedia of programming languages, https://hopl.info/, 2020. [Online; accessed March-2022].
[117] GitHub, Developer feedback helps steer github public policy commitments, https://octoverse.github.com/#developer-

feedback-helps-steer-git-hub-public-policy-commitments, 2021. [Online; accessed March-2022].
[118] V. Lagutin, Why are there so many programming language, https://www.freecodecamp.org/news/why-are-there-so-many-

programming-languages/, 2021. [Online; accessed March-2022].
[119] M. Sherman, Why are there so many programming language, https://stackoverflow.blog/2015/07/29/why-are-there-so-

many-programming-languages/, 2015. [Online; accessed March-2022].
[120] M. L. Scott, Programming language pragmatics, http://www.cs.yorku.ca/~billk/cse3301_S06/lectures/cse3301_S06_

july17_6slides.pdf, 2017. [Online; accessed March-2022].
[121] E. Knill, Conventions for quantum pseudocode, 2022. arXiv:2211.02559.
[122] J.-Y. Girard, Between logic and quantic: a tract, Technical Report, MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2003.
[123] S. Abramsky, B. Coecke, Physical traces: Quantum vs. classical information processing, CoRR cs.CG/0207057 (2002). URL: https:

//arxiv.org/abs/cs/0207057.

52

https://www.sciencedirect.com/science/article/pii/S0010465512003955
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
https://quarkus.io/guides/funqy
https://doi.org/10.1145/3434318
http://dx.doi.org/10.1145/3434318
https://doi.org/10.1145/3483528
http://dx.doi.org/10.1145/3483528
https://doi.org/10.22331/q-2023-02-21-931
http://dx.doi.org/10.22331/q-2023-02-21-931
http://dx.doi.org/10.1109/ICSE-Companion55297.2022.9793820
http://dx.doi.org/10.1109/ICSE-Companion55297.2022.9793820
http://dx.doi.org/10.1109/ASE51524.2021.9678798
http://dx.doi.org/10.1109/ICST49551.2021.00061
http://dx.doi.org/10.1109/ASE51524.2021.9678563
https://www.R-project.org/
https://insights.stackoverflow.com/survey
https://www.jetbrains.com/lp/devecosystem-2021/
https://increment.com/programming-languages/six-questions-on-programming-languages/
https://increment.com/programming-languages/six-questions-on-programming-languages/
https://www.computerscience.org/
https://www.computerhope.com/issues/ch000569.htm
https://doi.org/10.1109/ICSE48619.2023.00041
http://dx.doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1145/3510454.3528649
http://dx.doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3533767.3543296
http://dx.doi.org/10.1145/3533767.3543296
https://doi.org/10.1109/TQE.2022.3195061
http://dx.doi.org/10.1109/TQE.2022.3195061
http://dx.doi.org/10.1007/s00450-006-0012-y
https://hopl.info/
https://octoverse.github.com/#developer-feedback-helps-steer-git-hub-public-policy-commitments
https://octoverse.github.com/#developer-feedback-helps-steer-git-hub-public-policy-commitments
https://www.freecodecamp.org/news/why-are-there-so-many-programming-languages/
https://www.freecodecamp.org/news/why-are-there-so-many-programming-languages/
https://stackoverflow.blog/2015/07/29/why-are-there-so-many-programming-languages/
https://stackoverflow.blog/2015/07/29/why-are-there-so-many-programming-languages/
http://www.cs.yorku.ca/~billk/cse3301_S06/lectures/cse3301_S06_july17_6slides.pdf
http://www.cs.yorku.ca/~billk/cse3301_S06/lectures/cse3301_S06_july17_6slides.pdf
http://arxiv.org/abs/2211.02559
https://arxiv.org/abs/cs/0207057
https://arxiv.org/abs/cs/0207057

Ferreira et al. / Science of Computer Programming 00 (2024) 1–53 53

[124] A. Edalat, An extension of gleason’s theorem for quantum computation, International Journal of Theoretical Physics 43 (2004) 1827–1840.
URL: http://dx.doi.org/10.1023/B:IJTP.0000048823.93080.7e. doi:10.1023/b:ijtp.0000048823.93080.7e.

[125] B. Coecke, K. Martin, A Partial Order on Classical and Quantum States, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 593–683.
URL: https://doi.org/10.1007/978-3-642-12821-9_10. doi:10.1007/978-3-642-12821-9_10.

[126] S. J. Gay, Quantum programming languages: Survey and bibliography, Mathematical Structures in Computer Science 16 (2006) 581–600.
[127] D. Deutsch, Quantum theory, the church–turing principle and the universal quantum computer, Proceedings of the Royal Society of London.

A. Mathematical and Physical Sciences 400 (1985) 97–117.
[128] P. Maymin, The lambda-q calculus can efficiently simulate quantum computers, arXiv preprint quant-ph/9702057 (1997).
[129] P. Jorrand, M. Lalire, Toward a quantum process algebra, in: Proceedings of the 1st Conference on Computing Frontiers, 2004, pp. 111–119.
[130] J.-Y. Girard, Linear logic, Theoretical computer science 50 (1987) 1–101.
[131] S. Garhwal, M. Ghorani, A. Ahmad, Quantum programming language: A systematic review of research topic and top cited languages,

Archives of Computational Methods in Engineering 28 (2019) 289–310.
[132] M. A. Serrano, J. A. Cruz-Lemus, R. Perez-Castillo, M. Piattini, Quantum software components and platforms: Overview and quality

assessment, ACM Comput. Surv. 55 (2022). URL: https://doi.org/10.1145/3548679. doi:10.1145/3548679.

53

http://dx.doi.org/10.1023/B:IJTP.0000048823.93080.7e
http://dx.doi.org/10.1023/b:ijtp.0000048823.93080.7e
https://doi.org/10.1007/978-3-642-12821-9_10
http://dx.doi.org/10.1007/978-3-642-12821-9_10
https://doi.org/10.1145/3548679
http://dx.doi.org/10.1145/3548679

	Introduction
	Quantum programming languages
	Systematic survey of quantum languages
	Data sources
	Search
	Procedure
	Search results

	Imperative quantum programming languages
	QCL
	QASM
	Silq
	Q
	qGCL
	LanQ
	Q|SI
	OpenQASM
	Scaffold
	cQAMS
	Quil
	QSEL
	Ket
	NDQJava

	Functional quantum programming languages
	QPL and QFC
	QML
	Sabry's
	Lambda calculi (q)
	Quipper
	NDQFP
	LIQUi|
	QHaskell

	Multi-paradigm and domain-specific languages
	QDK (Q#, Python, and .NET)
	cQPL
	QPAlg
	CQP
	QualFL
	QHAL
	QISKIT (Python)
	Cirq (Python)
	Braket SDK (Python)
	Strawberry Fields (Blackbird and Python)
	Forest (Python)
	DWave Ocean (Python)
	Orquestra (Python)
	Cove (C#)
	ProjectQ (Python)

	Study
	Research questions
	Group I – Who uses quantum languages
	Group II – Participants' preferences, challenges, and motivations
	Group III – Practices, preferences, and needs of testing programs written with quantum languages
	Group IV – Participants' perspectives on the variety of quantum languages
	Metrics

	Survey structure
	Survey platform
	Survey participants
	How was the survey conducted
	Data analysis

	Results
	RQ1: What is the profile of individuals who use quantum languages?
	RQ2: How do the learning pathways for classical and quantum languages overlap or diverge?
	RQ3: How do individuals' experiences differ between classical languages and quantum languages?
	RQ4: Which classical and quantum languages are used by participants, and how long have they been used?
	RQ5: What quantum language do participants primarily use and what specific features or attributes do they appreciate or find challenging in it?
	RQ6: What relation exists between participants' primary quantum language, their major, their familiarity with quantum physics, and their personal/professional experiences?
	RQ7: In what contexts do participants apply quantum languages?
	RQ8: What quantum languages are participants interested in trying or using in the future, and why?
	RQ9: What are the participants' perspectives on the importance of learning a quantum language?
	RQ10: What are the main challenges participants face when selecting a quantum language?
	RQ11: What are the perceived needs and gaps in tools for writing quantum programs?
	RQ12: Are quantum programs tested, how often, and how?
	RQ13: What tools do users employ for testing quantum programs?
	RQ14: How do users perceive the diversity of quantum languages?
	RQ15: What factors influence participants' opinions about the necessity of introducing new quantum languages?
	Threats to validity
	Threats to external validity
	Threats to internal validity
	Threats to construct validity

	Implications of our study and suggestions for future work
	Know your target audience
	Documentation, examples, and community support
	Quantum languages love classical languages
	High-level quantum languages
	Application domain and new features
	Tailored quantum integrated development
	Testing & Debugging tools
	Real quantum computers

	Related work
	Classical programming languages
	Quantum programming languages
	Towards a quantum programming language by Selinger (2004)
	A brief survey of quantum programming languages by Selinger (2004)
	Quantum programming language by Unruh (2006)
	Quantum programming language, survey and bibliography by Gay (2006)
	A survey of quantum programming languages: history, methods, and tools by Sofge (2008)
	The modern state of quantum programming language by Rojas (2019)
	Quantum programming languages: a systematic review of research topic and top cited languages by Garhwal et al. (2019)
	Quantum software engineering: landscapes and horizons by Zhao (2021)
	Quantum software components and platforms: Overview and quality assessment by Serrano et al. (2022)
	Software engineering for quantum programming: how far are we? by De Stefano et al. (2022)

	Conclusions and future work
	Survey questions
	Social networks contacted for the survey
	RQ4 — Additional artifacts
	New tables

