
Automatic Generation of Smell-free Unit Tests
João Afonso1, José Campos1,2

1LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
2Faculty of Engineering, University of Porto, Porto, Portugal

fc51111@alunos.fc.ul.pt, jcmc@fe.up.pt

Abstract—Automated test generation tools, such as EvoSuite,
typically aim to generate tests that maximize code coverage
and do not adequately consider non-coverage aspects that may
be relevant for developers, e.g., test’s code quality. Hence,
automatically generated tests are often affected by test-specific
bad programming practices, i.e., test smells, that may hinder the
quality of the test’s source code and, ultimately, the quality of
the code under test. Although EvoSuite uses secondary criteria
and a post-processing procedure to optimize non-coverage aspects
and improve the readability of the tests, it does not explicitly
consider the usage of good programming practices. Thus, in this
paper, we propose a novel approach to assist EvoSuite’s search
algorithm in generating smell-free tests out of the box. To this
aim, we first compile a set of 54 test smell metrics from several
sources. Secondly, we systematically identify 30 smells that do
not affect the tests generated by EvoSuite and eight smells that
cannot be automatically computed. Thirdly, we incorporate the
remaining 16 test smells as metrics into EvoSuite and empirically
identify that only 14 smells affect the tests generated by the tool
(e.g., Indirect Testing). Fourthly, we describe and integrate an
approach to optimize test smell metrics into EvoSuite. Finally,
we conduct an empirical study to (i) understand to what extend
EvoSuite’s default mechanisms leads to the generation of fewer
smelly tests. (ii) to assess whether our approach leads to the gener-
ation of fewer smelly tests. And (iii) how our approach affects the
coverage and fault detection effectiveness of the generated tests.
Our results report that our approach can generate 8.58% fewer
smelly tests without significantly compromising their coverage or
fault detection effectiveness.

Index Terms—Software Testing, Automated Test Generation,
Test Smells, Empirical Study

I. INTRODUCTION

Software testing [1], which aims to ensure the development
of high-quality software products, is an essential procedure
in any software project [2, 3]. Although an effective process,
it has been estimated that half of the total cost and time to
develop a software product is dedicated to software testing [1]
because: (i) assessing whether a software product performs
correctly could be highly complex, and (ii) software testing is
traditionally a manual process that is costly, time-consuming,
and subject to incompleteness and other errors. To improve
the effectiveness of software testing and reduce its cost, others
have devised approaches to automate the generation of tests.

Automated test generation tools such as EvoSuite [4, 5] have
become very effective at generating high-coverage tests [2, 6],
detecting real bugs [7, 8], and reducing debugging costs (com-
pared to manually-written tests) [9, 10]. However, such tools
do not adequately optimize the quality of the generated tests;
thus, they are often affected by test-specific bad programming
practices [3, 11, 12] — test smells [13].

It is well known that automatically generated tests are harder
to understand [14] and maintain [15] than manually-written
tests, and the presence of test smells further exacerbates these
problems [16, 17]. In particular, the presence of test smells:
• Hinders test comprehensibility and maintainability [17, 16].
• Compromises test code effectiveness [18, 19].
• Makes test code more prone to changes and faults [18].
• Makes code under test more fault-prone [18].

Thus, the primary goal of this study is to develop and
integrate a novel approach into the EvoSuite tool, which would
allow the tool to generate smell-free tests out of the box. To
this aim, we incorporate a curated set of test smell metrics into
the EvoSuite tool and optimize those metrics as secondary
criteria [2, 3, 11]. Others have successfully incorporated
non-coverage quality metrics into EvoSuite (e.g., [2, 11]) as
secondary criteria.

The main contributions of this paper are as follows:
• A curated list of 54 test smells and a detailed analysis of

the smells that can (1) affect the tests generated by EvoSuite
and (2) be characterized by optimizable metrics.

• A novel approach to optimize test smell metrics.
• An empirical study to assess

– The diffusion of smells in the tests generated by EvoSuite
and to assess the test smells that affect a significant
portion of the generated tests.

– The impact of EvoSuite’s default mechanisms on the
number of smelly tests.

– Whether the optimization of test smells significantly re-
duces the number of smelly tests and does not negatively
affect their coverage or fault detection effectiveness.

II. RELATED WORK

Code smells were initially defined by Fowler [20] in 2018 as
patterns in the code that suggest the possibility of refactoring,
thus helping one to decide when and how to refactor. Since
then, others have extended the concept of code smells to test
code and established different catalogs of test-specific smells
(test smells) along with their symptoms, impact, causes, and
refactoring operations to remove them [13, 21, 22, 23, 17, 16,
18, 19].

Test smells correspond to suboptimal design/programming
practices specific to test code that correlate with test imple-
mentation, organization, documentation, and interactions [16,
21, 24]. These smells are symptoms of possible problems
in the test code and are often highly diffused in manually
written [17, 16] and automatically generated tests [3, 12].

Palomba et al. [12] investigated the extent to which the
tests generated by EvoSuite are affected by test smells and
concluded that (1) smells are highly diffused throughout
automatically generated tests and (2) “Assertion Roulette”,
“Eager Test”, and “Test Code Duplication” were the most
diffused smells. Grano et al. [3], extended Palomba et al.
[12]’s work and studied the diffusion of test smells in the
tests generated by EvoSuite, Randoop, and JTExpert. The
study revealed that: (1) all tools generate smelly test code; (2)
“Assertion Roulette” and “Eager Test” are the most diffused
smells in the tests generated by all tools; (3) the presence of
some smells may imply the presence of other smells; (4) the
size of the tests is associated with the occurrence of certain
smells. We extend upon Palomba et al. [12]’s and Grano et al.
[3]’s work as follows: (1) we perform our study on a newer
version of EvoSuite; (2) we consider a larger set of 16 smells
and implement the respective test smell metrics; (3) instead of
just detecting smells, we also optimize the proposed test smell
metrics to generate fewer smelly tests.

Panichella et al. [25] conducted a study to determine the
effectiveness of test smell detection tools at identifying smells
in automatically generated tests. They used two tools to
detect six smells in the tests generated by EvoSuite: the tool
developed by Bavota et al. [17, 16] and the tsDetect tool [26].
Firstly, Panichella et al. performed a manual investigation to
assess the smelliness of the tests generated by EvoSuite and
observed that: (1) automatically generated tests are affected
by a small but non-trivial quantity of smells; (2) “Assertion
Roulette” and “Eager Test” frequently co-occurred together;
(3) “Indirect Testing” was the most diffused smell type. Sec-
ondly, they compared the identified test smells with the smells
reported by both tools and concluded that both overestimated
the smelliness of the generated tests. Panichella et al. [27]
extended upon their work and confirmed the previous results.

III. TEST SMELLS IN PRACTICE

In this section, we revisit the topic of how smells affect
the test automatically generated by EvoSuite [3, 12, 25]. We
combined two of the largest sets of test smells that have been
proposed and evaluated in the literature [28]) into the list of
54 smells that we use throughout the remainder of this study.
All smells are listed in Table I and described in detail in URL
redacted for anonymity (see SMELLS.md file). In detail, we
investigate which of the 54 test smells do not affect the tests
generated by EvoSuite by design (Section III-A), which smells
cannot be automatically computed (Section III-B), which
smells can be computed and how (Section III-C), and which
smells do indeed affect the generated tests (Section III-D).
Note our investigation augments the results reported in prior
studies [3, 12, 25] with a larger set of smells on the latest
version of EvoSuite (i.e., v1.2.0).

A. Test smells that do not affect, by design, EvoSuite’s tests

By design, some smells do not affect the tests generated
by EvoSuite because the tool is unable to produce tests with
particular characteristics, e.g., EvoSuite does not generate tests

Table I: Test smells considered in this study. The “Affect” column
identifies the smells that can/cannot affect the generated tests. The “Metric”
column identifies the smells that can also be characterized by computational
metrics. The “Sec. Criteria” column identifies the smells with metrics that can
be optimized as secondary criteria. The rows highlighted in gray denote the
smells with metrics that we optimize as secondary criteria (see Section IV).

Name Abbr. Affect? Metric? Sec. Criteria?

Abnormal UTF-Use AUU NO — —
Anonymous Test AT YES NO —
Assertion Roulette AR YES YES NO
Brittle Assertion BA YES NO —
Conditional Test Logic CTL NO — —
Constructor Initialization CI NO — —
Dead Field DF NO — —
Default Test DT NO — —
Duplicate Assert DA YES YES NO
Eager Test ET YES YES YES
Empty Shared-Fixture ESF NO — —
Empty Test EmT NO — —
Erratic Test ErT NO — —
Exception Handling EH NO — —
For Testers Only FTO NO — —
Fragile Test FT YES NO —
Frequent Debugging FD YES NO —
General Fixture GF NO — —
Hard-to-Test Code HTTC NO — —
Ignored Test IgT NO — —
Indirect Testing IT YES YES YES
Lack of Cohesion of Methods LCM YES YES NO
Lazy Test LT YES YES NO
Likely Ineffective Object-Comparison LIOC YES YES YES
Magic Number Test MNT NO — —
Manual Intervention MI NO — —
Mixed Selectors MS NO — —
Mystery Guest MG NO — —
Non-Java Smells NJS NO — —
Obscure In-line Setup OISS YES YES YES
Overcommented Test OCT NO — —
Overreferencing OF YES YES YES
Proper Organization PO YES NO —
Redundant Assertion RA YES YES NO
Redundant Print RP NO — —
Resource Optimism RO NO — —
Returning Assertion ReA NO — —
Rotten Green Tests RGT YES YES YES
Sensitive Equality SE YES YES NO
Sleepy Test ST NO — —
Slow Tests SloT YES NO —
Teardown Only Test TOT NO — —
Test Code Duplication TCD YES NO —
Test Logic in Production TLP NO — —
Test Maverick TM NO — —
Test Pollution TP NO — —
Test Redundancy TR YES YES NO
Test Run War TRW NO — —
Test-Class Name TCN YES NO —
Unknown Test UT YES YES NO
Unused Inputs UI YES YES NO
Unusual Test Order UTO NO — —
Vague Header Setup VHS NO — —
Verbose Test VT YES YES YES

with conditional statements. In this subsection, we describe
some of the 30 smells, due to the lack of space, (out of 54)
that do not affect the tests generated by EvoSuite. Column
‘Affect’ in Table I lists those smells.
Implicit setups: The tests generated by EvoSuite do not use
implicit setups (i.e., setup methods used by all tests in a test
suite) or teardown methods. Each test contains the setup code.
Hence, the “Dead Field”, “Empty Shared-Fixture”, “General
Fixture”, “Test Maverick”, and “Teardown Only Test” smells
do not affect the generated tests.
Improper setup not contained in a test case: The generated
tests contain all the setup code, thus the “Constructor Initial-
ization” and “Vague Header Setup” smells do not occur.
Problems that do not apply to JUnit tests: The “Default
Test”, “Non-Java Smells”, and “Returning Assertion” smells

are not related to JUnit tests, and therefore, do not occur on
tests generated by EvoSuite.

B. Test smells that cannot be computed

Besides the 30 smells that do not affect the tests generated
by EvoSuite, there are other eight test smells for which we
could not find a computational metric in the literature or derive
a way to efficiently compute it. Column ‘Metric’ in Table I
lists those smells.
No metric: “Anonymous Test” and “Test-Class Name” require
a human developer to assess whether the name of a test is
(or not) meaningful. Despite recent advances [14], there is
not yet a metric to automatically compute how meaningful
a name might be. “Brittle Assertion” requires the usage of
dynamic tainting [23, 29] (unavailable in EvoSuite). “Frequent
Debugging” requires a manual analysis to check whether the
root cause of a failure is unintuitive. “Proper Organization” re-
quires a precise procedure, which is not available, to compute
a subjective concept such as “organization”.
Resource intensive metrics: “Fragile Test” requires changes
to the code under test and the execution of the same test
multiple times. “Slow Tests” requires the execution of the
same test multiple times to assess its average runtime. “Test
Code Duplication” requires the implementation and execution
of, e.g., similarity metrics such as the Levenshtein distance,
to assess whether there are repeated or similar statements in
a test. Overall, these metrics would likely hamper the test
generation process as they are very time-consuming.

C. Test smells that can be computed

Below, we describe the computational metrics of the re-
maining 16 test smells and the respective thresholds (either
recommended in the literature or derived by us). A test case
is smelly if the smelliness of the respective metric is greater
than or equal to the established threshold.
Assertion Roulette (AR)
Metric: Number of assertions in a test that exceed the total
number of statements that call methods of the class under test.
Threshold: 3 [19].
Duplicate Assert (DA)
Metric: Number of assertion statements of the same type that
check the same method of the same class and have the same
expected value.
Threshold: 1 [21, 30].
Eager Test (ET)
Metric: Total number of different methods of the class under
test that are being exercised by a test.
Threshold: 4 [19].
Indirect Testing (IT)
Metric: Total number of methods of other classes (i.e., other
than the class under test) that are being exercised by a test.
Threshold: 1 [17, 16].
Lack Of Cohesion Of Methods (LCM)
Metric: Number of test cases that do not exercise the class
under test.

Threshold: 1 (a test that does not exercise the class under test
can be considered pointless regarding the verification of the
behavior of the class under test).

Lazy Test (LT)
Metric: Number of times a method of the class under test is
called by more than one test.
Threshold: 1 [17, 16, 21, 30].

Likely Ineffective Object-Comparison (LIOC)
Metric: Number of times the “equals” method of a class other
than the one under test is used to compare an object with itself.
Threshold: 1 (it only makes sense to use the “equals” method
to compare an object with itself if the class under test
implements said “equals” method).

Obscure In-line Setup (OISS)
Metric: Number of declared variables in a test (note that
this metric does not consider the variables that store values
returned from methods of the class under test).
Threshold: 10 [22].

Overreferencing (OF)
Metric: Number of class instances that are created but never
used.
Threshold: 1 (every object created in a test should have a given
purpose and, as such, should be used at least once).

Redundant Assertion (RA)
Metric: Number of assertions that check primitive statements.
Threshold: 1 [21, 30].

Rotten Green Tests (RGT)
Metric: Number of statements that exist after the statement
that raises the first exception in a given test.
Threshold: 1 (any code after the first statement that raises an
exception will not be executed; thus, it should be removed).

Test Redundancy (TR)
Metric: Number of tests that can be removed from the test
suite without decreasing the suite’s code coverage.
Threshold: 1 (tests that do not contribute to increase coverage
serve no purpose, according to EvoSuite’s main goal, and
should therefore be considered redundant and discarded from
the final test suite).

Unknown Test (UT)
Metric: Number of assertions in a test.
Threshold: 1 [21, 30].

Unrelated Assertions (UA)
Note: This test smell corresponds to an adaptation of the
“Sensitive Equality” smell. We adapted its name because our
newly proposed metric ended up diverging too far from the
original definition.
Metric: Total number of assertions that check methods that
are not declared in the class under test.
Threshold: 1 (assertions that check methods not declared in
the class under test may be misleading and serve no purpose).

Unused Inputs (UI)
Metric: Number of assertionless statements that call methods
(that also return values) of the class under test.

Table II: Diffusion of test smells on the tests generated by the
EvoSuite tool. Columns x̄, standard deviation (σ), and confidence intervals
(CI) using bootstrapping at 95% significance level, report the distribution of
test smell metrics.

Metric x̄ σ CI

AssertionRoulette 2.66% 0.09 [0.02, 0.04]
DuplicateAssert 0.58% 0.04 [0.00, 0.01]
EagerTest 3.98% 0.12 [0.03, 0.05]
IndirectTesting 34.79% 0.27 [0.32, 0.38]
LackOfCohesionOfMethods 0.32% 0.06 [0.00, 0.01]
LazyTest 0.00% 0.00 [0.00, 0.00]
LikelyIneffectiveObjectComparison 0.01% 0.00 [0.00, 0.00]
ObscureInlineSetup 1.26% 0.05 [0.01, 0.02]
Overreferencing 5.12% 0.15 [0.03, 0.07]
RedundantAssertion 0.02% 0.00 [0.00, 0.00]
RottenGreenTests 0.81% 0.03 [0.00, 0.01]
TestRedundancy 0.00% 0.00 [0.00, 0.00]
UnknownTest 45.91% 0.27 [0.43, 0.49]
UnrelatedAssertions 16.19% 0.20 [0.14, 0.18]
UnusedInputs 25.85% 0.24 [0.23, 0.28]
VerboseTest 1.32% 0.05 [0.01, 0.02]

Average 8.68% 0.10 [0.08, 0.10]

Threshold: 1 (a statement that calls a method of the class under
test that returns a value should necessarily have an assertion
to capture the current behavior of the system under test).
Verbose Test (VT)
Metric: Total number of statements in a test.
Threshold: 13 [19].

D. Test smells that affect tests generated by EvoSuite

To investigate the extent to which the tests generated by
EvoSuite are affected by the 16 test smells, we conducted an
experiment on a set of 346 Java classes (see Section V-A for
more information). We first implemented the metrics for the
16 smells on the latest version of EvoSuite. Then, we ran
EvoSuite 30 times (as suggested by Arcuri et al. [31]) on
each class, using EvoSuite’s default settings, but setting up a
search budget of 180 seconds as others have done [2]. Finally,
we investigated the diffusion of smells in the generated tests.

Table II reports the diffusion of test smells on the tests
generated by the EvoSuite tool. On average, 8.68% of all
tests generated by EvoSuite are smelly. On one hand, the high
percentage of tests affected by “Unknown Test” and “Unused
Inputs” is most likely related to the existence of tests with
try/catch exceptions in the tests instead of assert statements.
Moreover, as stated by others [25, 27], EvoSuite generates
many tests with assertions that check methods not declared in
the class under test. Thus, the high percentage of tests affected
by the “Unrelated Assertions” smell is most likely related to
the high diffusion of the “Indirect Testing” smell. That is,
tests that exercise methods not declared in the class under test
are also likely to have assertions for those methods. On the
other hand, the “Assertion Roulette”, “Duplicate Assert”, and
“Redundant Assertion” smells only affected a small fraction
of the generated tests: 2.66%, 0.58%, and 0.02%, respectively.

IV. APPROACH

Although the primary objective of EvoSuite is to maximize
code coverage, others have already integrated non-coverage

metrics as secondary criteria into the tool [11, 2] to improve
the usefulness and quality of the generated tests. By default,
EvoSuite uses a secondary non-coverage-based criterion that
promotes tests that are as short as possible [32]. Moreover,
after exhausting the search budget or achieving 100% code
coverage, EvoSuite applies several post-processing steps to
improve the quality and readability of the generated tests.
For example, primitive values and null references are inlined,
redundant tests and statements (which do not contribute to
the final code coverage) are removed, and a minimized set of
assertions is added to each test.

Palomba et al. [11] proposed a secondary criterion that
allows EvoSuite to generate more cohesive and less coupled
tests. Moreover, it leads to shorter tests that also achieve higher
coverage (less likely early convergence).

Grano et al. [2] proposed an adaptive search algorithm,
aDynaMOSA (extension of the DynaMOSA), which optimizes
the runtime and memory consumption of the tests as secondary
criteria. According to their results, aDynaMOSA generates less
expensive tests (decreased runtime and memory consumption)
with higher coverage and mutation score than DynaMOSA.

Palomba et al. [11] and Grano et al. [2] have demonstrated
the viability of incorporating quality metrics into EvoSuite
through the usage of secondary criteria. Thus, we hypothesize
that it might be possible to use secondary criteria to optimize
test smells with minimal impact (if any) on the final code
coverage and/or fault ability of the generated tests.

A. Implementation

Let ta and tb designate two tests under evolution, and let
S = {s1, ..., sN} be the set of test smell metrics instantiated as
secondary criteria. If both ta and tb cover the same target (e.g.,
line), EvoSuite uses the secondary criteria to either select the
test that should form the next population or update the archive.
Given S, we compare the smelliness of ta and tb as follows:

compare(ta, tb, S) =
∑
sk∈S

sk(ta)− sk(tb) (1)

where sk(t) ∈ [0, 1] denotes the smelliness of the metric k for
the test t. After iterating over S, if compare(ta, tb, S) < 0, ta
is less smelly than tb, and therefore, ta is preferred.

Given EvoSuite’s limited search budget, we have to ensure
that the secondary criteria are computed as fast as possible.
Thus, each test stores the results of its computed test smell
metrics, i.e., unless a test is modified by the search procedure,
the metrics are only computed once.

B. Perils

When it comes to use our approach, there are a few perils,
which we describe in detail below.

1) Test smell metrics that cannot be directly optimized as
secondary criteria: Seven out of the 14 considered test smell
metrics cannot be computed during the search procedure and,
as such, cannot be directly optimized as secondary criteria. In
other words, we cannot optimize the six assertion-related test
smells and one smell evaluated at the test suite level (“Lack of

Cohesion of Methods”). Still, as demonstrated by Grano et al.
[3], the presence of specific test smells may imply the presence
of other test smells. Thus, test smell metrics not optimized as
secondary criteria can be indirectly optimized.

2) More or less code coverage: The optimization of test
smell metrics might negatively/positively affect the coverage
achieved by the generated tests due to “Genetic Drift” [33].
Genetic drift arises when the individuals of a population
become too similar, thus diminishing the ability to explore
the search space. Panichella et al. [32] demonstrated that
this problem arises even when using test case length as the
secondary criterion — during the search process, complex
and large tests have higher evolutionary potential, i.e., they
are more capable of change and promote diversity. As our
secondary criteria focus on test smells, we expect the size of
the tests to increase, which may promote more diversity and,
therefore, increase coverage. Still, the optimization of certain
smells might also promote less diversity.

3) Fewer generations of the underline evolution algorithm:
The computation of test smell metrics is slower than the
computation of EvoSuite’s default secondary criterion (that
just counts the number of statements per test case). This might
decrease the number of generations the evolutionary algorithm
can perform on a given search budget. With less time to evolve,
the coverage is likely to be lower. This problem is unavoidable
as the computation of test smell metrics takes longer (given its
complexity) than the procedure to compute the length of a test.
Still, we carefully developed each metric to avoid a significant
impact (if any) on the effectiveness of the generated tests.

V. EMPIRICAL STUDY

We aim to investigate the following research questions:
RQ1: To what extent EvoSuite’s default mechanisms, i.e.,

verbose test as secondary criteria and test minimization,
lead to the generation of less smelly tests?

RQ2: Does the optimization of test smell metrics lead to the
generation of fewer smelly tests?

RQ3: Does the optimization of test smell metrics affect the
code coverage and fault detection effectiveness of the
generated tests?

Firstly, we aim to shed light on EvoSuite’s default mechanisms
to improve the readability of the generated tests and likely their
smelliness (RQ1). Secondly, we aim to investigate whether
the optimization of the seven test smell metrics (Eager Test,
Indirect Testing, Likely Ineffective Object Comparison, Ob-
scure InlineSetup, Overreferencing, Rotten Green Tests, and
Verbose Test) leads to fewer smelly tests (RQ2). Finally, in
RQ3, we aim to investigate whether the coverage and fault
detection effectiveness of the generated tests is affected by
the optimization of test smell metrics.

A. Experimental Subjects

Previous studies have shown that the quality and complexity
of the code under test can influence the presence of test smells
in the tests generated by EvoSuite [3, 12]. Thus, in this study,
we use a set of 346 non-trivial Java classes extracted from

117 open-source projects [34]. This corpus has been used to
evaluate different test generation techniques [35, 32].

Given that complex classes typically imply the generation
of smellier tests, experiments on this corpus should (1) provide
insight into the presence of smells in automatically generated
tests (relevant for the experiment performed in Section III-D)
and (2) allow us to more thoroughly evaluate the capabilities
of the proposed approach to optimize test smell metrics.

B. Experimental Metrics

In each execution of EvoSuite, we collected the code
coverage and mutation score of the generated tests along with
the value of each smell metric. To investigate the diffusion
of test smells, we compute the percentage of tests affected
by a specific test smell. In detail, we apply the threshold
of each test smell metric s to each test t in a given test
suite T , and calculate the percentage of test cases affected

by s as 100× 1
|T |

∑
t∈T

{
1 if t(s) is above or equal to threshold.
0 if t(s) is below threshold.

Additionally, we also report relative improvements. Given two
sets of (coverage, mutation score, smelliness) values, one of
configuration A and another of configuration B, the relative
average improvement is defined as mean(A)−mean(B)

mean(B) .

C. Experimental Procedure

We ran EvoSuite with its default settings on the selected
corpus, that is, (1) DynaMOSA as the search algorithm [32]
and (2) the default fitness function that includes: line, branch,
exception, weak mutation, output, method, method exception,
and cbranch coverage. We only modified EvoSuite’s search
budget default value from 60 to 180 seconds, as suggested by
others [2]. Also, given that EvoSuite’s underlying algorithm
is randomized, we repeated each execution of EvoSuite 30
times, as suggested by Arcuri et al. [31]. All experiments were
executed on the redacted for anonymity.

In RQ1 we investigate the impact of EvoSuite’s default
secondary criteria (i.e., verbose test) and it’s minimization
procedure at reducing the number of smelly tests. In detail,
to answer this research question we considered four configu-
rations of EvoSuite:
• CONF-A: EvoSuite with no secondary criteria1 and mini-

mization disabled.
• CONF-B: EvoSuite with no secondary criteria and mini-

mization enabled.
• CONF-C: EvoSuite with default secondary criteria (i.e.,

verbose test) and minimization disabled.
• VANILLA: EvoSuite’s default configuration, i.e, default sec-

ondary criteria (i.e., verbose test) and minimization enabled.
where each configuration was executed 30 times on the set of
346 classes. We then performed pairwise comparisons between
all configurations.

In RQ2 we investigate to what extend the optimization of
test smell metrics if effective at generating less smelly tests.

1It is not trully possible to disable EvoSuite’s secondary criteria due to how
DynaMOSA operates, thus we developed a random-based secondary-criteria
which selects at random one solution instead.

In detail, to answer this research question we considered one
additional configuration of EvoSuite:
• SMELLESS: EvoSuite’s secondary criteria configured with

the combination of all smell metrics that could be optimized
as a secondary criteria (i.e., Eager Test, Indirect Testing,
Likely Ineffective Object Comparison, Obscure InlineSetup,
Overreferencing, Rotten Green Tests, and Verbose Test).

and executed it 30 times on the same set of 346 classes. We
then performed a pairwise comparison to assess whether the
SMELLESS configuration leads to the generation of tests that
are less smelly than the ones generated by VANILLA.

In RQ3 we perform a pairwise comparison between
VANILLA and SMELLESS and assess whether the SMELLESS
configuration generates tests that are as effective (in terms
of coverage and mutation score) as those generated by the
VANILLA configuration.

D. Experimental Analysis

We use the Vargha-Delaney (Â12) effect size to determine
whether a configuration A performs better than a configuration
B. We also use the Wilcoxon-Mann-Whitney test with a
significance level of 95% to assess whether the difference
in performance between two configurations is statistically
significant.

E. Threats to Validity

External Validity: We conducted our investigation on a
corpus of 346 Java classes from 117 open-source Java projects.
Our results may not generalize to other classes/projects (e.g.,
industrial systems), but we attempt to minimize this threat
by using the largest and most diverse set of classes available
that others have used. Also, our results and conclusions are
limited to the tests generated by one single tool: EvoSuite.
Although other tools have been proposed (e.g., Randoop [36]),
EvoSuite is the only tool that already supports other secondary
criteria and therefore allows us to, easily, implement our novel
secondary criteria.

Internal Validity: Given that EvoSuite is randomized, it is
necessary to run repetitions and do a statistical analysis of
the data. To minimize this threat, we repeat each experiment
30 times, as suggested by Arcuri and Briand [31]. Any
change performed in EvoSuite and all the scripts developed
to perform the statistical analysis were reviewed by all the
authors and formally tested—we have created unit tests for all
implemented test smell metrics.

Construct Validity: We optimize test smell metrics inspired
by the available definitions. Furthermore, when possible, we
adapt test smell metric implementations and thresholds from
tools with available source code.

VI. RESULTS

RQ1: EvoSuite’s default mechanisms

Table III reports the diffusion of test smells on the tests
generated by the CONF-A configuration vs. CONF-B, CONF-
C, and VANILLA configurations, on the 63 classes under test
for which all configurations achieved similar coverage.

On average, 37.13% of the tests generated by EvoSuite
are considered smelly tests when it is configured without
any of its mechanisms to improve the readability of the
generated tests (i.e., CONF-A). The top-3 most diffused smells
are VerboseTest (91.00%), Indirect Testing (84.98%), and
Obscure Inline Setup (84.44%). None of the tests generated
exhibits the Lack of Cohesion of Methods, Lazy Test, and
Test Redundancy smells. Regarding the results achieved by
the other configurations:
• When EvoSuite’s post-procedure to minimize the generated

tests is enabled (i.e., CONF-B), the number of smelly tests
is statistically significantly reduced to 13.05% (-35.02%).

• When EvoSuite’s default secondary criteria is enabled (i.e.,
CONF-C), the number of smelly tests is statistically signif-
icantly reduced to 20.31% (-24.73%).

• When EvoSuite is initialized with it’s default configuration
(i.e., VANILLA), the number of smelly tests is statistically
significantly reduced to 9.13% (-35.35%).

RQ1: EvoSuite’s default mechanisms generates statisti-
cally significantly less smelly tests than EvoSuite with
none of the mechanisms (-35.35%).

RQ2: Optimization of Test Smells

Table IV reports the diffusion of test smells on the tests
generated by the SMELLESS configuration. On average, 8.58%
of the test generated by the SMELLESS configuration are
smelly, if we take into account all 16 smells (directy optimized
and non-optimized), and only 6.52% are smelly if we only
considered the seven optimized smells (highlighted in gray
in the table). Worth noting that although Indirect Testing is
optimized by SMELLESS, 33.05% of all generated tests are
smelly. Similar values were reported in RQ1 for the VANILLA
(see Table III). In the remaining six optimized smells, the %
of smelly tests is less than 4%.

Table V reports the diffusion of test smells on the tests
generated by the VANILLA configuration vs. the SMELLESS
configuration, on the 165 classes under test for which both
configurations achieved similar coverage. On one hand, the
tests generated by the SMELLESS configurations are less
smelly than the tests generated by VANILLA in four out of the
seven smell metrics optimized, i.e., Indirect Testing, Likely
Ineffective Object Comparison, Overreferencing, and Rotten
Green Tests. On the other hand, tests generated by SMELLESS
are smellier than the ones generated by VANILLA in the
remaining three smells, i.e., Eager Test, Obscure Inline Setup,
and Verbose Test.

Overall, the SMELLESS configuration generated fewer
smelly tests if only the set of optimized smells is considered
(-4.14%) or if all smells are considered (-2.61%). The perfor-
mance achieved by the SMELLESS configuration is marginal,
yet relevant.

RQ2: On average, SMELLESS generates -2.61% smelly
tests than VANILLA.

Table III: Diffusion of test smells on the tests generated by the CONF-A configuration vs. CONF-B, CONF-C, and VANILLA configurations,
on the 63 classes under test for which all configurations achieved similar coverage. Column x̄ reports the ratio of smelly tests generated by each
configuration. Â12 reports the effect size of X vs. Y . Note that statistically significantly effect size values, i.e., p-value ≤ 0.05, are annotated in bold face.
Column ‘Rel. impr.’ reports the relative improvement of X over Y regarding the percentage of smelly tests generated by both configurations.

CONF-A CONF-B CONF-C VANILLA

Metric x̄ x̄ Â12 Rel. impr. x̄ Â12 Rel. impr. x̄ Â12 Rel. impr.

AssertionRoulette 0.90% 2.37% 0.44 163.47% 1.82% 0.43 102.10% 3.24% 0.44 260.29%
DuplicateAssert 1.71% 0.49% 0.60 -71.14% 0.88% 0.55 -48.90% 0.36% 0.62 -79.23%
EagerTest 51.47% 6.57% 0.88 -87.23% 20.51% 0.87 -60.15% 3.36% 0.89 -93.47%
IndirectTesting 84.98% 51.20% 0.95 -39.76% 56.08% 0.95 -34.00% 37.90% 0.98 -55.41%
LackOfCohesionOfMethods 0.00% 0.00% 0.50 0.00% 0.00% 0.50 0.00% 0.00% 0.50 0.00%
LazyTest 0.00% 0.00% 0.50 0.00% 0.00% 0.50 0.00% 0.00% 0.50 0.00%
LikelyIneffectiveObjectComparison 0.24% 0.05% 0.51 -77.18% 0.06% 0.51 -73.99% 0.03% 0.51 -85.97%
ObscureInlineSetup 84.44% 6.21% 1.00 -92.64% 32.06% 0.99 -62.03% 1.15% 1.00 -98.64%
Overreferencing 51.60% 18.99% 0.94 -63.20% 20.62% 0.95 -60.05% 5.16% 0.97 -89.99%
RedundantAssertion 1.74% 0.00% 0.69 -99.84% 1.04% 0.54 -40.07% 0.00% 0.69 -99.85%
RottenGreenTests 57.98% 7.08% 0.97 -87.79% 27.63% 0.95 -52.35% 1.51% 0.98 -97.40%
TestRedundancy 0.00% 0.00% 0.50 0.00% 0.00% 0.50 0.00% 0.00% 0.50 0.00%
UnknownTest 73.62% 51.17% 0.90 -30.49% 56.58% 0.90 -23.14% 46.42% 0.92 -36.95%
UnrelatedAssertions 9.55% 16.14% 0.30 68.93% 14.32% 0.31 49.95% 16.77% 0.31 75.57%
UnusedInputs 84.89% 42.19% 0.95 -50.31% 56.00% 0.96 -34.03% 29.22% 0.96 -65.59%
VerboseTest 91.00% 6.29% 1.00 -93.09% 37.31% 1.00 -59.00% 0.94% 1.00 -98.97%

Average 37.13% 13.05% 0.73 -35.02% 20.31% 0.71 -24.73% 9.13% 0.74 -35.35%

Table IV: Diffusion of test smells on the tests generated by the
SMELLESS configuration. The rows highlighted in gray correspond to
the smells metrics optimized by SMELLESS. Columns x̄, standard deviation
(σ), and confidence intervals (CI) using bootstrapping at 95% significance
level, report the distribution of test smell metrics.

Metric x̄ σ CI

AssertionRoulette 2.68% 0.09 [0.02, 0.04]
DuplicateAssert 0.62% 0.04 [0.00, 0.01]
EagerTest 3.98% 0.12 [0.03, 0.05]
IndirectTesting 33.05% 0.27 [0.30, 0.36]
LackOfCohesionOfMethods 0.33% 0.06 [-0.01, 0.01]
LazyTest 0.00% 0.00 [0.00, 0.00]
LikelyIneffectiveObjectComparison 0.01% 0.00 [0.00, 0.00]
ObscureInlineSetup 1.58% 0.05 [0.01, 0.02]
Overreferencing 4.69% 0.15 [0.03, 0.06]
RedundantAssertion 0.02% 0.00 [0.00, 0.00]
RottenGreenTests 0.78% 0.03 [0.00, 0.01]
TestRedundancy 0.00% 0.00 [0.00, 0.00]
UnknownTest 45.97% 0.27 [0.43, 0.49]
UnrelatedAssertions 16.31% 0.20 [0.14, 0.18]
UnusedInputs 25.76% 0.24 [0.23, 0.28]
VerboseTest 1.54% 0.06 [0.01, 0.02]

Average (optimized smells) 6.52% 0.10 [0.05, 0.07]
Average (all smells) 8.58% 0.10 [0.07, 0.10]

Table V: Diffusion of test smells on the tests generated by the
VANILLA configuration vs. the SMELLESS configuration, on the 165
classes under test for which both configurations achieved similar
coverage.
Metric VANILLA SMELLESS Â12 Rel. impr.

AssertionRoulette 2.00% 2.10% 0.49 5.26%
DuplicateAssert 0.26% 0.23% 0.50 -10.31%
EagerTest 3.58% 3.70% 0.49 3.39%
IndirectTesting 35.97% 34.37% 0.57 -4.44%
LackOfCohesionOfMethods 0.00% 0.00% 0.50 0.00%
LazyTest 0.00% 0.00% 0.50 0.00%
LikelyIneffectiveObjectComparison 0.02% 0.01% 0.50 -39.45%
ObscureInlineSetup 1.38% 1.64% 0.48 18.68%
Overreferencing 4.16% 3.63% 0.52 -12.66%
RedundantAssertion 0.03% 0.03% 0.50 -6.90%
RottenGreenTests 0.71% 0.68% 0.50 -3.97%
TestRedundancy 0.00% 0.00% 0.50 0.00%
UnknownTest 45.97% 45.95% 0.51 -0.03%
UnrelatedAssertions 17.39% 17.51% 0.49 0.68%
UnusedInputs 28.17% 27.76% 0.50 -1.43%
VerboseTest 1.55% 1.69% 0.49 9.46%

Average (optimized smells) 6.77% 6.53% 0.51 -4.14%
Average (all smells) 8.82% 8.71% 0.50 -2.61%

RQ3: Impact on the coverage and fault detection effectiveness

On average, tests generated by VANILLA and SMELLESS
achieved (1) similar coverage, 77.73% vs. 77.30% and (2)
similar mutation score, 34.98% vs. 35.93%. Regarding cover-
age and mutation score, both configurations did not perform
statistically significantly differently, Â12 = 0.55 with a p-value
0.376, and Â12 = 0.53 with a p-value 0.391, respectively.

RQ3: On average, the optimization of test smell metrics
reduces the coverage achieved by the generated tests by
-0.01% and their fault detection effectiveness by -0.03%.

VII. CONCLUSIONS

Others have shown that automatically generated tests (e.g.,
those generated by EvoSuite) are affected by test smells, i.e.,
bad programming practices. Thus, we first gathered all test
smells described in the literature, filtered out the ones that were
not applicable or that could not be automatically computed,
and identified the ones that did affect the EvoSuite’s tests.
We then implemented 16 test smell metrics into the tool and
performed an empirical study on 346 classes. We observed that
“Unknown Test”, “Indirect Testing”, and “Unused Inputs” are
the most diffused smells among all generated tests.

Then, and to be able to generate smell-free tests out-of-the-
box, we augmented EvoSuite with a new secondary criteria
that optimize test smell metrics and repeat the study. Our
results indicate that: (1) the number of smelly tests was re-
duced by 3% when compared with EvoSuite’s default, and (2)
the generated tests have similar coverage and fault detection
effectiveness to those generated by EvoSuite’s default version.

As future work, we intend to investigate the optimization
of assertion-based test smell metrics (e.g., “Unknown Test”)
as part of EvoSuite’s post-processing procedure.

Acknowledgments: This work was supported by FCT through
the LASIGE Research Unit, ref. UIDB/00408/2020 and ref.
UIDP/00408/2020.

REFERENCES

[1] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

[2] Giovanni Grano, Christoph Laaber, Annibale Panichella, and Sebas-
tiano Panichella. “Testing with fewer resources: An adaptive approach
to performance-aware test case generation”. In: IEEE Transactions on
Software Engineering (2019).

[3] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia,
and Harald C Gall. “Scented since the beginning: On the diffuseness
of test smells in automatically generated test code”. In: Journal of
Systems and Software 156 (2019), pp. 312–327.

[4] Gordon Fraser and Andrea Arcuri. “Evosuite: automatic test suite
generation for object-oriented software”. In: Proc. of the 19th ACM
SIGSOFT symposium and the 13th European conference on Founda-
tions of software engineering. 2011, pp. 416–419.

[5] Andrea Arcuri, José Campos, and Gordon Fraser. “Unit Test Gen-
eration During Software Development: EvoSuite Plugins for Maven,
IntelliJ and Jenkins”. In: 2016 IEEE International Conference on
Software Testing, Verification and Validation, ICST 2016, Chicago, IL,
USA, April 11-15, 2016. IEEE Computer Society, 2016, pp. 401–408.

[6] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. “A
large scale empirical comparison of state-of-the-art search-based test
case generators”. In: Information and Software Technology 104 (2018).

[7] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil
McMinn, and Andrea Arcuri. “Do Automatically Generated Unit
Tests Find Real Faults? An Empirical Study of Effectiveness and
Challenges”. In: 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 2015, pp. 201–211.

[8] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri,
and Jundefinednis Benefelds. “An Industrial Evaluation of Unit Test
Generation: Finding Real Faults in a Financial Application”. In:
Proc. of the 39th International Conference on Software Engineering:
Software Engineering in Practice Track. ICSE-SEIP ’17. Buenos Aires,
Argentina: IEEE Press, 2017, 263–272.

[9] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaid-
man, and Harald C. Gall. “The Impact of Test Case Summaries on Bug
Fixing Performance: An Empirical Investigation”. In: Proc. of the 38th
International Conference on Software Engineering. ICSE ’16. Austin,
Texas: Association for Computing Machinery, 2016, 547–558.

[10] Mozhan Soltani, Annibale Panichella, and Arie van Deursen. “Search-
Based Crash Reproduction and Its Impact on Debugging”. In: IEEE
Transactions on Software Engineering 46.12 (2020), pp. 1294–1317.

[11] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto,
and Andrea De Lucia. “Automatic test case generation: What if test
code quality matters?” In: Proc. of the 25th International Symposium
on Software Testing and Analysis. 2016, pp. 130–141.

[12] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto,
and Andrea De Lucia. “On the diffusion of test smells in automatically
generated test code: An empirical study”. In: IEEE/ACM 9th Interna-
tional Workshop on Search-Based Software Testing (SBST). 2016.

[13] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard
Kok. “Refactoring test code”. In: Proc. of the 2nd international
conference on extreme programming and flexible processes in software
engineering (XP2001). Citeseer. 2001, pp. 92–95.

[14] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and
Westley Weimer. “Modeling readability to improve unit tests”. In:
Proc. of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 2015, pp. 107–118.

[15] Sina Shamshiri, José Miguel Rojas, Juan Pablo Galeotti, Neil Walkin-
shaw, and Gordon Fraser. “How do automatically generated unit tests
influence software maintenance?” In: 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST).

[16] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and David Binkley. “An empirical analysis of the distribution of unit
test smells and their impact on software maintenance”. In: 2012 28th
IEEE International Conference on Software Maintenance (ICSM).

[17] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and Dave Binkley. “Are test smells really harmful? an empirical study”.
In: Empirical Software Engineering 20.4 (2015), pp. 1052–1094.

[18] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink,
and Alberto Bacchelli. “On the relation of test smells to software
code quality”. In: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2018, pp. 1–12.

[19] Davide Spadini, Martin Schvarcbacher, Ana-Maria Oprescu, Magiel
Bruntink, and Alberto Bacchelli. “Investigating severity thresholds for
test smells”. In: Proc. of the 17th International Conference on Mining
Software Repositories. 2020, pp. 311–321.

[20] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[21] Anthony Peruma, Khalid Saeed Almalki, Christian D Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. “On the
Distribution of Test Smells in Open Source Android Applications:
An Exploratory Study”. In: Proc. of the 29th Annual International
Conference on Computer Science and Software Engineering. 2019.

[22] Michaela Greiler, Arie Van Deursen, and Margaret-Anne Storey.
“Automated detection of test fixture strategies and smells”. In: 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation. IEEE. 2013, pp. 322–331.

[23] Chen Huo and James Clause. “Improving oracle quality by detecting
brittle assertions and unused inputs in tests”. In: Proc. of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 2014, pp. 621–631.

[24] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di
Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. “An
empirical investigation into the nature of test smells”. In: Proc. of
the 31st IEEE/ACM International Conference on Automated Software
Engineering. 2016, pp. 4–15.

[25] Annibale Panichella, Sebastiano Panichella, Gordon Fraser, Anand
Ashok Sawant, and Vincent J. Hellendoorn. “Revisiting Test Smells
in Automatically Generated Tests: Limitations, Pitfalls, and Opportu-
nities”. In: 2020 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). 2020, pp. 523–533.

[26] Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed
Wiem Mkaouer, Ali Ouni, and Fabio Palomba. “Tsdetect: An open
source test smells detection tool”. In: Proc. of the 28th ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. 2020.

[27] Annibale Panichella, Sebastiano Panichella, Gordon Fraser, Anand
Ashok Sawant, and Vincent J. Hellendoorn. Test Smells 20 Years Later:
Detectability, Validity, and Reliability. 2022.

[28] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi,
Mohamed Wiem Mkaouer, Ali Ouni, Christian D Newman, Abdullatif
Ghallab, and Stephanie Ludi. “Test Smell Detection Tools: A Sys-
tematic Mapping Study”. In: Evaluation and Assessment in Software
Engineering (2021), pp. 170–180.

[29] Junhyoung Kim, TaeGuen Kim, and Eul Gyu Im. “Survey of dynamic
taint analysis”. In: 2014 4th IEEE International Conference on Network
Infrastructure and Digital Content. IEEE. 2014, pp. 269–272.

[30] Anthony Peruma, Mohamed Wiem Mkaouer, Khalid Almalki, Chris-
tian D. Newman, Ali Ouni, and Fabio Palomba. Software Unit Test
Smells. https://testsmells.org. Accessed: 2022-03-25.

[31] Andrea Arcuri and Lionel Briand. “A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software engineering”. In:
Software Testing, Verification and Reliability 24.3 (2014), pp. 219–250.

[32] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.
“Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets”. In: IEEE Transactions
on Software Engineering 44.2 (2017), pp. 122–158.

[33] Fitsum M Kifetew, Annibale Panichella, Andrea De Lucia, Rocco
Oliveto, and Paolo Tonella. “Orthogonal exploration of the search
space in evolutionary test case generation”. In: Proc. of the 2013
International Symposium on Software Testing and Analysis.

[34] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.
Non-trivial Java Classes to Study the Performance of Search-based
Software Testing Approaches. https://github.com/jose/non-trivial-java-
classes-to-study-search-based-software-testing-approaches. Accessed:
2022-03-25.

[35] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo
Eler, and Andrea Arcuri. “An empirical evaluation of evolutionary
algorithms for unit test suite generation”. In: Information and Software
Technology 104 (2018), pp. 207–235.

[36] Carlos Pacheco and Michael D Ernst. “Randoop: feedback-directed
random testing for Java”. In: Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications
companion. 2007, pp. 815–816.

