
Gate Branch Coverage: A Metric forQuantum Software Testing
Daniel Fortunato

Faculty of Engineering of the
University of Porto
Porto, Portugal

INESC-ID
Lisboa, Portugal
dabf@fe.up.pt

José Campos
Faculty of Engineering of the

University of Porto
Porto, Portugal

LASIGE, Faculty of Science of the
University of Lisbon
Lisboa, Portugal
jcmc@fe.up.pt

Rui Abreu
Faculty of Engineering of the

University of Porto
Porto, Portugal

INESC-ID
Lisboa, Portugal
rui@computer.org

ABSTRACT
The inherent lack of technologies and knowledge from software
developers about the intricacies of quantum physics constitutes a
heavy hindrance in the development of correct quantum software.
Therefore, quantum computing testing techniques are currently
under heavy research. This paper proposes a new testing metric,
Gate Branch Coverage. This metric aims to provide insight into the
verification process status of quantum programs and enhance the
quantum testing process overall. Gate Branch Coverage explores
the properties of quantum controlled-type gates, measuring their
number of exercised branches during the execution of quantum
programs.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation.

KEYWORDS
Quantum Computing, Quantum Software Testing, Quantum Gate
Branch Coverage

ACM Reference Format:
Daniel Fortunato, José Campos, and Rui Abreu. 2024. Gate Branch Coverage:
A Metric for Quantum Software Testing. In Proceedings of the 1st ACM
InternationalWorkshop on Quantum Software Engineering: The Next Evolution
(QSE-NE ’24), July 16, 2024, Porto de Galinhas, Brazil. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3663531.3664753

1 INTRODUCTION
The imminent arrival of quantum computers with universal ac-
cessibility is bound to break numerous computational constraints.
However, this advancement also presents significant challenges
across various computer science domains [30], such as software test-
ing [5, 10]. Despite the extensive exploration and proposition of ap-
proaches and tools for testing in classical computing [12–14], these
methodologies remain nascent for quantum programs [8, 16, 26].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
QSE-NE ’24, July 16, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0673-8/24/07
https://doi.org/10.1145/3663531.3664753

Software testing has emerged as a vital activity in the software
maintenance life cycle, assessing and enhancing software qual-
ity [19]. Test coverage [22, 31], a key component of testing activi-
ties, measures the extent to which a program has been exercised
and provides a percentage of the lines of code being covered. When
coverage falls short of 100%, additional tests can be designed to
target missed lines of code and improve overall coverage.

Moreover, measuring test coverage serves various purposes in en-
hancing the testing process. It provides insights into the verification
process’s status, identifies uncovered areas, and aids in activities
such as regression testing [14], test case prioritization [24], and test
suite augmentation [20]. Test coverage measurement and analysis
for classical software has been the subject of heavy research [21]
and has been applied to quantum software as is [8, 26, 28].

In this paper, we propose a novel coverage metric tailored for
quantum programs named Gate Branch Coverage (GBC). Leverag-
ing the idea of gate branches [15] for quantum controlled-type gates,
we formally define how to calculate GBC for any given quantum
program. Also, to obtain its GBC, we illustrate how to instrument a
QASM [4] program, the quantum equivalent to classical Assembly
utilized by most quantum frameworks to execute quantum circuits.

We argue and demonstrate how GBC can provide additional
insight into the verification process status of quantum programs
and enhance the quantum testing process overall. Moreover, we
show how we can improve GBC for a given quantum program.

2 BACKGROUND
Quantum frameworks (e.g., IBM’s Qiskit [1] and Google’s Cirq [6])
provide libraries for the creation and manipulation of quantum cir-
cuits. These frameworks provide us with the means to execute quan-
tum circuits using a simulator or a quantum computer. Currently,
given the difficult access and highly volatile nature of quantum
computers, it is preferable to use simulators as the default backend
for quantum circuit execution.

QASM [4], the quantum low-level language equivalent to As-
sembly for classical programs, is the language used by quantum
computers or simulators to execute a quantum circuit and is uni-
versally used in many frameworks (e.g., IBM’s Qiskit and Google’s
Cirq). Therefore, the metric we propose is tailored to instrument
QASM programs and can be used in all QASM-based frameworks.

There are two ways to build a quantum circuit in these frame-
works: (1) building the circuit in a high-level language (i.e., usually
Python) and use the frameworks’ transpiler that transforms the
high-level code to QASM [4] or (2) building the circuit in a QASM
file and import this file as a circuit to a high-level language program.

https://orcid.org/0000-0003-2596-6859
https://orcid.org/0000-0001-7565-8382
https://orcid.org/0000-0003-3734-3157
https://doi.org/10.1145/3663531.3664753
https://doi.org/10.1145/3663531.3664753

QSE-NE ’24, July 16, 2024, Porto de Galinhas, Brazil Fortunato, Campos, and Abreu

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[2];
4 creg c[2];
5 cx q[0], q[1];
6 measure q[0] -> c[0];
7 measure q[1] -> c[1];

Figure 1: Motivational example quantum circuit.

In quantum computing, circuit operations are defined as gates.
Many types of gates exist that perform distinct operations. For this
work, we look into controlled-type gates. Controlled-type gates are
multi-qubit gates that perform some operation (depending on the
gate used) on one target qubit depending on the value of the control
qubit(s). There are many types of gates in quantum computing that
can be controlled [2]:

• Pauli Gates (i.e., Controlled-Not (cx), Controlled-Y (cy), Controlled-
Z (cz), Controlled-H (ch))

• Rotation Gates (i.e., Controlled-r-z (crz), Controlled-r-x (crx),
Controlled-r-y (cry))

• Phase Gates (i.e., Controlled-p (cp))
• U gates (i.e., Controlled-u (cu))

As we already stated, these types of gates can either perform
some operation or not. This property effectively means that a
controlled-type gate can follow two different branches: one where
some gate operation is performed onto the target qubit, and another
where nothing happens.

3 GATE BRANCH COVERAGE
3.1 Motivational Example
We present a motivational example in Figure 1 to better visualize
and understand how controlled-type gates function. Lines 3 and 4
define a quantum and classical register with two qubits and bits,
respectively. Line 5 applies a Controlled-Not gate with q[0] as the
control qubit and q[1] as the target. Finally, we measure both qubits
in lines 6 and 7. This quantum circuit can be translated into the flow
graph presented in Figure 2. Recall that QASM circuits are executed
sequentially, meaning that every line in the circuit will always be
executed, which, from a classical point of view, signifies that the
circuit in Figure 1 is always 100% covered. However, in Figure 2, the
Controlled-Not box depicted in red divides the flow of the program
through two branches. The value of the control qubit is calculated
in the yellow box. If the control qubit equals 1, the gate follows the
green branch and flips the target qubit’s value by applying the Not
gate (x). Otherwise, it follows the blue branch and proceeds to the
next step of the circuit. Note that all controlled-type gates behave
this way; only two aspects differ from gate to gate: (1) the operation
performed in the green box and (2) the number of control qubits of
the gate. For each control qubit, the equivalent number of yellow
boxes will be present (with one being the minimum, as shown in
Figure 2), and only if all of them equal 1 is the operation in green
performed.

3.2 Formal Definition
We propose Gate Branch Coverage (GBC), a new metric tailored
for quantum programs to measure the coverage of controlled-type
gates branches. Formally, we define GBC as follows,

qreg q[2]

creg c[2]

True False

q[0] == 1

x q[1]

measure q[0] -> c[0]

measure q[1] -> c[1]

cx q[0], q[1]

Figure 2: Flow graph of the motivational example in Figure 1.

𝐺𝐵𝐶 (𝐺) =
∑
𝑔∈𝐺 𝑒 (𝑔)∑

𝑔∈𝐺 1 + 𝑐 (𝑔) ∗ 100% (1)

where 𝐺 is the set of controlled-type gates of the program, 𝑒 (𝑔) is
the number of exercised branches of gate 𝑔, and 𝑐 (𝑔) is the number
of control qubits of gate 𝑔. The computation of 𝑒 (𝑔) is described in
Section 3.3.

3.3 Implementation
One of the main properties of quantum computing is superposition
(i.e., a qubit can simultaneously be in both states 0 and 1 and its
result collapses to either one upon measurement). This property
completely nullifies the ability of a developer to inspect a program
during runtime without ruining its result. Therefore, to obtain 𝑒 (𝑔)
to calculate the GBC of a given quantum circuit, it is required to add
two lines of code and alter another two per controlled-type gate to
the quantum circuit. This instrumentation presented in Figure 3 is
detailed below:

(1) One extra qubit to the quantum register (line 3), used to store
the value of the control qubit. Note that qubits are initialized
in state 0.

(2) One bit to the classical register (line 4), used to store the
measurement of the control qubit (i.e., the branch which the
Controlled-Not gate passed through).

Gate Branch Coverage: A Metric for Quantum Software Testing QSE-NE ’24, July 16, 2024, Porto de Galinhas, Brazil

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[3];
4 creg c[3];
5 cx q[0], q[1];
6 cx q[0], q[2];
7 measure q[2] -> c[2];
8 measure q[0] -> c[0];
9 measure q[1] -> c[1];

Figure 3: Motivational example from Figure 1 instrumented
with the implementation described in Section 3.3.

(3) One Controlled-Not gate (line 6), used to flip to the opposite
state our additional qubit and, therefore, get the branch un-
dertaken by the control qubit. This means that if the measure-
ment of our additional qubit is 0 (i.e., it remained unchanged)
then, from Figure 2, we can say that the blue branch was
taken; otherwise, the green branch was taken.

(4) One measurement operation (line 7), used to measure our
additional qubit.

After instrumenting ourmotivational examplewith these changes,
we executed both circuits to calculate the circuit’s GBC. Note that
to execute all our circuit examples, we used the qasm-simulator
backend in the publicly accessible IBM Quantum Platform web
interface1. Executing them 1000 times each we obtain 1000 mea-
surements of states 00 and 000, respectively. These results are to
be expected, given that we kept the initial values of both qubits
(i.e., 00), the controlled-not gate in line 5 (Figures 1 and 3) took
the blue branch (Figure 2). The first qubit in 000 informs us that
the execution went through the blue branch. Since this is the only
measurement output our program recorded, this means the blue
branch was executed 100% of the times. Considering that only one
controlled-type gate with one control qubit (i.e., 𝑐 (𝑔) = 1) was
present in our motivational example, and that only one branch was
exercised (i.e., 𝑒 (𝑔) = 1), using Equation (1) we calculate the GBC
of Figure 1 as 1

1+1 ∗ 100 = 50%.

3.4 Improving GBC Score
Classically, to improve test coverage we would augment the pro-
gram’s test suite. In quantum computing this can also be done. In
this case, we can initialize qubits with a different state until the
GBC is improved; this would be the equivalent of performing fuzz
testing [17] in the classical world but applied to quantum programs.
Note that fuzzing on quantum programs has already been done
and proved effective by Wang et al. [25]. Furthermore, QuraTest,
a quantum input generation tool, was recently published by Ye
et al. [29], which we use to generate the inputs in lines 5 and 6 of
Figure 4.

After adding these inputs to the original example (Figure 1) and
its instrumented version in Figure 3 (the result is shown in Figure 4),
executing both circuits yielded the results presented in Figure 5.
Figures 5a and 5b show the results for each circuit, respectively. This
time we obtained four distinct measurement outputs: 00, 01, 10, and
11. The instrumented circuit informs us that the blue branch was
executed 908 times (464+307+137) and the green branch 92 times.
Note that the executions of Figures 5a and 5b yielded different yet
1https://quantum.ibm.com/composer/.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[3];
4 creg c[3];
5 u(-0.9709814728188881 ,7.895822393995231 ,0) q[0];
6 u(1.4095460539185645 ,0 , -3.1088748636690364) q[1];
7 cx q[0], q[1];
8 cx q[0], q[2];
9 measure q[2] -> c[2];
10 measure q[0] -> c[0];
11 measure q[1] -> c[1];

Figure 4: Motivational example from Figure 3 with inputs
generated by QuraTest [29].

00 01 10 11

0

100

200

300

400

Co
un

t

453

103

305

139

(a) Default

00
0

00
1

01
0

11
1

0

150

300

450

Co
un

t

464

137

307

92

(b) Instrumented

Figure 5: Circuit output of the motivational example in Fig-
ure 1 with the inputs used in Figure 4, and circuit output of
the motivational example in Figure 4.

similar results. This is to be expected given the probabilistic nature
of quantum programs. Given that both branches were taken during
execution, the GBC score of Figure 4 is 100%.

4 RELATEDWORK
Quantum software testing is an emerging field still in its infancy [10,
30]. de la Barrera et al. [5], Zhao [30] present current debugging
and testing of quantum software research progress in their works.
A common practice has been applying well-established classical
testing approaches to quantum computing. Wang et al. [25] devel-
oped QuanFuzz, a fuzz testing approach to generate test cases for
quantum programs, QuCAT [28], a combinatorial testing approach
that utilizes various inputs to generate test suites with the intent to
maximize the number of failing tests. Both these techniques could
potentially be used to increase GBC score. Additionally, Wang et al.
[27] present QuSBT, a test generation tool for quantum programs
that uses an evolutionary algorithm to search for the maximum set
of tests that reveal faults.

Kumar [15] applied cyclomatic complexity [18], a quantitative
metric for finding the number of branches in a control flow graph,
to quantum circuits. The author formally defines how to calculate
the number of branches of a given control flow graph of a quantum
circuit. While cyclomatic complexity measures the complexity of
the code structure itself, GBC measures how well the quantum
circuit has been tested. They are related in the sense that reducing
cyclomatic complexity can often lead to code that is easier to test
and understand, potentially increasing GBC, but they are not di-
rectly interchangeable metrics. It is generally beneficial to strive
for both low cyclomatic complexity and high GBC to improve code
quality and reliability.

https://quantum.ibm.com/composer/

QSE-NE ’24, July 16, 2024, Porto de Galinhas, Brazil Fortunato, Campos, and Abreu

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed Gate Branch Coverage (GBC), a new
metric tailored for quantum circuits. We formally define how to
calculate the GBC of a given quantum circuit and illustrate with a
simple example how to instrument a quantum circuit to compute
its GBC. We show how to improve the GBC of a given program
and how it can help provide additional information for developers
during the verification process of a quantum program and enhance
their quantum testing process.

For future work, we intend to perform a large-scale study on a
larger sample of quantum programs. Quantum benchmarks such as
Veri-Q [3] provide an extensive number of implementations of some
of the most famous quantum algorithms, such as Shor’s [23] and
Grover’s [11]. Furthermore, we also intend to investigate whether
there is any correlation between GBC and, for instance, mutation
score [7–9].

ACKNOWLEDGMENTS
This work was supported by FCT through grant ref. 2023.02439.BD,
project DOI:10.54499/UIDB/50021/2020, and the LASIGE Research
Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020.

REFERENCES
[1] Gadi Aleksandrowicz et al. 2019. Qiskit: An Open-source Framework for Quantum

Computing. https://doi.org/10.5281/zenodo.2562111
[2] Jean-Luc Brylinski and Ranee Brylinski. 2002. Universal quantum gates. In

Mathematics of quantum computation. Chapman and Hall/CRC, 117–134.
[3] Kean Chen, Wang Fang, Ji Guan, Xin Hong, Mingyu Huang, Junyi Liu, Qisheng

Wang, and Mingsheng Ying. 2022. VeriQBench: A Benchmark for Multiple Types
of Quantum Circuits. arXiv:2206.10880 [quant-ph] https://arxiv.org/abs/2206.
10880

[4] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017.
Open Quantum Assembly Language. arXiv:1707.03429 [quant-ph] https://arxiv.
org/abs/1707.03429

[5] Antonio García de la Barrera, Ignacio García-Rodríguez de Guzmán, Macario
Polo, and José A. Cruz-Lemus. 2022. Quantum Software Testing: Current Trends
and Emerging Proposals. Springer International Publishing, Cham, 167–191.
https://doi.org/10.1007/978-3-031-05324-5_9

[6] Cirq Developers. 2023. Cirq. https://doi.org/10.5281/zenodo.10247207
[7] Daniel Fortunato, José Campos, and Rui Abreu. 2022. Mutation Testing of Quan-

tum Programs: A Case Study With Qiskit. IEEE Transactions on Quantum Engi-
neering 3 (2022), 1–17. https://doi.org/10.1109/TQE.2022.3195061

[8] Daniel Fortunato, José Campos, and Rui Abreu. 2022. Mutation testing of quan-
tum programs written in QISKit. In Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings (Pittsburgh, Pennsyl-
vania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA,
358–359. https://doi.org/10.1145/3510454.3528649

[9] Daniel Fortunato, José Campos, and Rui Abreu. 2022. QMutPy: a mutation testing
tool for Quantum algorithms and applications in Qiskit. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY,
USA, 797–800. https://doi.org/10.1145/3533767.3543296

[10] Antonio García de la Barrera, Ignacio García-Rodríguez de Guzmán, Macario
Polo, and Mario Piattini. 2023. Quantum software testing: State of the art. Journal
of Software: Evolution and Process 35, 4 (2023), e2419. https://doi.org/10.1002/smr.
2419 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2419

[11] Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for Computing
Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866

[12] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achieving scalable
model-based testing through test case diversity. ACM Trans. Softw. Eng. Methodol.
22, 1, Article 6 (mar 2013), 42 pages. https://doi.org/10.1145/2430536.2430540

[13] N. Juristo, A.M. Moreno, and W. Strigel. 2006. Guest Editors’ Introduction:
Software Testing Practices in Industry. IEEE Software 23, 4 (2006), 19–21. https:
//doi.org/10.1109/MS.2006.104

[14] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. 2017.
Effective Regression Test Case Selection: A Systematic Literature Review. ACM
Comput. Surv. 50, 2, Article 29 (may 2017), 32 pages. https://doi.org/10.1145/
3057269

[15] Ajay Kumar. 2023. Formalization of structural test cases coverage criteria for
quantum software testing. International Journal of Theoretical Physics 62, 3 (2023),
49.

[16] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie.
2020. Projection-based runtime assertions for testing and debugging Quantum
programs. Proc. ACM Program. Lang. 4, OOPSLA, Article 150 (nov 2020), 29 pages.
https://doi.org/10.1145/3428218

[17] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the Art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.
https://doi.org/10.1109/TR.2018.2834476

[18] T.J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software Engi-
neering SE-2, 4 (1976), 308–320. https://doi.org/10.1109/TSE.1976.233837

[19] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[20] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessan-
dro Orso, and Mary Jean Harrold. 2008. Test-Suite Augmentation for Evolving
Software. In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. 218–227. https://doi.org/10.1109/ASE.2008.32

[21] Muhammad Shahid and Suhaimi Ibrahim. 2011. An evaluation of test coverage
tools in software testing. In 2011 International Conference on Telecommunication
Technology and Applications Proc. of CSIT, Vol. 5. sn.

[22] Muhammad Shahid, Suhaimi Ibrahim, and Mohd Naz’ri Mahrin. 2011. A study
on test coverage in software testing. Advanced Informatics School (AIS), Uni-
versiti Teknologi Malaysia, International Campus, Jalan Semarak, Kuala Lumpur,
Malaysia 1 (2011).

[23] Peter W. Shor. 1999. Polynomial-Time Algorithms for Prime Factor-
ization and Discrete Logarithms on a Quantum Computer. SIAM
Rev. 41, 2 (1999), 303–332. https://doi.org/10.1137/S0036144598347011
arXiv:https://doi.org/10.1137/S0036144598347011

[24] Praveen Ranjan Srivastava. 2008. Test case prioritization. Journal of Theoretical
& Applied Information Technology 4, 3 (2008).

[25] Jiyuan Wang, Ming Gao, Yu Jiang, Jianguang Lou, Yue Gao, Dongmei Zhang,
and Jiaguang Sun. 2018. QuanFuzz: Fuzz Testing of Quantum Program.
arXiv:1810.10310 [cs.SE] https://arxiv.org/abs/1810.10310

[26] Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2021. Quito: a Coverage-
Guided Test Generator for Quantum Programs. In 2021 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 1237–1241.
https://doi.org/10.1109/ASE51524.2021.9678798

[27] Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2022. QuSBT: search-based
testing of quantum programs. In Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings (Pittsburgh, Pennsyl-
vania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA,
173–177. https://doi.org/10.1145/3510454.3516839

[28] Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2023. QuCAT: A Com-
binatorial Testing Tool for Quantum Software. In 2023 38th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 2066–2069.
https://doi.org/10.1109/ASE56229.2023.00062

[29] Jiaming Ye, Shangzhou Xia, Fuyuan Zhang, Paolo Arcaini, Lei Ma, Jianjun Zhao,
and Fuyuki Ishikawa. 2023. QuraTest: Integrating Quantum Specific Features
in Quantum Program Testing. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 1149–1161. https://doi.org/10.1109/
ASE56229.2023.00196

[30] Jianjun Zhao. 2021. Quantum Software Engineering: Landscapes and Horizons.
arXiv:2007.07047 [cs.SE] https://arxiv.org/abs/2007.07047

[31] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software unit test
coverage and adequacy. ACM Comput. Surv. 29, 4 (dec 1997), 366–427. https:
//doi.org/10.1145/267580.267590

Received 2024-04-25; accepted 2024-05-06

https://doi.org/10.5281/zenodo.2562111
https://arxiv.org/abs/2206.10880
https://arxiv.org/abs/2206.10880
https://arxiv.org/abs/2206.10880
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.5281/zenodo.10247207
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2419
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/2430536.2430540
https://doi.org/10.1109/MS.2006.104
https://doi.org/10.1109/MS.2006.104
https://doi.org/10.1145/3057269
https://doi.org/10.1145/3057269
https://doi.org/10.1145/3428218
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1137/S0036144598347011
https://arxiv.org/abs/https://doi.org/10.1137/S0036144598347011
https://arxiv.org/abs/1810.10310
https://arxiv.org/abs/1810.10310
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1145/3510454.3516839
https://doi.org/10.1109/ASE56229.2023.00062
https://doi.org/10.1109/ASE56229.2023.00196
https://doi.org/10.1109/ASE56229.2023.00196
https://arxiv.org/abs/2007.07047
https://arxiv.org/abs/2007.07047
https://doi.org/10.1145/267580.267590
https://doi.org/10.1145/267580.267590

	Abstract
	1 Introduction
	2 Background
	3 Gate Branch Coverage
	3.1 Motivational Example
	3.2 Formal Definition
	3.3 Implementation
	3.4 Improving GBC Score

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

