Verification and Validation of Quantum)
Software i

Daniel Fortunato, Luis Jiménez-Navajas, José Campos, and Rui Abreu

Abstract Quantum software—Ilike classic software—needs to be designed, spec-
ified, developed, and, most importantly, tested by developers. Writing tests is a
complex, error-prone, and time-consuming task. Due to the particular properties
of quantum physics (e.g., superposition), quantum software is inherently more
complex to develop and effectively test than classical software. Nevertheless, some
preliminary works have tried to bring commonly used classical testing practices
for quantum computing to assess and improve the quality of quantum programs. In
this chapter, we first gather 16 quantum software testing techniques that have been
proposed for the IBM quantum framework, Qiskit. Then, whenever possible, we
illustrate the usage of each technique (through the proposed tool that implements
it, if available) on a given running example. We showcase that although several
works have been proposed to ease the burn of testing quantum software, we are
still in the early stages of testing in the quantum world. Researchers should focus
on delivering artifacts that are usable without much hindrance to the rest of the

D. Fortunato (P<)
Faculty of Engineering of University of Porto, Porto, Portugal

LIACC—Artificial Intelligence and Computer Science Laboratory (member of LASI LA), Porto,
Portugal

e-mail: dabf@fe.up.pt

L. Jiménez-Navajas

aQuantum, Faculty of Social Sciences & IT, University of Castilla-La Mancha, Talavera de la
Reina, Toledo, Spain

e-mail: Luis.JimenezNavajas @uclm.es

J. Campos
Faculty of Engineering of University of Porto, Porto, Portugal

LASIGE, Faculdade de Ciéncias, Universidade de Lisboa, Lisboa, Portugal
e-mail: jemc@fe.up.pt

R. Abreu

Faculty of Engineering of University of Porto, Porto, Portugal

INESC-ID, Lisboa, Portugal
e-mail: rui@computer.org

© The Author(s) 2024 93
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 5&domain=pdf

 885 40794 a 885 40794
a

mailto:dabf@fe.up.pt
mailto:dabf@fe.up.pt
mailto:dabf@fe.up.pt

 885 45775 a 885 45775
a

mailto:Luis.JimenezNavajas@uclm.es
mailto:Luis.JimenezNavajas@uclm.es
mailto:Luis.JimenezNavajas@uclm.es

 885 51310
a 885 51310 a

mailto:jcmc@fe.up.pt
mailto:jcmc@fe.up.pt
mailto:jcmc@fe.up.pt

 885 56845 a 885 56845
a

mailto:rui@computer.org
mailto:rui@computer.org
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5

94 D. Fortunato et al.

community, and the development of quantum benchmarks should be a priority to
facilitate reproducibility, replicability, and comparison between different testing
techniques.

Keywords Quantum software - Verification and validation - Software testing

1 Introduction

In the last few years, quantum computing has evolved enormously in many aspects.
It was not until 2019 that IBM unveiled its first commercial quantum computer with
20 qubits [1] and, in 2022, the same company developed a quantum computer with
433 qubits [2]. In addition, these hardware breakthroughs have been accompanied
by software, where the largest companies in the world have created quantum
programming languages [3] (such as Microsoft with Q# or IBM with OpenQASM),
libraries to develop quantum software (such as Google with Cirq or IBM with
Qiskit), or services to run and design quantum software (such as Amazon with
Braket).

The entire ecosystem that quantum computing vendors have built allows users
and organizations to develop and run quantum software in a straightforward
manner [4]. This implies that, at some point, organizations that can take advantage
of the potential benefits of this new technology will design and develop quantum
components that can provide them with speedup. In other words, quantum software
will be developed in a large-scale industrial context in the same way that classic
software is nowadays produced [5].

Quantum software, as classical software, will, at some point in its development
life cycle, need to be tested [6]. Apart from the evaluation of the functionality of
the quantum software, concerns related to security vulnerabilities can also appear in
this new programming domain [7].

However, we face three main challenges when testing quantum software [8].
First, unlike classical computing, with quantum computing, we cannot read the state
of qubits at any time. If a qubit in superposition is measured, its state collapses.
Second, the inherent nature of this new paradigm is non-deterministic. This implies
that we will likely get a different result every time we run the quantum software.
Third, the fact that current quantum computers are sensitive to noise and are fault-
tolerant implies that when we run a quantum program and the result is different than
expected, we cannot be sure whether the failure is caused by noise or by natural
randomness.

Over the past few years, several approaches have been developed to alleviate the
challenges associated with quantum testing. Regarding the verification of quantum
programs, one can find works based on Hoare logic [9, 10, 11] or static analysis of
source code [12, 13, 14, 15]. Concerning the validation of quantum programs, there
are works related to the generation of data inputs aiming at detecting faults [16, 17,

Verification and Validation of Quantum Software 95

18], oracle generation [19, 20], and a combination of both techniques [21, 22, 23,
24, 25, 26].

This chapter details current testing approaches used to help developers verify
and validate their quantum software. More specifically, we focus our analysis
on testing approaches designed to test quantum circuits since most quantum
software is written through the application of quantum gates to quantum circuits.
Consequently, we only present techniques and tools designed for circuit-based
techniques. For instance, testing techniques for quantum annealing [27] are not
included. Additionally, given that Qiskit [28], the circuit-based IBM framework, is
one of the most popular quantum software development frameworks, we focus our
analysis on works that use it.

This chapter is organized as follows. We present some concepts and definitions
in Sect. 2. In Sect. 3, we discuss techniques that have been proposed for quantum
software testing. Section 4 discusses current quantum fault benchmarks. We discuss
some limitations of quantum software testing in Sect. 5 and conclude the chapter in
Sect. 6.

2 Concepts and Definitions

2.1 Quantum Computing

Given that quantum computing is an emerging field, the definition of certain key
concepts is warranted.

Qubit Unlike classical computers that use bits, quantum computers use the quan-
tum bit (qubit for short) as their fundamental unit of memory. A qubit, just like the
bit, has a state that can be |0) or | 1), but contrary to the bit, those are just two possible
states. The Dyrac notation, ‘|)’, is used to represent states in quantum mechanics.
The difference between classic states and quantum states is that quantum states can
be in superposition [29], meaning that it is possible to form linear combinations of
states. A qubit can be expressed as |¥) = «|0) + S]1).

Unlike the classical bit, in which we can easily determine whether it is in state
0 or 1, we cannot determine a qubit’s state [29]. We can only measure a qubit, and
when we do, we obtain either O with |a|? probability or 1 with |8|? probability.
Another important qubit property is entanglement. Entanglement is, at the moment,
still an ill-defined concept currently being subjected to heavy research, but its main
idea is that the state of a qubit affects the state of other qubits in the system, meaning
that there is a correlation between them.

Quantum Circuits A classical computer is built from electrical circuits containing
wires and logic gates. Similarly, some quantum computers are built from quantum
circuits (there are other types of quantum computers, although these are out of the
scope of this chapter) containing wires and quantum gates that carry around and

96 D. Fortunato et al.

operate on qubits. One of the quantum gates used throughout this chapter is the Not
gate. Classically, this gate brings a bit from O to 1 and from 1 to 0. The quantum Not
gate [29] interchanges the weights on « and . It is represented by the following X

matrix:
01
X = 1
[1 0} M)

If we have the following quantum state «|0) 4+ B|1), its vector notation would be

o
s 2
M @

and applying the Not gate to this state would yield the following output:

()12}

This is how gates are applied to qubits and how we can alter their state.

Quantum Programs A program is considered to be guantum when it initializes
qubits and performs some operations that alter their state through the application of
quantum gates. Quantum programs can be hybrid (i.e., they combine classical and
quantum operations), the more common option, or pure (i.e., they only use quantum
operations), the less common option.

2.2 Software Testing

As described by the IEEE Std. 610.12-1990, “Software testing is the process
of operating a system or component under specified conditions, observing and
recording the results, and making an evaluation.” In other words, in software testing,
a test case sets up a testing scenario that exercises software behavior and assesses
whether the observed behavior matches the expected one; if not, a fault has been
found. These faults, also known as bugs or defects, can cause failures in software
systems.

Although a simple idea, it is far from easy—recent studies estimate that 20%
to 80% of the total cost and time to develop a classical software system is fully
dedicated to software testing and debugging [30], mostly because

(i) Assessing whether a piece of software performs correctly could be extremely
complex due to the extremely large or even infinite number of possible tests
that exist for any non-trivial system.

(i) Software testing is traditionally a manual and tedious process that is subject to
incompleteness and further errors.

Verification and Validation of Quantum Software 97

The usage of some testing concepts throughout this chapter justifies their
clarification.

Mutation Testing This testing technique refers to the change/mutation of statements
in the source code (Fig. 1 is an example of a mutant) to check if tests can find errors
in the source code. Mutation testing aims to ensure the quality of the source code’s
test suite. This is measured through the source code’s mutation score, the number of
killed mutants divided by the number of total mutants generated.

Coverage This is a testing metric that measures how thoroughly tests cover a given
program. A test suite’s coverage is the percentage of lines, branches, or paths of the
code covered by at least one test case.

3 Automatic Verification and Validation of Quantum
Software

Verifying and validating code is laborious, error-prone, and time-consuming in the
classical realm. Given the added complexity of quantum programs, this endeavor
is even more challenging in the quantum world [31, 5, 32]. Additionally, not all
technologies are fully tailored to this new paradigm, and neither are the developers
who would have to understand quantum physics/mechanics.

Nevertheless, some preliminary works are bringing commonly used classical
testing practices for quantum computing [5] to assess and improve the quality of
quantum programs. Regarding verification, there are works on the application of
Hoare Logic [9, 10] and static code analysis [12, 14, 15, 11, 33]. And regarding
validation, there are also techniques designed to automatically generate test inputs
and/or full test cases based on mutation [34, 35, 36, 37, 18], metamorphic [19, 20],
fuzzing [16], differential [17], projection [38], search-based [24, 23, 25, 26], and
combinatorial testing [22, 21].

Table 1 shows the details of the collected research papers. These papers present
tools that are ‘Available’ and can be used and experimented with, tools that are
‘Unavailable’ and do not provide any artifact with their paper, and tools that we
considered ‘Unusable’ since they are not easily available or capable of testing any
other program than the ones used in the empirical study of the tool. For instance,
although LintQ’s [33] source code is available online, it is stored in an anonymous
repository that does not allow its download or cloning. QDiff [17] and Abreu
et al. [19]’s tool only allows one to reproduce the experiments described in the
paper, i.e., in order to run the proposed tool on any program, its source code would
have to be adapted (which is out of the scope of this chapter). We discuss the
“Available” tools in detail in the following subsections. It is also worth pointing out
that there are several other works on verification and validation of quantum software
applied on different quantum frameworks, test levels, or issues related to quantum
software testing that are not included in this study as they target different quantum

98 D. Fortunato et al.

Table 1 Details of the collected research papers

ID | Topic Paper title Tool Year | Reference
Verification
1 | Hoare Logic Floyd—Hoare Logic for Quantum | Unavailable | 2012| [9]
Programs
2 | Hoare Logic An Applied Quantum Hoare Unavailable |2019| [10]
Logic
3 | Static analysis QChecker: Detecting Bugs in Available 2023 [12]
Quantum Programs via Static
Analysis

4 | Static/Dynamic analysis | The Smelly Eight: An Empirical | Available 2023 [51]
Study on the Prevalence of Code
Smells in Quantum Computing

5 | Static analysis Quantum abstract interpretation | Unavailable | 2021 [13]

Static analysis Static Entanglement Analysis of | Unavailable | 2023 | [14]
Quantum Programs

7 | Static analysis A Uniform Representation of Unavailable | 2023 | [15]

Classical and Quantum Source
Code for Static Code Analysis

8 | Static analysis LintQ: A Static Analysis Unusable 2023 [33]
Framework for Qiskit Quantum
Programs
Validation
9 | Data generation QuanFuzz: Fuzz Testing of Unavailable | 2018 [16]
Quantum Program
10 | Data generation QDiff: Differential Testing of Unusable 2021 [17]
Quantum Software Stacks
11 | Data generation Mutation-Based Test Generation | Unavailable | 2022 | [18]

for Quantum Programs with
Multi-Objective Search

12 | Oracle generation Metamorphic testing of oracle Unusable 2022 [19]
quantum programs

13 | Oracle generation MorphQ: Metamorphic Testing | Available 2022 [20]
of Quantum Computing
Platforms

14 | Data/Oracle generation | Application of Combinatorial Available 2021 [21,22]
Testing To Quantum Programs

15 | Data/Oracle generation | Generating Failing Test Suites Available 2021 [23,24]
for Quantum Programs With
Search

16 | Data/Oracle generation | Assessing the Effectiveness of | Available 2021 [25,26]
Input and Output Coverage
Criteria for Testing Quantum
Programs

 22821 8963
a 22821 8963 a

https://github.com/Z-928/QChecker

 22821
12505 a 22821 12505 a

https://github.com/jose/qsmell

 22821 23354
a 22821 23354 a

https://anonymous.4open.science/r/LintQ/README.md

 22821 30660 a 22821 30660 a

https://github.com/UCLA-SEAL/QDiff

 22821 36637 a 22821 36637 a

https://github.com/LuisLlana/metamorphic_testing/

 22821 39072 a 22821 39072 a

https://github.com/sola-st/MorphQ-Quantum-Qiskit-Testing-ICSE-23/

 22821 42615 a 22821 42615 a

https://github.com/Simula-COMPLEX/qucat-paper

 22821 45050
a 22821 45050 a

https://github.com/Simula-COMPLEX/qusbt-tool

 22821 48592
a 22821 48592 a

https://github.com/Simula-COMPLEX/quito

Verification and Validation of Quantum Software 99

frameworks or used quantum physics knowledge that cannot be applied directly to
software. The following paragraph briefly mentions them.

Mugeet et al. [39] propose a testing technique aware of the inherent problem
of quantum computing related to noise. Zhang et al. [40] examine whether flaky
tests (i.e., intermittently failing tests) affect quantum software development. They
identify flaky tests in 12 out of 14 quantum software projects and note that quantum
programmers need to start using flaky test countermeasures developed by software
engineers. Long and Zhao [41, 42] address specific testing requirements of multi-
subroutine quantum programs in their work. They present a systematic testing
process tailored to the intricacies of quantum programming. They cover unit and
integration testing, focusing on IO analysis, quantum relation checking, structural
testing, behavior testing, and test case generation for Q#. Honarvar et al. [11]
present a property-based framework applied for Q# derived from Hoare logic [43].
They review various aspects of design concerning property specification, test case
generation, and test result analysis. Xia and Zhao [14] present a static analysis tool
that constructs an interprocedural control flow graph for Q# programs and gathers
the entanglement information within quantum programs. A similar tool is proposed
by Yamaguchi et al. [44] for Qiskit; we detail it in Sect. 3.2. de la Barrera et al.
[45] propose QuMU, a quantum mutation tool based on the Quirk! quantum circuit
simulator. QuMU exports quantum circuits as JSON objects from Quirk and creates
a circuit representation that shows the quantum operations of a quantum program.
Mutation operators defined in QuMU can mutate the circuit representation of a
quantum program, and their tool can then execute these mutants in Quirk.

3.1 Running Example

Let us introduce a running example for the remainder of this section. The quantum
program in Fig. 1 implements a Bell state [46], the simplest example of quantum
entanglement. Bell states are four entangled two-qubit states. We obtain a Bell state
by applying the Hadamard gate to qubit 1 (line 13) and the Control-Not with qubit
1 as the control qubit and qubit 2 as the target qubit (line 16). This means that when
the quantum program is executed, the qubits are dependent on each other, and one
will obtain either 00 or 11 as a result, with a 50% chance of getting either one. Note
that Qiskit initializes qubits as zero.

The quantum program listed in Fig. 1 follows the specification reported in
Table 2. Note that although inputs 01 and 11 do not produce a Bell state, we still
list them in the table to have the full program specification.

Suppose we introduce a fault in the program’s source code to create a faulty
version of the program. For instance, swap the Hadamard gate (h) in line 13 for
the Not gate (x) in line 13. Note that this is a change (i.e., mutation) that a tool

!https://algassert.com/quirk, visited October 2023.

https://algassert.com/quirk
https://algassert.com/quirk
https://algassert.com/quirk
https://algassert.com/quirk

100

D. Fortunato et al.

Bell State quantum program example
from qiskit import *

def BellState(input=’00’):

Create a Quantum Circuit object acting on a quantum and classical
register of two qubits/bits

gr = QuantumRegister(2)

cr = ClassicalRegister(2)

circ = QuantumCircuit(qr, cr)

circ.initialize(input, circ.qubits)

Add a H gate on qubit O, putting this qubit in superposition
circ.h(qr[0])

circ.x(qr[0]) // Introduce a FAULT, swaped Hadamard gate for the Not gate
Add a CX (CNOT) gate on control qubit O and target qubit 1, putting the
qubits in a Bell state

circ.cx(qr[0], qrl1l)

Add measurement to the circuit

circ.measure(qr, cr)

Execute the circuit

backend = BasicAer.get_backend(’gasm_simulator’)
job = execute(circ, backend, shots=1000)

counts = job.result().get_counts()

return counts

Fig. 1 Fault-free and faulty Bell state quantum program

in Fig. 1

Table 2 Specification of the Input | Output | Output Probability
Bell state quantum program 00 00 50%

00 11 50%

01 00 50%

01 11 50%

10 10 50%

10 01 50%

11 01 50%

11 10 50%

like Muskit [37] or QMutPy [34, 35, 36] (described in Sect. 3.3.4) can produce.
We then apply different verification and validation techniques on this faulty version
of the running example in the following subsections to understand to what extent
techniques can detect this fault. Note that if a tool of a specific technique is not
available or usable, we do not apply it.

3.2 Automatic Verification of Quantum Software

Verification aims to assess whether developers have built the software correctly, i.e.,

it answers the question: Does the software correctly do what has been specified?

Verification and Validation of Quantum Software 101

3.2.1 Hoare Logic

The Hoare logic testing [43] is a formal system with a set of logical rules for formal
verification of the correctness of an algorithm against a formal specification. This
logic is based on the idea of a specification as a contract between the implementation
of a function and its client. To prove the correctness of a specification, it provides
a mathematical framework using logical assertions, a pre- and post-condition, for
describing the desired behavior of a program before and after its execution.

The central component of the Hoare logic is the Hoare triple. A Hoare triple is
a notation used to express the relationship between a pre-condition, a program or
program segment, and a post-condition. It is written as {P}S{Q} where P is the
pre-condition (predicate describing the condition the function relies on for correct
operation), Q is the post-condition (predicate describing the condition the function
establishes after correctly running), and S the statement implementing the function.
The Hoare logic also provides a set of axioms and rules of inference that can be
used in proofs of the properties of computer programs.

Regarding quantum software testing, Ying [9] derives from Hoare logic the
Quantum Hoare Logic (QHL) for verifying the correctness of quantum programs.
The correctness formula of QHL is also written as {P}S{Q}, but § is a quantum
program, and both P and Q are quantum predicates on Hg,y;, which is the tensor
product of the state spaces of all quantum variables.

Zhou et al. [10] further develop the work of Ying [9]. They propose aQHL,
a new class of Hermitian operators (i.e., an operator that is equal to its conjugate
transpose, e.g., A = AY), which are used in the pre- and post-conditions and
allow a simplification of the inference rules in case statements, and loops and
computation of ranking functions in QHL. The authors prove that with aQHL they
can verify the correctness of a well-known quantum algorithm for linear systems
of equations, the HHL (Harrow-Hassidim-Lloyd) [47] algorithm. Zhou et al. [10]
also propose several rules for reasoning about the robustness of quantum programs,
i.e., error bounds of the output software programs, to prove that the outputs of
a quantum program approximately satisfy a post-condition. They use these new
rules to verify the quantum Principal Component Analysis (PCA) [48], a machine
learning algorithm.

3.2.2 Static Analysis

Zhao et al. [12] propose QChecker,” a static analysis tool that generates warning
messages to assist developers in pinpointing potential faults in their quantum
programs. QChecker starts by extracting the abstract syntactic tree of a quantum
program and parses it through a detection module equipped with a catalog of
quantum faults patterns [49]. If the source code of a quantum program matches any

2 https://github.com/Z-928/QChecker, visited October 2023.

https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker

102 D. Fortunato et al.

of the patterns, a true fault might have been identified. The authors evaluate their
tool on 20 real faults® from open-source quantum programs written in Qiskit [50]
and their results attest to the efficiency and effectiveness of QChecker—all faults
were detected.

Applying QChecker to our faulty running example (Fig. 1) we obtained two
warnings (that might be frue faults):

1. Incorrect initial state in lines 7 and 8. To fix it, one would have to create a
variable n = 2 and then reuse n in lines 7 and 8, i.e.,

- gr = QuantumRegister(2)
8 - cr = ClassicalRegister(2)
n = 2; qr = QuantumRegister(n)
8 + cr = ClassicalRegister(n)

on

The rationale is that one might initialize the QuantumRegister with a number
of qubits and/or the ClassicalRegister with a different number of bits. This
potential error is mitigated with a variable that defines the number of bits.

2. Parameter error in line 21. To fix it, one would have to hard code line 21 as the
second parameter of the execute function in line 22, i.e.,

- backend = BasicAer.get_backend(’gasm_simulator’)
- job = execute(circ, backend, shots=1000)
+ job = execute(circ, BasicAer.get_backend(’gasm_simulator’), shots=1000)

We could not find any rationale for this QChecker warning and were inclined
to label it as a false positive. Note that if we apply QChecker suggestion and
the execute call starts to fail, we will not know whether the failure is due to
execute or get_backend. This would make debugging more difficult.

It is worth noting that QChecker did not produce any warning regarding the fault we
introduced in line 13 (in Fig. 1).

Chen et al. [51] define, for Qiskit programs, eight quantum-specific smells
(which might lead to a fault) inspired by the best coding practices suggested by
Google Cirq’s team.* For example, LC (Long circuit) smell—the wider the circuit,
the higher the probability of quantum noise affecting a quantum circuit’s intended
behavior. They also developed a tool named QSmell® that supports the proposed
quantum-specific smells and empirically evaluated its effectiveness at detecting the
smells in 15 quantum programs. Their results show that most quantum programs
(73%) have at least one smell and, on average, a program has three smells; LC is the
most common smell.

3 Although the first version of the catalog proposed by Zhao et al. [49] is composed by only 36
real faults, Zhao et al. [12] used an augmented version of the catalog with 42 real faults of which
only 22 can be detected by running the quantum program. Thus, Zhao et al. [12] only consider the
remaining 20 in the evaluation conducted with QChecker.

4 https://quantumai.google/cirg/google/best_practices, visited October 2023.

3 https://github.com/jose/qsmell, visited October 2023.

https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://github.com/jose/qsmell
https://github.com/jose/qsmell
https://github.com/jose/qsmell
https://github.com/jose/qsmell
https://github.com/jose/qsmell

Verification and Validation of Quantum Software 103

Fig. 2 Quantum circuit of
the faulty Bell state quantum q O 0
program

oo,] &
0 2 ﬁo 1

7

When we apply QSmell to our faulty running example (Fig. 1), one smell is
reported by the tool, IdQ (Idle Qubits). With current quantum computers, it is
only possible to ensure the correctness of a qubit’s state for very short periods of
time. This means that having idle qubits for too long enhances the loss of quantum
information and might jeopardize the results of the running quantum programs. In
a nutshell, QSmell reports that qubit 1 is idle between lines 10 and 16 (in Fig. 1) or
between the first and third operations (Fig. 2), which might indicate a fault. In this
case, and to the best of our knowledge, there is no other way to write the quantum
circuit to avoid that. Thus, we consider this a false positive.

Yu and Palsberg [13] propose an abstract interpretation of quantum programs
and use it to automatically verify whether a program might behave as expected
in polynomial time. To achieve this, the authors take the density matrix of a
quantum program and divide it into parts (i.e., reduced density matrixes). Then,
they approximate each reduced matrix by a projection. Recall that a projection is the
closest point/vector in a subspace to a given point in the space. This enables them to
define abstract states to be a tuple of projections. To transition from abstract state to
abstract state, the authors present a new abstract interpretation of quantum programs
with new abstractions and concretization functions that form a Galois connection,
and they use them to define abstract operations. Yu and Palsberg [13] evaluate
their approach on three quantum programs. They first run the abstract interpretation,
which produces an abstraction of the state of each quantum program. Then, they
abstract the assertion (i.e., the circuit output desired) to the same format as the
abstract states, and finally, they check that the abstract state satisfies the abstracted
assertion. If the check succeeds, then the assertion is correct. For all three programs,
the authors successfully verified their assertions.

Applying this technique would detect the fault in our running example. Starting
with qubit state |00) and successfully generating the abstract states to be a tuple of
projections through the application of the Not and Controlled-Not would not result
in a successful assertion with our desired output, i.e., {|00), |11)}. However, our
correct running example would.

Paltenghi and Pradel [33] propose LintQ, a static analysis framework for
detecting faults in quantum programs. LintQ receives a quantum program as input
and extracts general information about Python code, such as control flow paths,
data flow facts, and how to resolve imports. Then it represents the behavior of the
quantum program using a set of reusable quantum programming abstractions, such

104 D. Fortunato et al.

as qubits, gates, and circuits. Finally, LintQ contains a set of nine quantum analyses
that detect potential faults. LinQ performs three main types of analysis:

1. Measurement-related and gate-related problems
2. Resource allocation problems
3. Implicit API constraints

The authors perform an empirical study applying LintQ to a quantum program
dataset containing 7568 quantum programs where LintQ found multiple true posi-
tives with a precision of 80.5%. The authors also tried LintQ with the Bugs4Q [50]
benchmark of real faults and obtained a recall of only 4.8%. The authors argue that
the low recall achieved in the Bugs4Q benchmark programs is mainly due to the
incomplete code snippets gathered from issues and forum questions provided by the
benchmark.

Kaul et al. [15] extend the Code Property Graph (CPG) static code analysis
technique [44] used in classical computing to quantum computing. CPG is a
computer program representation that captures syntactic structure, control flow, and
data dependencies in a language-independent property graph model. The authors
extended this concept to quantum computing by modeling the memory and opera-
tions as well as dependencies between qubits and quantum registers. Their prototype
supports Qiskit [28] and QASM [52] programs. It also includes information
from the quantum realm in the graph (i.e., qubits, gates, gates arguments) and
demonstrates CPG’s ability to analyze classical and quantum source code. By
combining all relevant information into a single detailed analysis, this tool can
facilitate quantum source code analysis. To that end, the authors propose a series
of eight queries that return specific information about the quantum program to the
user, such as the quantum/classical parts of the program, constant conditions, or the
result bits. This allows users to have a clearer picture of the implementation of the
program.

3.3 Automatic Validation of Quantum Software

Validation aims to assess whether developers have built the correct software
according to the user requirements, i.e., it answers the question: Does the software
do what it is supposed to do?

To improve the effectiveness of software testing and to reduce its cost,
researchers have devised approaches (in both the classical and quantum realm)
to automate the generation of test cases and validate quantum software. Automating
the creation of test cases offers several benefits over manually writing the test
cases. In classical computing, it is computationally cheap to automatically generate
test cases, and they are often more complete as they are generated systematically;
there is no evidence that it would be otherwise for the automatic generation of test
cases for quantum programs. Automatic test generation is a two-step process: (1)
generation of fest data, i.e., inputs to exercise the software, and (2) generation of

Verification and Validation of Quantum Software 105

test oracles (also known as assertions) to verify whether the execution of the test
data reveals any fault.

3.3.1 Test Data Generation

Wang et al. [17] propose QDiff, a differential testing approach for quantum
programs, which can be used with three quantum frameworks: Qiskit, Cirq, and
Pyquil. QDiff takes as input a quantum program and derives equivalent programs
from it (i.e., programs that are supposed to produce identical behavior) that trigger
unexpected behavior on the target quantum framework. To speed up their analysis,
QDiff analyzes static program characteristics such as circuit depth (i.e., the longest
sequence of applied gates to the circuit), the number of two-qubit gates, and
known error rates. Finally, QDiff performs a statistical comparison between the
measurements of the equivalent circuits. The empirical evaluation of QDiff found
six sources of instability in the three quantum frameworks and managed to reduce
compute-intensive simulation.

Fuzz testing [53, 54, 55, 56, 57, 58]—a set of software testing techniques imply-
ing the generation of a set of inputs aiming at finding errors/crashes and identifying
security flaws—is gaining relevance in quantum software testing [16]. Wang et al.
[16] adapt this technique to the quantum realm and present QuanFuzz, a search-
based test input generator for quantum programs. In a nutshell, it can automatically
find the input that triggers the quantum-sensitive branches. QuanFuzz was evaluated
with seven programs and outperformed a random technique, increasing branch
coverage by 20% to 60%.

Wang et al. [18] propose MutTG, a multi-objective and search-based approach
to generate the minimum number of test cases that kill as many mutants as
possible. The authors introduce a discount factor to tackle the equivalent mutants
problem [59, 60, 61, 62, 63] ever-present in mutation testing (i.e., mutants that are
equivalent to the source code and do not alter its result) to prevent their approach
from repeatedly trying to kill those non-killable mutants. The authors employ
NSGA-II as the multi-objective search algorithm and use five quantum programs
for which they created 20 different versions (four mutants per program) with three
distinct difficulty levels of killing mutants (easy, medium, difficult) to evaluate their
approach. Results from their experimental evaluation show that NSGA-II [64]
significantly outperforms the random search technique employed as a baseline for
all the difficult benchmarks composed of subtle mutants (i.e., mutants that are killed
by few inputs). Also, they show that their discount factor is effective in avoiding
spending meaningless effort trying to kill non-killable mutants.

3.3.2 Test Oracle Generation

The well-known oracle problem [65] for classical testing becomes even more
complex in this new programming paradigm. Test oracle automation is essential to

106 D. Fortunato et al.

remove the bottleneck that inhibits greater overall test automation. In other words,
without a formal specification of how software should behave, it is impossible to
generate effective fault-revealing test oracles. Thus, techniques that generate tests
usually generate regression tests.

To the best of our knowledge, two metamorphic approaches [19, 20] have
attempted to address the oracle problem by substituting conventional oracles with
mutated versions of the quantum program under test. Recall that metamorphic
testing consists of injecting small mutations to the code that do not alter a program’s
execution (e.g., in classical computing, adding zero to a number; in quantum
computing, introducing the identity gate to a circuit).

The approaches that Abreu et al. [19] and Paltenghi and Pradel [20] propose
are similar in nature and define oracle quantum programs which validate a source
quantum program’s properties by doing mutations to its source code that do not
alter the program output. Both of these approaches define a set of metamorphic rules
and assert whether their mutated program behaves when executed. They empirically
evaluate their metamorphic rules on quantum programs (i.e., they create a mutated
version of a quantum program that is expected to produce the same result) and
find that metamorphic rules are effective at finding crashes and incorrect outputs
in quantum programs.

3.3.3 Test Data and Oracle Generation

Wang et al. [26] propose QUITO® (QUantum InpuT Output testing) consisting of
three coverage criteria defined by the inputs and outputs of a quantum program:

1. Input coverage: checks that for a valid input, the quantum program produces a
valid output. Only one execution of the program is necessary for this criterion.
This is the least expensive (i.e., runs the smallest number of tests).

2. Output coverage: checks that all valid outputs are covered, iterating over all valid
inputs until a wrong output value is detected or time runs out. This is the second
most expensive criterion.

3. Input-Output coverage: checks that all possible output values are covered for all
valid inputs, iterating over all valid inputs until a wrong output value is detected
or time runs out. This is the most expensive criterion.

It also consists of two oracle generation strategies:

1. Wrong Output Oracle (WOO), which asserts whether the quantum program
produced expected output values

2. Output Probability Oracle (OPO), which asserts whether the quantum program
produced an expected output with its corresponding expected probability

To assess the effectiveness of the three coverage criteria, the authors perform an
empirical study on 78 mutated versions of four quantum programs. They generate

6 https://github.com/Simula-COMPLEX/quito, visited October 2023.

https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito

Verification and Validation of Quantum Software 107

def run(circ):
Add (incorrectly) a X gate on qubit 0
circ.x(0)
Add a CX (CNOT) gate on control qubit O and target qubit 1, putting the
qubits in a bell state
6 circ.cx(0, 1)
7 # Add measurement to the circuit
circ.measure([0,1], [0,1])

Fig. 3 Faulty Bell state program adapted to be executed with QuCAT [21], QUITO [26], and
QuSBT [23]

[program]
2> ;The absolute root of your quantum program file.
root=bell_state.py
;The total number of qubits of your quantum program.
num_qubit=2
¢ ;The ID of input qubits.
7 inputID=0,1
s ;The ID of output qubits which are the qubits to be measured.
o outputID=0,1

1 [program_specification_category]
> ;The category of your program specification. Choice: full/partial/no
ps_category=full

[quito_configuration]
;The coverage criterion you choose. Choice: IC/0C/IOC
coverage_criterion=IC

[program_specification]

20 ;The program specification. Format: <input,output=probability>
21 00,00=0.
22 00,11=0.
23 01,00=0.
4 01,11=0.
25 10,10=0.
26 10,01=0.
27 11,01=0.
2¢ 11,10=0.

oo oo oo

Fig. 4 Configuration for the QUITO tool. In this figure, we only list the required parameters
and which values we used. Other parameters were left with their default values. Consult
QUITO’s documentation (https://github.com/Simula-COMPLEX/quito/blob/main/README.md,
visited October 2023) for more information

these mutants with the Muskit [37] tool. After generating a set of test cases for
each mutant using the three coverage criteria, the authors evaluate them with WOO,
stopping the testing if a failure occurs, and then the OPO. Results indicate that input
coverage is more effective than the others.

We run QUITO with our faulty running example in Fig. 1. To test our example,
we had to adapt it to the tool’s requirements (Fig. 3) and create a configuration
file where we define the number of input and output qubits our program would
have, in our case, two input qubits and two output qubits (see Fig. 4). We also set
input coverage (line 17 in Fig. 4) as the coverage criterion as it is the most effective
according to QUITO’s authors. Finally, we also detail the program specification
(lines 21-29 in Fig. 4) for our example as shown in Table 2. QUITO generates 800

https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md

108 D. Fortunato et al.

tests (total number of test suites, i.e., 200 by default x number of possible input
states, i.e., four). For our example, all of our eight input/output qubit combinations
fail with the OPO oracle.

Wang et al. [21, 22] proposed QuCAT’ (QUantum CombinAtorial Testing),
which attempts to trigger faults by particular input combinations of a given strength.
These faults are found through the two oracles previously defined in QUITO (.e.,
WOO and OPO). The strength of a combination is the number of input qubits used,
meaning that two input qubits are a combination of strength two, three input qubits
are a combination of strength three, and so on. QuCAT supports two test generation
scenarios:

1. The generation of combinatorial test cases of a given strength
2. The incremental generation of combinatorial test cases of increasing strengths

The authors performed an empirical study on six Qiskit quantum programs, in which
they manually introduced three faults in each. They found that their combinatorial
technique of strength four (highest strength attempted) always detects the faults,
tests of strength three have more difficulty in detecting all faults, and strength two
only detects one fault consistently. Thus, with increased cost, this combinatorial
technique increases in effectiveness. Also, results showed that combinatorial testing
is always more effective than random testing in terms of generating test cases that
expose program failure and performs better in 88% of the faulty programs.

Trying QuCAT was similar to QUITO. We include in its configuration file the
same qubit and specification information as before. However, we also define the
strength of the input combination as two as our program has two input qubits (see
Fig. 5). This means that we execute QuCAT with the first test generation scenario
(i.e., we generated combinatorial test cases of strength two). The tool generates
four tests in a Python file and the results of the oracles in a separate text file, these
bundled together in Fig. 6 for reading convenience. As we can see, the generated
tests perform a print of the execution of the program with certain inputs. Although
no explicit oracle (e.g., assert) exists in any test, all reveal the fault. If one compares
the tests’ output and the program’s specification, one will notice that each output
has only one result with 100% probability instead of two results with 50% each. To
have fully automated tests, QuCAT should have generated the test oracles in Fig. 7
for test_bell_state_0 (line 3 in Fig. 6). These test oracles would fail in lines
6 (as we obtained one pair of bits as output and not two), 7 (as there were no 00
results), 9 (since the probability of obtaining 11 is 100% which is superior to 55%),
and 10 (because the probability of obtaining 00 is 0%, which is inferior to 45%).
Line 8 does not fail; there are results of state 11.

Wang et al. [23, 24] propose QuSBT® (Quantum Search-Based Testing), a test
generation tool for quantum programs that uses an evolutionary algorithm to search
for the maximum set of tests that reveal the fault. The authors also use the WOO and

7 https://github.com/Simula-COMPLEX/qucat-tool, visited October 2023.
8 https://github.com/Simula- COMPLEX/qusbt-tool, visited October 2023.

https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool

Verification and Validation of Quantum Software 109

[program]
2> ;The absolute root of your quantum program file.
root=bell_state.py
;The total number of qubit of your quantum program.
num_qubit=2
6 ;The IDs of input qubits.
7 inputID=0,1
¢ ;The IDs of output qubits which are the qubits to be measured.
o outputID=0,1

1 [qucat_configuration]
;The maximum value of strength of a combination as the number of inputs used.
k=2

¢ ;The program specification. Format: <input,output=probability>
7 00,00=0.

¢ 00,11=0.
o 01,00=0.
20 01,11=0.
21 10,10=0.
22 10,01=0.
23 11,01=0.
24 11,10=0.

1
1
1
1
1
15 [program_specification]
1
1
1
1

oo oo

Fig. 5 Configuration for the QuCAT tool. In this figure, we only list the required parameters and
which values we use. We left all other parameters with their default values. Consult QuCAT’s
documentation (https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md, vis-
ited October 2023) for more information

class bell_stateFun1K2Test(unittest.TestCase):

def test_bell_state_O(self):
input = ’00’
print (execute_quantum_program([0,1], [0,1], 2, input, "bell_state", 200))
output ’11’ | result OPO

8 def test_bell_state_1(self):

input = ’01’
0 print (execute_quantum_program([0,1], [0,1], 2, input, "bell_state", 200))
i # output ’00’ | result OPO

1
1
1
| def test_bell_state_2(self):

1 input = ’10’

15 print (execute_quantum_program([0,1], [0,1], 2, input, "bell_state", 200))
1 # output ’01’ | result OPO

1

1

1

8 def test_bell_state_3(self):
) input = ’11’
print (execute_quantum_program([0,1], [0,1], 2, input, "bell_state", 200))
output ’10’ | result OPO

Fig. 6 Tests generated by the QuCAT tool [21, 22] for the faulty Bell state quantum program

OPO oracles in QuSBT. The authors evaluate QuSBT on six quantum programs, in
which they manually introduce five faults in each and compare QuSBT’s results
with a random search strategy. The authors find that for the majority of the faulty
programs (87%), QuSBT performs significantly better than the random approach.
For the remainder of the faulty programs, no significant differences are detected.

https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md

110 D. Fortunato et al.

print (execute_quantum program([0,1], [0,1], 2, input, "bell_state", 200))
counts = execute_quantum_program([0,1], [0,1], 2, input, "bell_state", 200)
self.assertTrue(len(counts) ==

self.assertTrue(’00’ in counts)

self.assertTrue(’11’ in counts) // nao falha

self.assertTrue(0.45 < counts[’00°]/200 < 0.55)

self.assertTrue(0.45 < counts[’11°]/200 < 0.55)

‘
+ 4+ o+ o+

Fig. 7 Ideal set of test oracles for the test_bell_state_0 test (in Fig. 6)

[program]
;The absolute root of your quantum program file.
root=bell_state.py
;The total number of qubit of your quantum program.
num_qubit=2

6 ;The IDs of input qubits.

7 inputID=0,1

¢ ;The IDs of output qubits which are the qubits to be measured.
outputID=0,1

X
11 [qusbt_configuration]

1 ;A percentage of the inputs as the number of generated tests, 0.05 by default.
13 beta=1.0

1 ;The confidence level for the statistical test, 0.01 by default.

1 ;Although it is not required according to the official documentation, it is

16 ;required at runtime.
17 confidence_level=0.01
1

1

[program_specification]

;The program specification. Format: <input,output=probability>
21 00,00=0.
22 00,11=0.
25 01,00=0.
24 01,11=0.
25 10,10=0.
26 10,01=0.
27 11,01=0.
x11,10=0.

oo ooooo

Fig. 8 Configuration for the QuSBT tool. In this figure, we only list the required parameters and
the values we use. Other parameters are left with their default values. Consult QuSBT’s documenta-
tion (https://github.com/Simula- COMPLEX/qusbt-tool/blob/main/README.md, visited October
2023) for more information

Running QuSBT requires the same initial configurations as QUITO and QuCAT
(i.e., number of input and output qubits, program specification). Additionally, we set
the beta parameter, a percentage of the inputs, as the number of generated tests, so
that all possible tests are generated (see Fig. 8). The default value of beta is 0.05,
which would mean, for our example, that only one test would have been generated.
QuSBT generates two tests (similar to the first and third tests generated by QuCAT;
see Fig. 9) that also fail with the OPO oracle. Note that extending QuSBT tests as
we did for QuCAT in Fig. 7 would pass and fail for the same assertions.

https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md

Verification and Validation of Quantum Software 111

class Bell_StateTest(unittest.TestCase):

def test_bell_State_O(self):
#Input: 00
print (execute_quantum_program([0, 1], [0, 1], 2, 0, "bell_state", 200))

def test_bell_State_1(self):
#Input: 10
print (execute_quantum_program([0, 1], [0, 1], 2, 2, "bell_state", 200))

Fig. 9 Tests generated by the QuSBT tool [23, 24] for the faulty Bell state quantum program

3.3.4 Test Adequacy Measurements

In the quantum realm, a few approaches and tools (based on the ideas borrowed from
the classical realm) have been proposed to measure the effectiveness of manually
written or automatically generated tests of quantum programs.

Structural Coverage

Code coverage and other source-code metrics used for classical software have not
been adopted for quantum programs [66]. This may be because the differences in
the importance between quantum code and classical code have not yet been fully
explored. Also, thresholds for source code metrics and their significance as predic-
tors of defects [67] cannot be used as a starting point for quantum programs since
quantum programmers and their knowledge of this new programming paradigm are
likely to be completely different.

Thus, recent studies propose other metrics besides traditional coverage. For
instance, Kumar [68] proposes single-, two-, and three-qubit gate coverage and
multiple controlled qubit gate coverage, which are defined by the total number
of times test cases would execute these types of gates divided by the number of
instances that gate is used in the code. Ali et al. [25] also propose three new
types of coverage criteria previously discussed in Sect. 3.3.3: input coverage, output
coverage, and input-output coverage.

Nevertheless, other studies still use classical coverage. For instance, the previ-
ously discussed work of Wang et al. [16] empirically evaluates whether their input
generation technique increases coverage compared to random input generation (see
Sect. 3.3.1). Also, Fortunato et al. [34] measure the coverage of 24 real Qiskit
programs and find that tests covered on average 90% of the lines of code of a
quantum program.

Fault Detection

Classically, mutation testing is often used as a practical substitute for real faults
since mutant detection is positively correlated with fault detection [69]. Current

112 D. Fortunato et al.

from qiskit import *

Create a Quantum Circuit object acting on a quantum and classical
register of two qubits/bits

qr = QuantumRegister(2)

cr = ClassicalRegister(2)

circ = QuantumCircuit(qr, cr)

circ.initialize(’00’, circ.qubits)

Add a H gate on qubit O, putting this qubit in superposition
circ.h(qr[0])

Add a CX (CNOT) gate on control qubit O and target qubit 1, putting the
qubits in a Bell state

circ.cx(qr[0], qr[1])

Fig. 10 Fault-free Bell state program implementation for Muskit

research in quantum testing uses mutants to artificially generate faults in programs
and evaluate the effectiveness of their approaches at detecting the mutant, as seen in
Sect. 3.3.3. Mendiluze et al. [37] propose Muskit® and Fortunato et al. [34, 36, 35]
propose QMutPy!? to perform mutation analysis. These tools are similar in nature
since they perform mutations (i.e., artificial faults) to the input source program.

On the one hand, Muskit requires the raw circuit of a program to be able to
execute. This means that real programs such as our running example in Fig. 1 would
need to be transformed to the one in Fig. 10. Then to use Muskit, we have to:

* Create a configuration file to specify what we are going to mutate (i.e., which
gates, which types of gates (1-qubit, 2-qubit, etc.), the maximum number of
mutants to generate, what mutation operators we are going to use (Muskit
mutation operators are Add, Remove, and Replace Gate), and the location of
where to Add a new gate if the Add operator is selected).

 Create the executor file to specify the number of times we want to execute the
circuit, if we are going to use all possible input values (in the case of Fig. 10,
those would be 00, 01, 10, or 11) or not, and if we want to specify our input
values we would need to create another custom test file where we specify which
ones we want to use.

 Create an analyzer file to specify the number of qubits our program has that we
want to measure (in our case, we have two qubits and want to measure both of
them) and what is the significance level (p-value) for our tests.

To determine whether a mutant was detected, Muskit uses two oracles already
explained in Sect. 3.3.3: the WOO (i.e., if the program output is wrong, the mutant
is detected) and the OPO (i.e., if our p-value is lower than the chosen significance
level the mutant is detected). Suppose we apply the Remove gate operator to both
our gates with input values 00 (the default Qiskit qubit initialization value) to our
running example (Fig. 1). After setting up all of the necessary files described above

? https://github.com/Simula-COMPLEX/muskit, visited October 2023.
10 https://github.com/danielfobooss/mutpy, visited October 2023.

https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy

Verification and Validation of Quantum Software 113

from unittest import TestCase
class BellStateTest(TestCase):

def test(self):
counts = BellState()
self.assertTrue(len(counts) == 2)
self.assertTrue(’00’ in counts)
self.assertTrue(’11’ in counts)
self.assertTrue(0.45 < counts[’00°]/1000 < 0.55)
self.assertTrue(0.45 < counts[’11°]/1000 < 0.55)

Fig. 11 Manually written test for the Bell state quantum program

and running the tool, Muskit reports that two mutants were generated and that both
were detected by the WOO. This is expected as the output value of our example
without the Hadamard gate will always be 00 (i.e., only one correct output instead of
two), and without the Controlled-Not gate, it will always be 00 with 50% probability,
which is a correct output, and 10 with 50% probability, which is an incorrect output.

On the other hand, QMutPy only requires a Qiskit program and its set of test
cases (either written in unittest'! or pytest'?). QMutPy allows us to select from five
quantum mutation operators:

* QGD—Quantum Gate Deletion (equivalent to the Remove operator from Muskit)

* QGI—Quantum Gate Insertion (equivalent to the Add operator from Muskit)

* QGR—Quantum Gate Replacement (equivalent to the Replace operator from
Muskit)

¢ QMD—Quantum Measurement Deletion

¢ QMI—Quantum Measurement Insertion

To run QMutPy, we simply execute a command where we select the target program
file (i.e., the fault-free version in Fig. 1) and the target test file (Fig. 11) and select
which operators we want to use. If we perform the same experiment (i.e., select the
QGD operator), QMutPy will also report that both mutants were detected.

The empirical results from both studies [37, 34] show that both Muskit and
QMutPy tools are efficient and effective at assessing the performance of programs’
specifications or test cases. However, as we can see, QMutPy is far simpler to set
up than Muskit since it does not require a formal specification of each quantum
program. It only requires the program’s source code and its corresponding tests.
Also, in case we wish to re-run our experiment with different setups, we would have
to manually alter our program specification files for Muskit, while for QMutPy we
would only need to select additional or fewer operators to use. It is worth pointing
out that Muskit could run a mutation analysis with different inputs, and for QMutPy
to do this, it would be necessary to create more tests for the quantum program under

' https://docs.python.org/3/library/unittest.html, visited October 2023.
12 https://docs.pytest.org, visited October 2023.

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org
https://docs.pytest.org
https://docs.pytest.org
https://docs.pytest.org

114 D. Fortunato et al.

test. However, the QMutPy’s authors left for future work the addition of an input
mutation operator to the tool.

4 Benchmarks of Real Faults in Open-Source Quantum
Programs

Although several techniques and tools have been proposed to verify and validate
quantum programs (see Sect. 3), reproducing'® previous studies or evaluating/-
comparing new techniques is still challenging. The lack of widely accepted and
easy-to-use databases of real quantum faults (i.e., faults that have occurred in real
quantum projects) is one of the main challenges. For instance, Fortunato et al. [34]
and Mendiluze et al. [37] proposed a similar tool for mutation analysis, but both
conducted an empirical evaluation on a different set of Qiskit quantum programs.
Hence, it is not possible to answer the question: Which tool performs better?

In classical computing, many databases of real faults have been proposed, e.g.,
Defects4] [70] for Java, BugsJS [71] for JavaScript, and BugsInPy [72] for Python.
These benchmarks have allowed researchers to conduct empirical studies on real
faults on different research topics, e.g., automatic test generation [73, 74], test
prioritization [75, 76], fault localization [77, 78, 79, 80, 81], automatic program
repair [82], on whether artificial faults might be a practical substitute for real
faults [69], etc.

In quantum computing, to the best of our knowledge, only three benchmarks (not
yet widely accepted or easy to use) have been proposed in quantum computing [83,
50, 84].

Campos and Souto [83] propose QBugs, a framework that includes a catalog
of reproducible faults of real quantum programs and an infrastructure to enable
empirical and controlled experiments in quantum software testing and debugging.
QBugs is not available at the time of writing this chapter.

Zhao et al. [50] propose Bugs4Q,'* a benchmark of 36 real and manually
validated faults on programs written in Qiskit.!> These faulty programs are not
accompanied by, for example, any test that reproduces and reveals the faulty
behavior (as, for example, in the Defects4J [70] benchmark). Furthermore, Bugs4Q

13 ACM defines reproducibility as the measurement obtained with stated precision by a different
team using the same measurement procedure, the same measuring system, under the same
operating conditions, in the same or a different location on multiple trials for the same artifact. For
computational experiments, this means that an independent group can obtain the same result as the
author using the author’s artifacts. https://www.acm.org/publications/policies/artifact-review-and-
badging-current, visited October 2023.

14 https://github.com/Z-928/Bugs4Q, visited October 2023.
15 Since its release, Bugs4Q has been augmented with seven more faults on programs written in

Qiskit, two faults on programs written in Q#, and seven faults on programs written in Cirq (October
2023).

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q

Verification and Validation of Quantum Software 115

only provides (for each fault) the faulty and fixed files. In other words, it does
not provide fully faulty programs (i.e., including configuration files, build files,
documentation, commit history, etc.) that might be relevant to some tools or other
research venues. For instance, Paltenghi and Pradel [33] pointed out that the low
precision of the LintQ tool in the Bugs4Q benchmark was due to incomplete faulty
programs. Other research venues, for example, fault predictors that require the
commit history of a program to predict which components (e.g., functions) are likely
faulty [85, 86, 87, 88, 89, 75], might also perform poorly or not work at all due to
the lack of such information.

Paltenghi and Pradel [84]'° present a catalog of 223 real-world faults mined from
18 open-source quantum computing platforms (including Qiskit, Cirq, and Q#) and
perform an in-depth analysis of the types of faults most frequently found in quantum
software. The authors make available the faults as a catalog, the type of faults found,
and their fixes. Similar to the Bugs4Q benchmark, there is no interface to interact
with the catalog of faults.

To the best of our knowledge, QChecker [12] and LintQ [33] are the only tools
evaluated on real faults, i.e., that considered the Bugs4Q benchmark.

5 Discussion

Despite the many advances in the verification and validation of quantum programs,
most approaches remain to be adopted or perfected. Based on our observations,
we have compiled a list of limitations that researchers (Sect. 5.1), tool developers
(Sect. 5.2), and benchmark developers (Sect. 5.3) should try to address in the future.

5.1 For Researchers

The approaches presented in Sect. 3 do not exercise to their full extent the
underlying idiosyncrasies of the quantum programs under test [31, 5, 32], for
example, the number of independent paths generated due to the superposition of
each qubit [68].

5.2 For Developers of Testing Tools

Developing a quantum testing tool is not an easy endeavor. We highlight four key
aspects for developers of testing tools to keep in mind.

16 https://github.com/MattePalte/Bugs- Quantum-Computing-Platforms, visited October 2023.

https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms

116 D. Fortunato et al.

* Setup: The installation and configuration of each tool require a huge amount of
time to perform correctly. For instance, QuSBT [24], QuCAT [22], QUITO
[26], and Muskit [37] require that we clone the tool from GitHub, set up the
correct environment with the right packages and the right packages’ versions,
manually create a configuration file and set some parameters, execute a Python
file, and then select options from a menu on the command line at runtime. All
of these requirements and steps might discourage users from using these tools.
Even tools like QMutPy [34] or QChecker [12] that only require the cloning, the
environment setup, and the execution of a single command can be inconvenient
and frustrating.

» Usage: Developers of tools should aim to, for example, integrate their tools with
common Integrated Development Environments (IDEs) such as Visual Studio or
IntelliJ IDEA to ease their usage. Tools such as EvoSuite [90] (a test generation
automation tool for Java programs) increase their usability when integrated with
an IDE. It should be no different for quantum tools.

* Produce test suites source code: Tools like QUITO [26] do not generate tests
source code (i.e., written in Python) and therefore do not use any of the common
testing frameworks (unittest'” and pytest'®). Without such functionalities, tests
cannot be executed or integrated into any project. Thus, tests could not be used to,
for example, (i) detect regressions in future versions of the quantum program or
(ii) assist developers in localizing [91, 77] and repairing faults [82], as has been
proposed in classical computing.

¢ Produce test suites with an oracle: Tools like QuCAT [22] and QuSBT [24]
do generate tests source code (i.e., written in Python), but they do not generate
an explicit oracle (i.e., assertion). Oracleless tests hold down the adoption of
automatically generated tests as they would not be able to detect any fault in the
program under test.

5.3 For Developers of Quantum Faults Benchmarks

Benchmarks, which are a pillar of reproducibility and applicability, allow one to
compare the performance of different techniques with the same datasets. Currently,
benchmarks are lacking in quantum software testing, and in regard to our focus of
interest, more specifically, quantum faults benchmarks. This is mainly due to the
fact that there are still few quantum programs to analyze, and fault patterns are
still being extracted from real faulty quantum programs. As pointed out in Sect. 4,
to support different venues of research in quantum software testing, benchmarks
for quantum software testing should (1) provide an interface to interact with the
fixed and faulty version of a quantum program, (2) provide fully fixed and faulty

17 https://docs.python.org/3/library/unittest.html, visited October 2023.
18 https://docs.pytest.org, visited October 2023.

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org
https://docs.pytest.org
https://docs.pytest.org
https://docs.pytest.org

Verification and Validation of Quantum Software 117

programs, and (3) provide fault-revealing test cases (either manually written or
automatically generated).

6 Conclusion

The field of quantum computing is developing at a very fast pace. Therefore, the
development of tools to ensure the correctness of quantum programs is of the utmost
importance. In this chapter, we presented and detailed novel techniques and tools
researchers have proposed to verify and validate quantum programs. Based on our
exploration of the many techniques, tools, and benchmarks that have been proposed
in quantum verification and validation, we highlighted key aspects of what is still
lacking in the field and offered suggestions for future work. In short, researchers
should focus on further exploring the properties of quantum programs. Developers
should work on delivering tools and quantum fault benchmarks in ways that promote
their adoption and usefulness to the scientific community.

References

—

. Russell, J.: IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center
Plans. HPC Wire
2. Collins, H., Nay, C.: IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation
IBM Quantum. IBM Newsroom
3. Ferreira, F.: An Exploratory Study on the Usage of Quantum Programming Languages.
Available at http://hdl.handle.net/10451/56751
4. Hevia, J.L., Peterssen, G., Ebert, C., Piattini, M.: Quantum computing. IEEE Software 38(5),
7-15 (2021). https://doi.org/10.1109/MS.2021.3087755
5. Barrera, A., Guzman, L., Polo, M., Piattini, M.: Quantum software testing: state of the art. J.
Software Evol. Process 35(4), 2419 (2023). https://doi.org/10.1002/smr.2419
6. Weder, B., Barzen, J., Leymann, E., Salm, M., Vietz, D.: The Quantum Software Lifecycle.
In: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and
Paradigms for Engineering Quantum Software. APEQS 2020, pp. 2-9. Association for
Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3412451.3428497
7. Arias, D., Garcia Rodriguez de Guzman, ., Rodriguez, M., Terres, E.B., Sanz, B., Gaviria de la
Puerta, J., Pastor, 1., Zubillaga, A., Garcia Bringas, P.: Let’s do it right the first time: Survey on
security concerns in the way to quantum software engineering. Neurocomputing 538, 126199
(2023). https://doi.org/10.1016/j.neucom.2023.03.060
8. Tao Yue, P.A., Ali, S.: Quantum Software Testing: Challenges, Early Achievements, and
Opportunities. ERCIM News
9. Ying, M.: Floyd—Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33(6)
(2012). https://doi.org/10.1145/2049706.2049708
10. Zhou, L., Yu, N., Ying, M.: An Applied Quantum Hoare Logic. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI
2019, pp. 1149-1162. Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3314221.3314584

http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584

118

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

D. Fortunato et al.

Honarvar, S., Mousavi, M.R., Nagarajan, R.: Property-Based Testing of Quantum Programs in
q#. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, pp. 430-435 (2020)

Zhao, P., Wu, X, Li, Z., Zhao, J.: QChecker: Detecting Bugs in Quantum Programs via Static
Analysis (2023)

Yu, N., Palsberg, J.: Quantum Abstract Interpretation. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation,
pp. 542-558. ACM, Virtual Canada (2021). https://doi.org/10.1145/3453483.3454061. https://
dl.acm.org/doi/10.1145/3453483.3454061

Xia, S., Zhao, J.: Static Entanglement Analysis of Quantum Programs (2023). https://doi.org/
10.48550/arXiv.2304.05049. arXiv:2304.05049 [quant-ph]

Kaul, M., Kiichler, A., Banse, C.: A Uniform Representation of Classical and Quantum
Source Code for Static Code Analysis (2023). https://doi.org/10.48550/arXiv.2308.06113.
arXiv:2308.06113 [cs]

Wang, J., Gao, M., Jiang, Y., Lou, J., Gao, Y., Zhang, D., Sun, J.: QuanFuzz: Fuzz Testing of
Quantum Program (2018). arXiv:1810.10310 [cs]

Wang, J., Zhang, Q., Xu, G.H., Kim, M.: QDiff: Differential Testing of Quantum Software
Stacks. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 692-704 (2021). https://doi.org/10.1109/ASE51524.2021.9678792

Wang, X., Yu, T., Arcaini, P., Yue, T., Ali, S.: Mutation-Based Test Generation for Quantum
Programs with Multi-Objective Search. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1345-1353. ACM, Boston Massachusetts (2022). https://doi.org/
10.1145/3512290.3528869. https://dl.acm.org/doi/10.1145/3512290.3528869

Abreu, R., Fernandes, J.P., Llana, L., Tavares, G.: Metamorphic Testing of Oracle Quantum
Programs. In: Proceedings of the 3rd International Workshop on Quantum Software Engi-
neering, pp. 16-23. ACM, Pittsburgh Pennsylvania (2022). https://doi.org/10.1145/3528230.
3529189. https://dl.acm.org/doi/10.1145/3528230.3529189

Paltenghi, M., Pradel, M.: MorphQ: Metamorphic Testing of Quantum Computing Platforms
(2022). https://doi.org/10.48550/arXiv.2206.01111. arXiv:2206.01111 [cs]

Wang, X., Arcaini, P, Yue, T., Ali, S.: Application of Combinatorial Testing to Quantum
Programs. In: 2021 IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS), pp. 179-188 (2021). https://doi.org/10.1109/QRS54544.2021.00029

Wang, X., Arcaini, P, Yue, T., Ali, S.: QuCAT: A Combinatorial Testing Tool for Quantum
Software (2023). https://arxiv.org/abs/2309.00119v1

Wang, X., Arcaini, P, Yue, T., Ali, S.: Generating Failing Test Suites for Quantum Programs
With Search. In: O’Reilly, U.-M., Devroey, X. (eds.) Search-Based Software Engineering.
Lecture Notes in Computer Science, pp. 9-25. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88106-1_2

Wang, X., Arcaini, P, Yue, T., Ali, S.: QuSBT: Search-Based Testing of Quantum Programs.
In: Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, pp. 173-177 (2022)

Ali, S., Arcaini, P., Wang, X., Yue, T.: Assessing the Effectiveness of Input and Output
Coverage Criteria for Testing Quantum Programs. In: 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST), pp. 13-23 (2021). https://doi.org/10.
1109/ICST49551.2021.00014

Wang, X., Arcaini, P., Yue, T., Ali, S.: Quito: A Coverage-Guided Test Generator for Quan-
tum Programs. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1237-1241 (2021). https://doi.org/10.1109/ASE51524.2021.9678798
Rajak, A., Suzuki, S., Dutta, A., Chakrabarti, B.K.: Quantum annealing: an overview. Phil.
Trans. Roy. Soc. A Math. Phys. Eng. Sci. 381(2241), 20210417 (2023). https://doi.org/10.
1098/rsta.2021.0417. https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2021.0417
Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D.,
Cabrera-Hernandez, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Cércoles-
Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., Gonzilez, S.D.L.P., Torre,

https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417

 7644 55041 a 7644 55041 a

https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2021.0417

Verification and Validation of Quantum Software 119

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

E.D.L., Ding, D., Dumitrescu, E., Duran, 1., Eendebak, P., Everitt, M., Sertage, I.F., Frisch,
A., Fuhrer, A., Gambetta, J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I.,
Havlicek, V., Hellmers, J., Herok, Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A.,
Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P, Luh, Y., Maeng, Y., Marques, M., Martin-
Fernandez, FJ., McClure, D.T., McKay, D., Meesala, S., Mezzacapo, A., Moll, N., Rodriguez,
D.M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J., Paik, H., Pérez, J., Phan, A.,
Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye,
N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin,
J.A., Soeken, M., Takahashi, H., Tavernelli, 1., Taylor, C., Taylour, P., Trabing, K., Treinish,
M., Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E., Wood, C.,
Wood, S., Worner, S., Akhalwaya, 1.Y., Zoufal, C.: Qiskit: An Open-source Framework for
Quantum Computing. Zenodo (2019). https://doi.org/10.5281/zenodo.2562111

Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/
CB09780511976667

Alaqail, H., Ahmed, S.: Overview of software testing standard iso/iec/ieee 29119. Int. J.
Comput. Sci. Network Secur. (IICSNS) 18(2), 112-116 (2018)

Miranskyy, A., Zhang, L.: On Testing Quantum Programs. In: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),
pp- 57-60 (2019). https://doi.org/10.1109/ICSE-NIER.2019.00023. http://arxiv.org/abs/1812.
09261

De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., De Lucia, A.: Software engineering
for quantum programming: How far are we? J. Syst. Software 190, 111326 (2022). https://doi.
org/10.1016/j.jss.2022.111326

Paltenghi, M., Pradel, M.: LintQ: A Static Analysis Framework for Qiskit Quantum Programs
(2023). arXiv:2310.00718 [cs]

Fortunato, D., Campos, J., Abreu, R.: Mutation testing of quantum programs: a case study with
Qiskit. IEEE Trans. Quant. Eng. 3, 1-17 (2022). https://doi.org/10.1109/TQE.2022.3195061
Fortunato, D., Campos, J., Abreu, R.: Mutation Testing of Quantum Programs Written
in QISKit. In: 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 358-359 (2022). https://doi.org/10.1145/
3510454.3528649

Fortunato, D., Campos, J., Abreu, R.: QMutPy: A Mutation Testing tool for Quantum algo-
rithms and Applications in Qiskit. In: Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 797-800. ACM, Virtual South Korea
(2022). https://doi.org/10.1145/3533767.3543296 . https://dl.acm.org/doi/10.1145/3533767.
3543296

Mendiluze, E., Ali, S., Arcaini, P, Yue, T.: Muskit: A Mutation Analysis Tool for Quantum
Software Testing. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1266—-1270 (2021). https://doi.org/10.1109/ASE51524.2021.9678563
Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Projection-based runtime assertions for
testing and debugging quantum programs (2020). Accepted: 2021-03-14T22:46:19Z

Mugeet, A., Yue, T., Ali, S., Arcaini, P.: Noise-Aware Quantum Software Testing (2023)
Zhang, L., Radnejad, M., Miranskyy, A.: Identifying Flakiness in Quantum Programs. Preprint
(2023). arXiv:2302.03256

Long, P., Zhao, J.: Testing multi-subroutine quantum programs: From unit testing to integration
testing (2023). arXiv:2306.17407 [quant-ph]

Long, P, Zhao, J.: Testing quantum programs with multiple subroutines (2023).
arXiv:2208.09206 [cs]

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576—
580 (1969). https://doi.org/10.1145/363235.363259

Yamaguchi, F.,, Golde, N., Arp, D., Rieck, K.: Modeling and Discovering Vulnerabilities with
Code Property Graphs. In: 2014 IEEE Symposium on Security and Privacy, pp. 590-604
(2014). https://doi.org/10.1109/SP.2014.44

https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44

120

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.
57.
58.

59.

60.

61.

62.

63.

D. Fortunato et al.

Barrera, A.G., Guzman, I.G.-R., Polo, M., Cruz-Lemus, J.A.: In: Serrano, M.A., Pérez-Castillo,
R., Piattini, M. (eds.) Quantum Software Testing: Current Trends and Emerging Proposals, pp.
167-191. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05324-5_9

Sych, D., Leuchs, G.: A complete basis of generalized bell states. New J. Phys. 11(1), 013006
(2009). https://doi.org/10.1088/1367-2630/11/1/013006

Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations.
Phys. Rev. Lett. 103(15), (2009). https://doi.org/10.1103/physrevlett.103.150502

Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nature Phys.
10(9), 631-633 (2014) https://doi.org/10.1038/nphys3029

Zhao, P., Zhao, J., Ma, L.: Identifying Bug Patterns in Quantum Programs. In: 2021
IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), pp.
16-21. IEEE, Madrid, Spain (2021). https://doi.org/10.1109/Q-SE52541.2021.00011. https://
ieeexplore.ieee.org/document/9474564/

Zhao, P., Zhao, J., Miao, Z., Lan, S.: Bugs4Q: A Benchmark of Real Bugs for Quantum
Programs. In: 2021 36th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 1373-1376 (2021). https://doi.org/10.1109/ASE51524.2021.9678908
Chen, Q., Camara, R., Campos, J., Souto, A., Ahmed, I.: The Smelly Eight: An Empirical
Study on the Prevalence of Code Smells in Quantum Computing. In: 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), pp. 358-370 (2023). https://doi.
org/10.1109/ICSE48619.2023.00041

Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open Quantum Assembly Language
(2017)

Liang, H., Pei, X., Jia, X., Shen, W., Zhang, J.: Fuzzing: state of the art. IEEE Trans. Reliab.
67(3), 1199-1218 (2018). https://doi.org/10.1109/TR.2018.2834476

Zhu, X., Wen, S., Camtepe, S., Xiang, Y.: Fuzzing: A survey for roadmap. ACM Comput. Surv.
54(11s), (2022). https://doi.org/10.1145/3512345

Manes, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.: The art,
science, and engineering of fuzzing: A survey. IEEE Trans. Software Eng. 47(11), 2312-2331
(2021). https://doi.org/10.1109/TSE.2019.2946563

Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecurity 1(1), 1-13 (2018)

Godefroid, P.: Fuzzing: Hack, art, and science. Commun. ACM 63(2), 70-76 (2020)

Wang, Y., Jia, P, Liu, L., Huang, C., Liu, Z.: A systematic review of fuzzing based on
machine learning techniques. PLOS ONE 15(8), 1-37 (2020). https://doi.org/10.1371/journal.
pone.0237749

Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible paths. Software
Test. Verif. Reliab. 7(3), 165-192 (1997). https://doi.org/10.1002/(SICI)1099-1689(199709)7:
3<165::AID-STVR143>3.0.CO;2-U

Just, R., Kapfhammer, G.M., Schweiggert, F.: Do Redundant Mutants Affect the Effectiveness
and Efficiency of Mutation Analysis? In: 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pp. 720-725 (2012). https://doi.org/10.1109/
ICST.2012.162

Madeyski, L., Orzeszyna, W., Torkar, R., J6zala, M.: Overcoming the equivalent mutant
problem: a systematic literature review and a comparative experiment of second order
mutation. IEEE Trans. Software Eng. 40(1), 2342 (2014). https://doi.org/10.1109/TSE.2013.
44

Just, R., Kapthammer, G.M., Schweiggert, F.: Using Non-redundant Mutation Operators and
Test Suite Prioritization to Achieve Efficient and Scalable Mutation Analysis. In: 2012 IEEE
23rd International Symposium on Software Reliability Engineering, pp. 11-20 (2012). https://
doi.org/10.1109/ISSRE.2012.31

Just, R., Schweiggert, F.: Higher accuracy and lower run time: efficient mutation analysis using
non-redundant mutation operators. Software Test. Verif. Reliab. 25(5-7), 490-507 (2015).
https://doi.org/10.1002/stvr. 1561

https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561

Verification and Validation of Quantum Software 121

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182-197 (2002). https://doi.org/10.1109/
4235.996017

Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The Oracle problem in software
testing: a survey. IEEE Trans. Software Eng. 41(5), 507-525 (2015). https://doi.org/10.1109/
TSE.2014.2372785

Sicilia, M.-A., Sanchez-Alonso, S., Mora-Cantallops, M., Garcia-Barriocanal, E.: On the
Source Code Structure of Quantum Code: Insights from Q# and QDK. In: Shepperd, M.,
Abreu, F., Silva, A., Pérez-Castillo, R. (eds.) Quality of Information and Communications
Technology. Communications in Computer and Information Science, pp. 292-299. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58793-2_24

Yamashita, K., Huang, C., Nagappan, M., Kamei, Y., Mockus, A., Hassan, A.E., Ubayashi, N.:
Thresholds for Size and Complexity Metrics: A Case Study from the Perspective of Defect
Density. In: 2016 IEEE International Conference on Software Quality, Reliability and Security
(QRS), pp. 191-201 (2016). https://doi.org/10.1109/QRS.2016.31

Kumar, A.: Formalization of structural test cases coverage criteria for quantum software
testing. Int. J. Theor. Phys. 62, (2023). https://doi.org/10.1007/s10773-022-05271-y

Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are Mutants a Valid
Substitute for Real Faults in Software Testing? In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 654-665. ACM, Hong
Kong China (2014). https://doi.org/10.1145/2635868.2635929. https://dl.acm.org/doi/10.1145/
2635868.2635929

Just, R., Jalali, D., Ernst, M.D.: Defects4j: A Database of Existing Faults to Enable Controlled
Testing Studies for Java Programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis, pp. 437—440. ACM, San Jose, CA, USA (2014). https://doi.
org/10.1145/2610384.2628055. https://dl.acm.org/doi/10.1145/2610384.2628055

Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D., Beszédes, A., Ferenc, R., Mesbah,
A.: BugsJS: A Benchmark of JavaScript Bugs. In: 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), pp. 90-101 (2019). https://doi.org/10.1109/ICST.
2019.00019

Widyasari, R., Sim, S.Q., Lok, C., Qi, H., Phan, J., Tay, Q., Tan, C., Wee, F., Tan, J.E., Yieh,
Y., Goh, B., Thung, F., Kang, H.J., Hoang, T., Lo, D., Ouh, E.L.: BugsInPy: A Database of
Existing Bugs in Python Programs to Enable Controlled Testing and Debugging Studies. In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2020, pp. 1556—
1560. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.
1145/3368089.3417943

Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do Automatically
Generated Unit Tests Find Real Faults? An Empirical Study of Effectiveness and Challenges.
In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 201-211 (2015). https://doi.org/10.1109/ASE.2015.86

Lukasczyk, S., Kroi}, F., Fraser, G.: An empirical study of automated unit test generation for
Python. Empirical Software Eng. 28(2), 36 (2023)

Paterson, D., Campos, J., Abreu, R., Kapfhammer, G.M., Fraser, G., McMinn, P.: An Empirical
Study on the Use of Defect Prediction for Test Case Prioritization. In: 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST), pp. 346-357 (2019).
https://doi.org/10.1109/ICST.2019.00041

Miranda, B., Cruciani, E., Verdecchia, R., Bertolino, A.: FAST Approaches to Scalable
Similarity-Based Test Case Prioritization. In: Proceedings of the 40th International Conference
on Software Engineering. ICSE ’ 18, pp. 222-232. Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3180155.3180210

https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210

122

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91

D. Fortunato et al.

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D., Pang, D., Keller,
B.: Evaluating and Improving Fault Localization. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pp. 609-620 (2017). https://doi.org/10.1109/
ICSE.2017.62

Li, X., Li, W, Zhang, Y., Zhang, L.: DeepFL: Integrating Multiple Fault Diagnosis Dimensions
for Deep Fault Localization. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA 2019, pp. 169-180. Association for
Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3293882.3330574
Zou, D., Liang, J., Xiong, Y., Ernst, M.D., Zhang, L.: An empirical study of fault localization
families and their combinations. IEEE Trans. Software Eng. 47(2), 332-347 (2021). https://
doi.org/10.1109/TSE.2019.2892102

Sarhan, Q.I., Beszédes, A.: A survey of challenges in spectrum-based software fault localiza-
tion. IEEE Access 10, 10618-10639 (2022). https://doi.org/10.1109/ACCESS.2022.3144079
Widyasari, R., Prana, G.A.A., Haryono, S.A., Wang, S., Lo, D.: Real world projects, real faults:
evaluating spectrum based fault localization techniques on Python projects. Empirical Software
Eng. 27(6), 147 (2022)

Durieux, T., Madeiral, F., Martinez, M., Abreu, R.: Empirical Review of Java Program Repair
Tools: A Large-Scale Experiment on 2,141 Bugs and 23,551 Repair Attempts. In: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2019, pp. 302-313.
Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/
3338906.3338911

Campos, J., Souto, A.: QBugs: A Collection of Reproducible Bugs in Quantum Algorithms and
a Supporting Infrastructure to Enable Controlled Quantum Software Testing and Debugging
Experiments (2021)

Paltenghi, M., Pradel, M.: Bugs in quantum computing platforms: an empirical study. Proc.
ACM Program. Lang. 6(OOPSLA1), (2022). https://doi.org/10.1145/3527330

Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., Whitehead Jr., E.J.: Does Bug Prediction
Support Human Developers? Findings from a Google Case Study. In: Proceedings of the 2013
International Conference on Software Engineering. ICSE 13, pp. 372-381. IEEE Press, San
Francisco, CA, USA (2013)

Freitas, P.A.F.: Software repository mining analytics to estimate software component reliability
(2015)

D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches: a benchmark
and an extensive comparison. Empirical Software Eng. 17(4-5), 531-577 (2012). https://doi.
org/10.1007/s10664-011-9173-9

Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Syst. Appl.
36(4), 7346-7354 (2009). https://doi.org/10.1016/j.eswa.2008.10.027

Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of faults in large
software systems. IEEE Trans. Software Eng. 31(4), 340-355 (2005). https://doi.org/10.1109/
TSE.2005.49

Arcuri, A., Campos, J., Fraser, G.: Unit Test Generation During Software Development:
EvoSuite Plugins for Maven, IntelliJ and Jenkins. In: 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pp. 401-408 (2016). https://doi.org/
10.1109/ICST.2016.44

. Campos, J., Riboira, A., Perez, A., Abreu, R.: Gzoltar: An Eclipse Plug-in for Testing and

Debugging. In: Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering. ASE ’12, pp. 378-381. Association for Computing Machinery, New
York, NY, USA (2012). https://doi.org/10.1145/2351676.2351752

https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752

Verification and Validation of Quantum Software 123

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Verification and Validation of Quantum Software
	1 Introduction
	2 Concepts and Definitions
	2.1 Quantum Computing
	2.2 Software Testing

	3 Automatic Verification and Validation of Quantum Software
	3.1 Running Example
	3.2 Automatic Verification of Quantum Software
	3.2.1 Hoare Logic
	3.2.2 Static Analysis

	3.3 Automatic Validation of Quantum Software
	3.3.1 Test Data Generation
	3.3.2 Test Oracle Generation
	3.3.3 Test Data and Oracle Generation
	3.3.4 Test Adequacy Measurements

	4 Benchmarks of Real Faults in Open-Source Quantum Programs
	5 Discussion
	5.1 For Researchers
	5.2 For Developers of Testing Tools
	5.3 For Developers of Quantum Faults Benchmarks

	6 Conclusion
	References

