
Exploring transformers for multi-label
classification of Java vulnerabilities
Cláudia Mamede, Eduard Pinconschi, Rui Abreu, José Campos

22nd IEEE International Conference on Software Quality, Reliability, and Security

December, 2022 • Guangzhou, China
1

Society is becoming more dependent on technology

Companies must develop code ASAP without compromising security

How can we do that?

Static analysis

Dynamic analysis

Pattern matching

● Too time-consuming

● High False Positive rate

● Applied by experts

(...)

Machine learning

2

What about the data ?

3

● Using synthetic samples from the Juliet Test Suite

● Function-level granularity

TRANSFORMERS

JavaBERT

CodeBERT

● Handle long range dependencies

● Transfer learning mechanism

● SOTA results for vulnerability detection

● 113 898 methods (70% non-vulnerable; 30% vulnerable)

● 20 CWES

Research focus on binary or multi-class classification:

SAFE
UNSAFE

CWE A
CWE B
CWE C

Multi class classificationBinary classification

Both classifications lack information. For example:

Binary: UNSAFE What problem will you solve?

Multi-class: CWE-190 Is the code truly vulnerable?

Multi-label: UNSAFE CWE-190 4

(...)

MULTILABEL: WHY?

Multi-label: SAFE CWE-190

Multilabel helps developers speed up software
development by helping them in decision-making.

...

SAFEP()

CWE A

CWE B

P(

P(

)

)

CWE XP()

...
(...)

Last hidden
state

Classification
layer

Probability of
each label

(independent)
MULTILABEL: HOW?

● Threshold selection to solve the

problem of multi-label [1]

● Threshold = 0.5 to filter the labels

● Theoretically, we can discover ≥ 1 CWE
(no data to properly test this theory)

Filter
layer

CWE B

SAFE

Predictions

For example:

5[2] H. Fallah et al. Adapting transformers for multi-label text classification. In CIRCLE’22

...

(...)

Last hidden
state

Classification
layer

BERT-based model architecture

[CLS]

(...) ● Pooler output (default in most libraries)

● Concatenation of the [CLS] tokens of the

last 4 hidden states

Configurations:

RQ 1 | How do different output configurations impact the learning of BERT-based models?

How to improve the representation of the [CLS] token?

6

RQ 1 | How do different output configurations impact the learning of BERT-based models?

The pooler output configuration compromises the transfer learning capabilities of JavaBERT.

Finding 1

Figure | Learning curves (loss variations) during training (left) and validation (right) for all models.

7

RQ 2 | Which BERT-based model configuration achieves better vulnerability identifications?

Model #Epoch Accuracy 𝒘F1 𝒘Precision 𝒘Recall FNR FPR

JavaBERT_4HS 8 98.90% 94.0% 95.0% 93.0% 7.12% 0.98%

CodeBERT_4HS 10 98.68% 93.0% 95.0% 91.0% 12.28% 1.02%

CodeBERT_PO 9 98.67% 93.0% 95.0% 91.0% 12.39% 1.06%

Table | Performance results for JavaBERT and CodeBERT with different model configurations

Combining the outputs of the last four hidden layers yields more accurate predictions.

Finding 2

8

RQ 3 | To what extent does implicit bias in datasets affect the ability of the model to learn?

POINTWISE MUTUAL INFORMATION
Table | Top PMI scores for some labels

● Find problematic tokens in datasets

● Our hypothesis:

Problematic tokens are most likely over

represented, causing the model to make

wrong predictions.

Class Token PMI

Unsafe or
vulnerable

##ad 0.98

bad 0.88

Safe or
non-vulnerable

good 1

##BS 1

CWE-15 ##15 1

CWE-23 ##23 1

9

RQ 3 | To what extent does implicit bias in datasets affect the ability of the model to learn?

Original dataset normalized method and variable names

Missing: exceptions, some method calls and global variables

Replace problematic tokens with random

strings (of the same size). Repeat training.

We can use the Pointwise Mutual Score (PMI) to identify problematic tokens in code.

Removing token that bias the model substantially reduces the f1 score (up to 12%).

Findings 3 and 4

10

RQ 4 | How do BERT-based models perform when exposed to real-world samples?

Synthetic data

● Similar to real-world data

● Programmatically generated

● Similar style and structure
(particularly single-sourced synthetic samples)

Real-world data

● (Usually) no rules for naming vars/methods

● (Usually) no particular code structure

Original real-world dataset from T. Le et al. [2]

CVE → CWE

Filter the samples our models can identify (by CWE)

Final test set: 70 vulnerable samples (targeting only 8 known CWEs)

[2] T. Le and M. Babar. On the use of fine-grained vulnerable code statements for software vulnerability assessment models. In MSR’22 11

RQ 4 | How do BERT-based models perform when exposed to real-world samples?

Model Accuracy 𝒘F1 FNR FPR

JavaBERT_4HS 90.06% (-8.87%) 44.0% (-50%) 36.03% (+28.91%) 4.12% (+3.14%)

CodeBERT_4HS 86.88% (-11.8%) 23.0% (-70%) 37.74% (+24.46%) 5.39% (+4.37%)

CodeBERT_PO 85.86% (-12.81%) 20.0% (-73%) 39.52% (+27.13%) 9.85% (+8.79%)

Table | Performance results for models tested with real-world samples

Models trained on synthetic data have a tendency to identify true vulnerable samples as
non-vulnerable.

Finding 5

12

RQ 5 | To what extent BERT-based models can predict unknown vulnerabilities?

“ (...) generalizability measures how applicable the results of a study are to a broader group.

In this context, a model is said to have good generalizability if it can be successfully applied to identify unknown flaws.”

Test with samples of unknown vulnerability types
that are related to the ones the models know.

Test with samples of unknown vulnerability types
that are unrelated to the ones the models know.

Software Fault Patterns

13

RQ 5 | To what extent BERT-based models can predict unknown vulnerabilities?

SFP
Secondary Cluster

CWE # samples
(training set)

Glitch in computation 190, 191, 369, 197 12 020

Tainted input to
command

89, 113, 134, 80,
 78, 643, 90

6 569

Tainted input to
variable

606, 15 960

Path traversal 23, 36 554

Not listed in the SFP view: 129, 789 and 690
1-to-1 mapping: 400, 470 and 319

Test set for unknown and related CWEs
1. CWE-611 and CWE-79

(Tainted Input to Command; 239 samples)

2. CWE-22
(Path Traversal; 179 samples)

Test set for unknown and unrelated CWEs
1. CWE-287

(Authentication Bypass; 159 samples)

ds_611_79

ds_22

ds_287

14

RQ 5 | To what extent BERT-based models can predict unknown vulnerabilities?

Model Dataset Accuracy F1 FNR FPR

JavaBERT_4hs

ds_611_79 74.47% 85.37% 25.52% 0%

ds_22 55.86% 71.69% 44.13% 0%

ds_287 38.36% 55.45% 61.63% 0%

CodeBERT_4hs

(CodeBERT_PO
behaves similarly)

ds_611_79 17.57% 29.89% 82.4% 0%

ds_22 12.85% 22.77% 87.15% 0%

ds_287 4.40% 8.43% 95.60% 0%

“Vulnerable” class:

JavaBERT fine-tuned on synthetic data can successfully predict unknown and relatable vulnerabilities

BERT-based models fine-tuned on synthetic data cannot predict unknown and unrelated vulnerabilities.

Findings 6 and 7

15

● Small and imbalanced datasets

● Not using cross-validation

● No preprocessing strategies (e.g.: sampling)

● Lack information regarding flaw location

16

THREATS TO VALIDITY
● More data (!!)

Train with synthetic & real-world samples

Include non-vulnerable samples in the test set

Balance the dataset

● Explore the models’ ability to discover ≥ 1 CWE

FUTURE IMPROVEMENTS

Code & datasets available: https://github.com/TQRG/VDET-for-Java

