Exploring transformers for multi-label classification of Java vulnerabilities

Cláudia Mamede, Eduard Pinconschi, Rui Abreu, José Campos

22nd IEEE International Conference on Software Quality, Reliability, and Security December, 2022 • Guangzhou, China Society is becoming more dependent on technology

Companies must develop code ASAP without compromising security

How can we do that?

2

- Handle long range dependencies
- Transfer learning mechanism
- SOTA results for vulnerability detection

What about the data ?

- Using synthetic samples from the Juliet Test Suite
- Function-level granularity

- 113 898 methods (70% non-vulnerable; 30% vulnerable)
- 20 CWES

MULTILABEL: WHY?

Research focus on **binary** or **multi-class** classification:

Binary classification

Multi class classification

Both classifications lack information. For example:

Binary: UNSAFE

What problem will you solve?

Multi-class: CWE-190 Is the code truly vulnerable?

Multi-label: UNSAFE CWE-190

[2] H. Fallah et al. Adapting transformers for multi-label text classification. In CIRCLE'22

- Threshold selection to solve the problem of multi-label [1]
- Threshold = 0.5 to filter the labels
- Theoretically, we can discover ≥ 1 CWE (no data to properly test this theory)

For example:

MULTILABEL: HOW?

RQ 1 How do different output configurations impact the learning of BERT-based models?

RQ 1 How do different output configurations impact the learning of BERT-based models?

Figure | Learning curves (loss variations) during training (left) and validation (right) for all models.

Finding 1

The pooler output configuration compromises the transfer learning capabilities of JavaBERT.

RQ 2 | Which BERT-based model configuration achieves better vulnerability identifications?

Model	#Epoch	Accuracy	wF1	w Precision	wRecall	FNR	FPR
JavaBERT_4HS	8	98.90%	94.0%	95.0%	93.0%	7.12%	0.98%
CodeBERT_4HS	10	98.68%	93.0%	95.0%	91.0%	12.28%	1.02%
CodeBERT_PO	9	98.67%	93.0%	95.0%	91.0%	12.39%	1.06%

 Table | Performance results for JavaBERT and CodeBERT with different model configurations

Finding 2

Combining the outputs of the last four hidden layers yields more accurate predictions.

RQ 3 To what extent does implicit bias in datasets affect the ability of the model to learn?

• Find problematic tokens in datasets

• Our hypothesis:

Problematic tokens are most likely over represented, causing the model to make wrong predictions.

Class	Token	РМІ
Unsafe or	##ad	0.98
Vallelable	bad	0.88
Safe or	good	1
non-vullerable	##BS	1
CWE-15	##15	1
CWE-23	##23	1

Table | Top PMI scores for some labels

POINTWISE MUTUAL INFORMATION

RQ 3 To what extent does implicit bias in datasets affect the ability of the model to learn?

Original dataset normalized method and variable names

Missing: exceptions, some method calls and global variables

Replace problematic tokens with random strings (of the same size). Repeat training.

Findings 3 and 4

We can use the Pointwise Mutual Score (PMI) to identify problematic tokens in code.

Removing token that bias the model substantially reduces the f1 score (up to 12%).

RQ 4 How do BERT-based models perform when exposed to real-world samples?

Synthetic data

- Similar to real-world data
- Programmatically generated
- Similar style and structure

(particularly single-sourced synthetic samples)

Real-world data

- (Usually) no rules for naming vars/methods
- (Usually) no particular code structure

Original real-world dataset from T. Le et al. [2]

 $\mathsf{CVE} \to \mathsf{CWE}$

Filter the samples our models can identify (by CWE)

Final test set: 70 vulnerable samples (targeting only 8 known CWEs)

RQ 4 How do BERT-based models perform when exposed to real-world samples?

	Model	Accuracy	wF1	FNR	FPR
Ja	vaBERT_4HS	90.06% <mark>(-8.87%)</mark>	44.0% (-50%)	36.03% (+28.91%)	4.12% (+3.14%)
Co	deBERT_4HS	86.88% (-11.8%)	23.0% (-70%)	37.74% (+24.46%)	5.39% (+4.37%)
Co	odeBERT_PO	85.86% (-12.81%)	20.0% (-73%)	39.52% <mark>(+27.13%)</mark>	9.85% <mark>(+8.79%)</mark>

 Table | Performance results for models tested with real-world samples

Models trained on synthetic data have a tendency to identify true vulnerable samples as non-vulnerable.

RQ 5 To what extent BERT-based models can predict unknown vulnerabilities?

" (...) **generalizability** measures how applicable the results of a study are to a broader group.

In this context, a model is said to have good generalizability if it can be successfully applied to identify unknown flaws."

Test with samples of unknown vulnerability types that are **related** to the ones the models know.

Software Fault Patterns

Test with samples of unknown vulnerability types that are **unrelated** to the ones the models know.

RQ 5 To what extent BERT-based models can predict unknown vulnerabilities?

SFP Secondary Cluster	CWE	# samples (training set)
Glitch in computation	190, 191, 369, 197	12 020
Tainted input to command	89, 113, 134, 80, 78, 643, 90	6 569
Tainted input to variable	606, 15	960
Path traversal	23, 36	554

Not listed in the SFP view: 129, 789 and 690 **1-to-1 mapping:** 400, 470 and 319

Test set for unknown and related CWEs

- 1. CWE-611 and CWE-79
 ds_611_79

 (Tainted Input to Command; 239 samples)
- 2. CWE-22 ds_22

(Path Traversal; 179 samples)

Test set for unknown and unrelated CWEs

1. CWE-287 ds_287

(Authentication Bypass; 159 samples)

RQ 5 To what extent BERT-based models can predict unknown vulnerabilities?

"Vulnerable" class:

Model	Dataset	Accuracy	F1	FNR	FPR
	ds_611_79	74.47%	85.37%	25.52%	0%
JavaBERT_4hs	ds_22	55.86%	71.69%	44.13%	0%
	ds_287	38.36%	55.45%	61.63%	0%
CodeBERT_4hs	ds_611_79	17.57%	29.89%	82.4%	0%
(CodeBERT_PO behaves similarly)	ds_22	12.85%	22.77%	87.15%	0%
	ds_287	4.40%	8.43%	95.60%	0%

Findings 6 and 7

JavaBERT fine-tuned on synthetic data can successfully predict unknown and relatable vulnerabilities

BERT-based models fine-tuned on synthetic data cannot predict unknown and unrelated vulnerabilities.

THREATS TO VALIDITY

- Small and imbalanced datasets
- Not using cross-validation
- No preprocessing strategies (e.g.: sampling)
- Lack information regarding flaw location

FUTURE IMPROVEMENTS

• More data (!!)

Train with synthetic & real-world samples Include non-vulnerable samples in the test set Balance the dataset

• Explore the models' **ability to discover ≥ 1 CWE**