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Abstract—Reproducibility and comparability of empirical re-
sults are at the core tenet of the scientific method in any
scientific field. To ease reproducibility of empirical studies, several
benchmarks in software engineering research, such as Defects4J,
have been developed and widely used. For quantum software
engineering research, however, no benchmark has been estab-
lished yet. In this position paper, we propose a new benchmark—
named QBugs—which will provide experimental subjects and
an experimental infrastructure to ease the evaluation of new
research and the reproducibility of previously published results
on quantum software engineering.

Index Terms—Software engineering, Quantum software test-
ing, Software bugs

I. PROBLEM STATEMENT

Despite an endless number of fields where quantum com-
puting could overpass traditional computing (e.g., factoring
numbers [1], perform unstructured search [2], optimization al-
gorithms [3]), solve linear equations [4]), quantum software—
as classic software—needs to be specified, developed, and
tested by human developers. On one hand, these tasks have
been well studied by researchers and innumerous approaches
have been proposed and evaluated in classic software. On the
other hand, in the quantum world, the execution of these tasks
implies novel research in several directions as well as the
development of new approaches and prototypes [5]. Quantum
software engineering research is still in its early days, as it
is the empirical evaluation of novel approaches in quantum
computing. To begin with

How would one evaluate their own novel quantum
software engineering research or, reproduce others
research on quantum software engineering?

In its classic counterpart, research ideas and prototypes have
been evaluated and reproduced through controlled empirical
experiments, which usually require:
• Experimental subjects: software artifacts in the form of

source code, test cases, documentation, bug reports, and
commit history.

• Experimental infrastructure: configuration files, scripts,
and tools.

To ease the burden, to some extent, of (1) finding represen-
tative and diverse experimental subjects, (2) (re-)developing

an experimental infrastructure, and (3) reproducing others
research, several databases of software artifacts have been
developed [6, 7, 8, 9, 10].

Empirical experiments in quantum software engineering are
still at its infancy [5] and, to the best of our knowledge, no
database of quantum software artifacts have been presented.
The lack of reusable artifacts and datasets on quantum soft-
ware engineering may hold the research community back and
reduce confidence in empirical results. In fact, we (commu-
nity) are already witnessing the same reproducibility issue
we have been trying to address in its classic counterpart.
Recently, Liu et al. [11] empirical evaluated the effectiveness
and performance of their novel compiler-level optimization
approach of quantum programs, on a benchmark that is no
longer available1 and (to the best of our knowledge) cannot
be re-created. Thus, how are others supposed to reproduce the
study?

Lack of reproducibility goes beyond missing artifacts. Set-
ting up a local environment similar to the environment other
researchers used in the past to run a particular experimental
analysis is, unfortunately, the most frustrating experience
of being a researcher in software engineering. Inconsistent
program versions, long installations steps that failed through
the process, and obscure setup instructions are among the
most common problems faced by researchers when they try
to reproduce an experimental analysis. Virtual machines and
docker containers only partially have solved this problem.
Although both allow one to easily re-run an experimental setup
on another computer, they do not provide a way to know
how all the different modules of an experimental setup are
connected, how to augment the defined setup, or how to run
a pre-defined experiment with different inputs, etc.

Reproducibility (or the lack of it) of others’ research is an
increasing concern in software engineering [12], as shown by
papers with conflicting results and by the recent establishment
of artifact evaluation committees on top-tier conferences (e.g.,

1https://sites.google.com/site/qbenchmarks



POPL2, ICSE3). We foresee that reproducibility will also be
an issue in quantum software engineering research if, we
(as community), do not establish and provide experimental
subjects and infrastructures.

Thus, in this position paper, we propose the development of
a novel framework named QBugs for quantum software testing
and debugging research which aims to provide:

1) A catalog of open-source quantum algorithms.
2) A catalog of reproducible bugs in quantum algorithms.
3) Supporting infrastructure to enable controlled empirical

experiments.
In the following we discuss the challenges to develop QBugs
and research opportunities that could be built on top of QBugs.

II. CHALLENGES

This section describes the main challenges to develop QBugs.

A. Quantum Programming Languages

First main challenge a framework such as QBugs would
have to address is the support for different quantum pro-
gramming languages [13], e.g., Q# [14], OpenQASM [15],
Cirq [16], Quipper [17], and Scaffold [18]. In order to build
the most diverse collection of reproducible bugs in quantum
algorithms, we will provide support for the most adopted and
supported quantum programming languages.

B. Open-Source Implementations of Quantum Algorithms

Coding quantum algorithms is very difficult and requires
experts to do it. As opposed to its classic counterpart, finding
open-source projects that implement quantum algorithms is
a rather difficult task but crucial for the success of QBugs.
With no open-source implementations of quantum algorithms
there are no bugs to mine from, and therefore no experimental
subjects or infrastructure.

To address this challenge and build a prototype of QBugs,
we will rely on the open-source implementations of quantum
algorithms that live in the quantum framework repositories.
To the best of our knowledge, there are at least three sources
of mature implementations of quantum algorithms / programs
that we could consider.
• ProjectQ’s framework repository4 includes the implemen-

tation of 12 quantum algorithms.
• Qiskit-Aqua’s repository5 includes the implementation of

29 quantum algorithms developed in Qiskit, including the
successful and well known Shor [1], Grover [2], and
HHL [4] algorithms.

• Repository6 of the book “Programming Quantum Com-
puters” from O’Reilly [19] includes, overall, 166 quantum
exercises and correspondent solutions (some implementing
quantum algorithms) written in 6 different quantum frame-
works: 10 algorithms written in Cirq, 4 in DWave, 29 in
OpenQASM, 54 in QCEngine, 40 in Q#, and 29 in Qiskit.

2https://popl21.sigplan.org/track/popl-2021-artifact-evaluation
3https://conf.researchr.org/track/icse-2021/icse-2021-artifact-evaluation
4https://github.com/ProjectQ-Framework/ProjectQ/tree/c15f3b2/examples
5https://github.com/Qiskit/qiskit-aqua/tree/a8ab494/qiskit/aqua/algorithms
6https://github.com/oreilly-qc/oreilly-qc.github.io/tree/1a4c2cc/samples

C. Bugs Mining

The second challenge is related to the bug mining procedure.
Given the implementation of a quantum algorithm, how could
we automatically identify which bugs have been reported (thus
real bugs), and what was the fix?

To address this challenge, we will adopt the same procedure
Just et al. [7] and Gyimesi et al. [9] used to create the
Defects4J database and the BugsJS database, respectively. In
detail, we will first build a procedure to automatically map
each bug report, that was labeled as “bug” or “issue” in the
issue platform (e.g., Github issues), to a commit message in
order to find the commit that fixed the bug. Then, we will
identify the bug commit as being the commit right before the
bug fixing commit and add that bug to our catalog. Others have
started studying which bugs may raise from some quantum
algorithms implementations [20, 21]. We, on the other hand,
will automatically extract bugs from the repository’s history.

A preliminary investigation of this challenge reveals, for
example, that 93 issues were labeled as “type: bug” and
closed in the Qiskit-Aqua’s repository. For example, issue
#9287 reported a bug in the implementation of the QAOA
algorithm [22], which is then addressed in commit 5695f9f8

with the message: “Fix #928”. Note that as repositories such
as ProjectQ’s framework repository, Qiskit-Aqua’s repository,
among others, also include the source code of the quantum
language, framework, or simulator, some bug reports marked
as “bug” might not be related to a bug in any quantum
algorithm, but related to a bug in the quantum framework.
For example, issue #13249 (also labeled as “bug”) was related
to a bug in the quantum framework. The proposed fix10

only modified files under qiskit/aqua/operators/
and the source code of quantum algorithms lives under
qiskit/aqua/algorithms/. QBugs’ bug mining mod-
ule will have to be able to distinguish between framework’s
bugs and quantum algorithm’s bugs in order to create an
accurate catalog.

D. Bugs Reproducibility

Another challenge in QBugs is the reproducibility of bugs.
Quantum programs are not by design deterministic. Thus,
given a buggy version of a quantum algorithm, is it possible
to automatically reproduce/trigger the buggy behavior in a
deterministic way?

According to a recent study conducted by Fingerhuth et al.
[23], automated tests of quantum algorithms appear to be
very popular: 23 open-source quantum projects out of 26
have tests in place. Furthermore, Fingerhuth et al. [23] also
concluded that the ratio of code exercise by the tests is slightly
above the industry-expected standard (87% vs. 85%). Research
on statistical test oracles for quantum algorithms have been
proposed [21] which may further leverage the use of software
tests in quantum computing.

7https://github.com/Qiskit/qiskit-aqua/issues/928
8https://github.com/Qiskit/qiskit-aqua/commit/5695f9f
9https://github.com/Qiskit/qiskit-aqua/issues/1324
10https://github.com/Qiskit/qiskit-aqua/pull/1340/files



One possible avenue to address this challenge is, therefore,
to use the project’s tests to run a buggy version of a quan-
tum algorithm and to assess whether a bug is reproducible.
For quantum projects with no tests in place, e.g., the exer-
cises in the book “Programming Quantum Computers” from
O’Reilly [19], another methodology would have to be defined
(e.g., runtime oracles [24, 25, 26]).

III. OPPORTUNITIES

This section describes the several research and teaching
opportunities that could be developed on top of QBugs.

A. Research opportunities

Research areas that will immediately benefit from QBugs
include: quantum software testing (e.g., regression testing,
mutation testing, automatic test generation) and quantum
debugging (e.g., fault localization), program comprehension,
automated program repair, software evolution, mining software
repositories, and machine learning [27] in quantum software
engineering.

For instance, once a prototype of QBugs is available, it
would be interesting to investigate how are bugs introduced
in quantum algorithms, type of quantum bugs, and how are
quantum bugs fixed. This could leverage research on novel
static/dynamic tools tailored to identify quantum bugs on
quantum programs. The catalog of real bugs will also allow
researchers to develop and evaluate the effectiveness of, e.g.,
fault localization techniques at identifying the components
that are more likely to be faulty, or the effectiveness of test
generators at generating tests that trigger the faulty behavior.

In summary, QBugs will:
• Enable researchers to perform realistic experiments on real

quantum software and on real quantum bugs.
• Allow researchers to focus on research ideas by freeing

them from the task of (re-)developing an experimental
infrastructure.

• Foster reproducibility and comparability of empirical stud-
ies by providing reusable artifacts and datasets.

B. Teaching opportunities

We also foresee that QBugs will be useful for software
testing and quantum classes at undergraduate or graduate level.
Instructors would have a large pool of artifacts from which
they can select the best ones that might support the learning
goals of their software testing or quantum-related course.
Students will be able to explore how quantum algorithms have
been developed and tested, experiment previously proposed
quantum software engineering research, reproduce previously
published results, and try new ideas/prototypes.

IV. RELATED WORK

For the quantum software engineering’s classical counter-
part, several catalogs of real and artificial software faults [6,
7, 8, 9, 10] for different programming languages have been
proposed and widely accepted by the research community.
For example, the Software-artifact Infrastructure Repository

(SIR) [6] is considered the first attempt to provide a database
of bugs to enable reproducibility in software testing research.
SIR provides 81 programs written in Java, C, C++, and C# and
most of the faults are hand-seeded or obtained from program
mutation. Defects4J [7] is another well known dataset that
contains 835 real bugs from 17 Java projects, and it has
been used for benchmarking and comparing (1) automatic
test generation approaches [28], (2) fault localization tech-
niques [29], (3) automatic program repair techniques [30]; and
it also been used to study the properties of the bugs and their
characteristics [31]. Besides providing real bugs, Defects4J
also provides uniform access to the bugs through its own API
by abstracting away the version control system (e.g., git) and
build system.

We, on the other hand, aim to (1) gather a significant number
of real bugs that have been reported to open-source quantum
algorithms and therefore are quantum-based, and (2) integrate
into our framework previously proposed tools / techniques
on quantum software testing and debugging to ease future
evaluations and comparisons (e.g., the mutation testing tool
for quantum computing MTQC [32]).

V. CONCLUSION

A core tenet of the scientific method is reproducibility of
experiments. To reproduce an empirical study in, e.g., software
testing, one would require to use the same experimental
subjects, i.e., same software projects and/or same catalog
of software bugs, and the same experimental infrastructure,
e.g., scripts and tools. Although the former and the latter
have been investigated in detail in software engineering, there
is not yet a well defined benchmark to ease reproducibility
in quantum computing. Given the lack of reproducibility in
software engineering [12], we foresee that such concern will
also be valid in quantum computing in the near future. Thus,
in this position paper, we propose a framework which will
provide a catalog of quantum bugs and an infrastructure to
conduct empirical experiments. We envisage that our frame-
work will have a large potential for future research in the field,
in particular reproducibility and comparability of empirical
studies. For instance, researchers will be able to easily evaluate
and compare the performance of different techniques under a
common setup.
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