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ABSTRACT
There is an inherent lack of knowledge and technology to test a
quantum program properly. In this paper, building on the definition
of syntactically equivalent quantum gates, we describe our efforts in
developing a tool, coined QMutPy, leveraging the well-known open-
source mutation tool MutPy. We further discuss the design and
implementation of QMutPy, and the usage of a novel set of mutation
operators that generate mutants for qubit measurements and gates.
To evaluate QMutPy’s performance, we conducted a preliminary
study on 11 real quantum programs written in the IBM’s Qiskit li-
brary. QMutPy has proven to be an effective quantummutation tool,
providing insight into the current state of quantum tests. QMutPy is
publicly available at https://github.com/danielfobooss/mutpy. Tool
demo: https://youtu.be/fC4tOY5trqc.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Software maintenance tools.
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1 INTRODUCTION
The fast-approaching universal access to quantum computers is
bound to break several computation limitations, but it is also bound
to pose major challenges in many, if not all, computer science
disciplines [23], e.g., software testing. Despite that, and the fact
that in the classical computing realm testing has been extensively
investigated and several approaches and tools proposed [7, 11, 12],
such approaches for Quantum Programs (QPs) are still in their
infancy [8, 14, 22].
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Mutation testing [10, 19] has been shown to be an effective tech-
nique to improve testing practices, helping in guaranteeing the
correctness of the program. Big tech companies, such as Google
and Facebook, have conducted several studies [1, 18, 20] advocating
for mutation testing and its benefits. The general principle underly-
ing mutation testing is that the bugs considered to generate buggy
program versions represent realistic mistakes that programmers
often make. Such bugs are deliberately seeded into the original
program by simple syntactic changes to create a set of buggy pro-
grams called mutants. To assess the effectiveness of a test suite in
detecting mutants, these mutants are executed against the input
test suite. If the result of running a mutant is different from running
the original program, the mutant is considered detected or killed.
The more killed mutants, the better is a test suite at detecting bugs
that might occur.

Currently, to the best of our knowledge, there is no easy way to
performmutation testing onQPs automatically in a scalable manner.
Since manually-written test suites are often prone to mistakes and
carelessness, and given the added challenge of programming in a
quantum language, we figured that implementing a tool that could
help developers better assess the effectiveness and resilience of
their test suites would be a valuable contribution to the quantum
field. We argue that tools designed for this purpose would motivate
developers to improve their quantum testing practices.

Thus, in this paper, we investigate the application of mutation
testing in real QPs. We focus our investigation on the most popular
open-source full-stack library for quantum computing [3], IBM’s
Qiskit. We propose QMutPy, a novel novel Python-based toolset,
that automatically performs mutation testing for QPs written in
Qiskit. QMutPy can perform automatic mutation testing for Python
programs. In addition to the already implemented 20 classic muta-
tion operators in MutPy, QMutPy supports the five novel quantum
mutation operators we have presented in our previous work [4].

2 QMUTPY TOOLSET
2.1 Codebase
QPs written in Python using the Qiskit library are a mix of classic
operations (e.g., initialization of variables, loops), as well as quan-
tum operations (e.g., initialization of quantum circuits, measuring
qubits). Thus, we searched for existing mutation tools that: (1) Sup-
port Python programs and the two popular testing frameworks for
Python: unittest and pytest; (2) Support various classic mutation
operators (e.g., Assignment Operator Replacement, Conditional Op-
erator Insertion); (3) Support the creation of a report that could be
shown to a developer or easily parsed by an experimental infras-
tructure; (4) Foster wide adoption. The learning curve to install,
configure, and use the tool ought to be low.
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Mutatest [13], mutmut [9], MutPy [6], and CosmicRay [2] are the
most popular mutation testing tools for Python that are available
through pip (the package installer for Python). Albeit being open-
source, fully automated, and support classic mutation operators,
MutPy [6] was the only tool that met all requirements, and therefore
we built QMutPy on top of MutPy.

QMutPy performs mutations through changes to the Python
Abstract Syntax Tree (AST). MutPy had already implemented
many AST operations (e.g. ast.AugAssign, ast.Expr). However,
to implement our mutation operators, we required the use of the
ast.Call operation, since quantum gates and measurements are
function calls. In addition to a new AST operation, we created two
new files (i.e., qgates.py, qmeasurements.py) which implement
our five novel mutation operators [4].

2.2 Quantum Mutation Operators
We argue that our quantum mutants match real world bugs as (1)
[15] described quantum mutation to be helpful to assess the correct
behavior of QPs, and (2) 3 out of the 8 common bug patterns in
Qiskit programs described in [24] are related to quantum gates as
are the majority of our mutation operators.

Building on this and the previously introduced concept of syntac-
tic equivalence of quantum gates [4] where a gate 𝑔 is considered
syntactically-equivalent to gate 𝑗 if and only if the number and
the type of arguments1 required by both 𝑔 and 𝑗 are the same (e.g.,
the h (Hadamard) gate implemented in Qiskit has 10 syntactically-
equivalent gates: i, id, s, sdg, sx, t, tdg, x, y, and z). The following
subsections describe in detail each quantum mutation operator [4]
and provide an example (based on the implementation of Shor’s [21]
algorithm available in the Qiskit-Aqua’s repository2) on how each
mutation operator creates mutants.

2.2.1 Quantum Gate Replacement (QGR). This mutation oper-
ator first identifies each call to a quantum gate function (e.g.,
circuit.x()), and then replaces it with all syntactically-equivalent
gates, e.g., circuit.h(), one at a time. For instance, for the h quan-
tum gate, 10 mutants are generated as there are 10 syntactically-
equivalent gates. Listing 1 exemplifies the QGR operator.

153 - circuit.x(qubits[0])
153 + circuit.h(qubits[0])

Listing 1: Example of the QGR operator.

2.2.2 Quantum Gate Deletion (QGD). Adding and removing quan-
tum gates from a QP can have a significant impact on its output. The
QGD operation deletes an invocation to a quantum gate. Listing 2
exemplifies the QGD operator.

153 - circuit.x(qubits[0])
153 + pass

Listing 2: Example of the QGD operator. Note that in Python,
a pass statement is a nop that when executed nothing
happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed [5].

1Optional arguments are not taken into consideration.
2https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/algorithms/
factorizers/shor.py

2.2.3 Quantum Gate Insertion (QGI). This quantum mutation op-
erator performs the opposite action of the QGD operator. That is,
instead of deleting a call to a quantum gate, it inserts a call to a
syntactically-equivalent gate. For each quantum gate in the source
code, this mutation operator creates as manymutants as the number
of each syntactically-equivalent gates. For example, for the x gate,
which has 10 syntactically-equivalent gates, it creates 11 mutants,
one per equivalent gate. Note that the x gate itself can be inserted
into the source code, counting as a valid mutant. Listing 3 shows
an example of the QGI operator.

153 circuit.x(qubits[0])
154 + circuit.y(qubits[0])

Listing 3: Example of the QGI operator.

2.2.4 Quantum Measurement Insertion (QMI). In quantum com-
puting, measuring a qubit breaks the state of superposition and
therefore the qubit’s value becomes either 1 or 0 (as in classical
computing), which can be considered a mutation by design. That is
the underline idea of the QMI operator. It adds a call to the measure
function for each quantum gate call. Listing 4 shows an example of
the QMI operator.

153 circuit.x(qubits[0])
154 + measurement_cr = ClassicalRegister(circuit.num_qubits)
155 + circuit.add_register(measurement_cr)
156 + circuit.measure(qubits[0], measurement_cr)

Listing 4: Example of the QMI operator.

2.2.5 Quantum Measurement Deletion (QMD). Contrary to QMI,
the QMD removes each measurement from a QP, one at a time.
Without a measure call, the QP keeps the superposition state and
as a consequence does not converge the qubit to either 1 or 0.
Listing 5 shows an example of the QMD operator.

258 up_cqreg = ClassicalRegister(2 * self._n, name='m')
259 circuit.add_register(up_cqreg)
260 - circuit.measure(self._up_qreg, up_cqreg)
260 + pass

Listing 5: Example of the QMD operator.

2.3 Challenges
In this section, we describe themain challengeswe faced to augment
MutPy with the five novel mutation operators: QGR, QGD, QGI,
QMD, and QMI.

2.3.1 Replacement/Deletion of Existing Nodes in a Processed Python
AST. The QGR mutation operator did not pose any difficulties to
implement; it sufficed to alter the 𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑢𝑡𝑎𝑡𝑒 . The QGD and
QMD mutation operators however, at first, caused problems to
implement, since we wanted to return the node as 𝑛𝑢𝑙𝑙 (i.e., deleting
the node). This was not possible for the AST to compute.We decided
then to simply alter the 𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑢𝑡𝑎𝑡𝑒 to a 𝑝𝑎𝑠𝑠 statement.

2.3.2 Injection of New Nodes in a Processed Python AST. QMI and
QGI (Listings 3 and 4, respectively) mutation operators posed some
challenges to be implemented, since both these mutations do not
require the modification of the 𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑢𝑡𝑎𝑡𝑒 , but rather the
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injection of new nodes following the 𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑢𝑡𝑎𝑡𝑒 . Inserting
new nodes (i.e., new Lines of Codes (LOCs)) in the middle of a file
means that all LOCs that follow must be bumped by the number
of lines added. In order to overcome this problem, we modify the
𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑢𝑡𝑎𝑡𝑒 to call a function that we added to the end of the
file where we can insert new nodes without problems.

Listings 6 and 7 show the actual code created by QMutPy for the
QMI and QGI mutation operators.

153 - circuit.x(qubits[0])
153 + __qmutpy_qgi_func__(circuit, qubits[0])
424 + def __qmutpy_qgi_func__(circuit, qubit)
425 + circuit.x(qubit)
426 + circuit.y(qubit)

Listing 6: Example of the QGI operator in QMutPy.

153 - circuit.x(qubits[0])
153 + __qmutpy_qmi_func__(circuit, qubits[0])
424 + def __qmutpy_qmi_func__(circuit, qubit)
425 + circuit.x(qubit)
426 + measurement_cr = ClassicalRegister(circuit.num_qubits)
427 + circuit.add_register(measurement_cr)
428 + circuit.measure(qubit, measurement_cr)

Listing 7: Example of the QMI operator in QMutPy.

2.4 Installation
Installing and using QMutPy is simple and straightforward. To get
its latest version, one can clone the tool’s repository:

git clone https://github.com/danielfobooss/mutpy

and compile/install QMutPy from it’s source code:

python3 setup.py install

Note that although QMutPy requires Python version ≥ 3.4.0, Qiskit
requires Python version ≥ 3.7.0, thus in our preliminary study (see
Section 3) we used Python version 3.7.0.

2.5 Workflow
QMutPy’s workflow is composed of four main steps. Given a Python
program 𝑃 , its test suite 𝑇 , and a set of mutation operators 𝑀 ,
QMutPy’s workflow is as follows: (1) QMutPy firstly loads 𝑃 ’s
source code and test suite; (2) Executes 𝑇 on the original (unmu-
tated) source code; (3) Applies𝑀 and generates all mutant versions
of 𝑃 ; (4) Executes𝑇 on each mutant and provides a summary of the
results either as a yaml or html report.

2.6 Usage Example
Assuming we aim to perform mutation testing on the following
quantum code which implements a Bell state, i.e., 4 entangled quan-
tum states represented by 2 qubits:

from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, Aer,
execute

def bell_state():
q = QuantumRegister(2) # Initialize qubits
c = ClassicalRegister(2) # Initialize measurement bits
qc = QuantumCircuit(q, c) # Initialize the circuit

qc.h(q[0]) # Apply Hadamard gate

qc.cx(q[0], q[1]) # Apply CNOT gate
qc.measure(q, c) # Measure

backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots = 1000)
return job.result().get_counts(qc)

Listing 8: Code example to be tested (bell-example.py).

using the following test suite which tests if only 2 quantum states
are obtained and if those states are ‘00’ and ‘11’ with a probability
of 50% each (we give a margin of 5% error in our test cases):

from unittest import TestCase
from bell-example import bell_state

class TestBellState(TestCase):
def test_is_00_observed_prob_50_percent(self):

self.assertTrue(bell_state()['00']/1000 > 0.45)

def test_is_11_observed_prob_50_percent(self):
self.assertTrue(bell_state()['11']/1000 > 0.45)

def test_has_only_2_measurements(self):
self.assertTrue(len(bell_state()) == 2)

Listing 9: Code’s test suite (test-bell-example.py).

We could perform quantum mutation testing using the following
command and only enabling quantum mutation operators:

mut.py --show-mutants \
--target bell-example --unit-test test-bell-example \
--operator QGR QGD QGI QMI QMD

This command takes 3 seconds to run and once it has finished it re-
ports a mutation score of 70.6% with 36 mutants killed, 15 survived,
and 2 are considered incompetent. During its execution, QMutPy
reports to the stdout, for each mutant, the mutation performed and
its result, for example:

- [# 1] QGD bell-example:
------------------------------------------------------------

7: q = QuantumRegister(2)
8: c = ClassicalRegister(2)
9: qc = QuantumCircuit(q, c)
10:

- 11: qc.h(q[0])
+ 11: pass

12: qc.cx(q[0], q[1])
13: qc.measure(q, c)
14:
15: backend = Aer.get_backend('qasm_simulator')

------------------------------------------------------------
[0.00765 s] killed by test_is_11_observed_prob_50_percent

(test-bell-example.TestBellState)

As an alternative, QMutPy can also report all data generated
during the mutation testing session in YAML format (–report
REPORT_FILE) which is easier to parse, in particular for large ex-
periments.

3 PRELIMINARY STUDY
Our goal is to provide a tool that can perform mutation testing on
QPs automatically in a scalable manner. To this end, we conducted
a preliminary study3 in which we considered 11 QPs written in the
IBM’s Qiskit library that range from 80 to 443 lines of code (245 on
average). Our set of quantum mutation operators generated a total

3Fortunato et al. reports the preliminary study and discusses the results obtained, in
more detail, in [4].
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of 696 mutants for the 11 QPs, of which 325 (46.7%) were killed by
the programs’ test suites. The non-killed mutants either survived
to the test suites (307, 44.1%), were not even exercised by the test
suites (0.3%), or resulted in a timeout (62, 8.9%).

These results highlight the need for tools like QMutPy to the
quantum world, in order to assist developers at designing better
test suites, i.e., test suites that are able to kill more mutants and
therefore more likely to detect bugs.

4 RELATEDWORK
To the best of our knowledge, there are two tools in the literature
that have performed quantummutation testing on QPs: Muskit [16]
and MTQC [17].

Mendeluze et al. [16] proposed Muskit, a Python mutation tool
for Qiskit QPs, which can be used through the command line, its
Graphic User Interface (GUI), or a web application. Muskit sup-
ports the mutation operator QGD as defined in Section 2.2.2 and
the mutation operators QGI and QGR, but with no concept of syn-
tactically equivalent gates. To use Muskit, one must provide the
specification of the QP so that Muskit is able to assess whether a
mutant has been killed by a test. This requires expertise in quantum
computing and/or on Qiskit which is not available for any of the
QPs used in our study. QMutPy, on the other hand, supports two
additional quantum mutation operators, i.e., QMD and QMI, and
is able to mutate 40 gates (+21 than Muskit). In addition, as the
manually-written tests used in our study are equipped with test
assertions, QMutPy does not require any program specification or
any manual configuration to assess whether a test kills a mutant. It
works out-of-the-box.

Pellejero [17] proposed MTQC, a Java quantum mutation tool
that supports Qiskit and Q# QPs and is able to mutate 17 Qiskit’s
gates (vs. 40 in QMutPy). At the time of writing this paper, no
study has been conducted with MTQC. Furthermore, we could not
compare QMutPy’s performance and effectiveness with MTQC as
(1) MTQC does not support unittest, a requirement to run Qiskit-
Aqua’s manually-written tests, and (2) it requires one to manually
use its GUI to perform the mutation analysis, one project at a time,
which is time consuming and prone to mistakes.

5 CONCLUSIONS & FUTUREWORK
In this paper, we propose a mutation-based technique to test QPs,
coined QMutPy, that is capable of mutating QPs for Qiskit, the IBM
quantum framework. This is a first attempt to perform mutation
testing on QPs with a tool that is easy to use, works out-of-the-box
and at scale, and is available as an open-source project at https:
//github.com/danielfobooss/mutpy. Furthermore, QMutPy offers
classic and more quantum mutation operators than the approaches
/ tools proposed in the literature.

As for future work, we plan to extend QMutPy with other muta-
tion operators, offer it to other quantum frameworks (e.g., Cirq and
Q#), and run our mutation analysis on real quantum computers.
Moreover, combining QMutPy with techniques to automatically
generate test suites for QPs [8, 14, 22] is an interesting venue for
future work. In particular, QMutPy could be used to assert the
effectiveness of the generated test suites.
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