
42 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Integrating Interactive
Visualizations of Automatic
Debugging Techniques on
an Integrated Development

Environment
André Riboira, Department of Informatics Engineering, University of Porto, Porto, Portugal

& HASLab / INESC TEC, Portugal

Rui Rodrigues, Department of Informatics Engineering, University of Porto, Porto, Portugal
& INESC TEC, Porto, Portugal

Rui Abreu, Department of Informatics Engineering, University of Porto, Porto, Portugal &
HASLab / INESC TEC, Portugal

José Campos, Department of Informatics Engineering, University of Porto, Porto, Portugal

Keywords: Diagnostic Reports, Information Systems, Interaction, Statistical Debugging, Visualization

ABSTRACT
Automated debugging techniques based on statistical analysis of historical test executions data have recently
received considerable attention due to their diagnostic capabilities. However, the tools that materialize such
techniques suffer from a common, rather important shortcoming: the lack of effective diagnostic reports’
visualizations. This limitation prevents the wide adoption of such tools, as it is difficult to understand the di-
agnostic reports yielded by them. To fill this gap, the authors propose a framework for integrating interactive
visualizations of automatic debugging reports in a popular development environment (namely, the Eclipse
integrated development environment). The framework, coined GZoltar, provides several important features
to aid the developer’s efficiency to find the root cause of observed failures quickly, such as direct links to
the source code editor. Furthermore, the authors report on the results of a user study conducted to assess
GZoltar‘s effectiveness.

DOI: 10.4018/jcicg.2012070104

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 43

INTRODUCTION

When unexpected behavior is observed on a
software system, developers need to identify the
root cause that makes the system deviate from
its intended behavior. This task (also known as
software debugging, fault localization, or fault
diagnosis) is the most time-intensive and expen-
sive phase of the software development cycle
(Hailpern & Santhanam, 2002). Regardless, it
is performed since the beginning of computer
history. As an indication of the downtime,
debugging, and repair costs involved, a 2002
landmark study indicated that software bugs
posed an annual $60 billion cost to the US
economy alone (RTI, 2002). Software faults
can also lead to major accidents when occurring
on safety-critical systems (Dale & Anderson,
2009). Testing and debugging tasks should
therefore receive considerable attention during
the software development life-cycle. Hence, it is
important to have powerful tools to help testers
and developers on that crucial task.

Visualization is rather important for infor-
mation comprehension (Van Wijk, 2005). In
general, human beings find it more intuitive
to understand information laid out in a logical,
hierarchical way, than with a simple, rather
plain and textual list of values. Nevertheless,
currently available automatic debugging tools
do not offer powerful visualizations of their
debugging reports (Riboira, 2011).

In this paper, we present GZoltar, a visual
debugger for Java programs that aims to fill the
gap of currently available automatic debugging
tools. The main premises for GZoltar are
therefore the following:

• Implement a robust automatic debugging
framework that allows different visualiza-
tion techniques, and that may be easily
expanded in the future;

• Help the user to find software faults faster,
by aiding the understanding of debugging
results;

• Be highly integrated in a multi-platform
development environment to reduce the

learning curve, and the time spent on
swapping between faults’ localization and
their fixing;

• Have an easy and fast installation process
to facilitate its adoption and use;

The automatic debugging tool behind
GZoltar is Zoltar (Janssen, Abreu, & Van
Gemund, 2009), a Spectrum-Based Fault Lo-
calization (SFL) framework whose performance
is amongst the best ones for fault localiza-
tion (Abreu, Zoeteweij, & Germund, 2009).
GZoltar is implemented as a plug-in for the
Eclipse integrated development environment
(IDE) (Burnette, 2005) due to its wide adoption
(Geer, 2005) and plug-in development facilities
(McCullough, 2006). The interactive visual-
ization framework uses OpenGL for graphics
rendering due to (i) its flexibility to produce
both 2D and 3D graphics, (ii) its performance
supported by hardware acceleration, and (iii) its
multi-platform availability (Shreiner & Group,
2009). As Eclipse cannot access OpenGL di-
rectly, some supporting libraries such as JOGL
were used to create bindings to OpenGL native
system libraries (Wolf, 2005). The interactive
visualization framework can be easily extended
with new visualizations, and we present two
examples of possible visualizations as proof-
of-concept: sunburst and treemap (Stasko,
Catrambone, Guzdial, & McDonald, 2000).

The proposed interactive visualization
framework eases the creation of different debug-
ging data visualizations and allows navigation
and integration with default Eclipse features,
such as the code editor and the building warn-
ings’ list.

The remainder of this paper is organized
as follows. In the next section we present a
review of the state-of-the-art. Then, we explain
automatic debugging and outline the Zoltar
framework. The presentation of the GZoltar‘s
architecture follows. Subsequently, we propose
GZoltar’s visualizations, followed by their
interaction. Next, we report on the results of
the user study. Finally, we conclude and discuss
future work.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

State-of-the-Art

A traditional approach to fault localization is
to insert “print” statements in the program to
generate additional debugging information to
help identifying the root cause of the observed
failure(s). Essentially, the developer adds these
statements to the program to get a glimpse of the
runtime state or to verify whether the execution
has reached a particular part of the program or
not. Another common technique is the use of a
symbolic debugger, which supports additional
features such as breakpoints, single stepping,
and state modifying. Examples of symbolic
debuggers are GDB (Stallman, 1994), DBX
(Sun Microsysterms, Inc., 1990), DDD (Zeller
& Lutkehaus, 1996), EXDAMS (Balzer, 1969),
and the debugger proposed by Agrawal et al.
(1991). Symbolic debuggers are included in
many IDE such as Eclipse1, Microsoft Visual
Studio2, Xcode3, and Delphi4. Whyline (Ko &
Myers, 2009) is a graphical debugging tool that
uses a different concept, where the user is able
to query “why” the software behaves in a certain
way. Whyline is more oriented to the dynamic
execution path (i.e., dynamic slicing), and not
so much oriented to the structure of the source
code. It uses dynamic slicing to track down
the set of statements that have an impact in a
specific value. Furthermore, it is not designed
to calculate the failure probability based on the
results of a set of test executions, but only to
discover statements that impact another one.
The user has to interact almost permanently with
the tool, and analyze each failing execution of
the system under test (SUT).

These traditional, manual fault localization
approaches have a number of important limita-
tions. The placement of print statements as well
as the inspection of their output are unstructured
and ad-hoc, and are typically based on the
developer’s intuition. In addition, developers
tend to use only test cases that reveal the failure
(i.e., failing test cases), and therefore do not
use valuable information from successful test
cases. Furthermore, the size of the program state
at each point can be large, and there are many
combinations of program executions that have

to be examined. Hence, such techniques still
require a detailed knowledge of the program,
and also suffer from a substantial execution
overhead in terms of execution time and space
to store historical run-time data. Last, but not
least, manual debugging is extremely expensive
in terms of labor cost.

Aimed at drastic cost reduction, much
research has been performed in developing
automatic fault localization techniques/tools,
being the spectrum-based fault localization
(SFL) techniques the most efficient (Janssen,
Abreu, & Van Gemund, 2009). Notwithstand-
ing, little work has focused on developing a
visual representation of the diagnostic report,
being EZUnit (Bouillon, Krinke, Meyer, &
Steimann, 2007) and Tarantula (Jones, Harrold,
& Stasko, 2002) the most significant efforts.
EZUnit is an Eclipse plugin that presents a list of
possible faulty lines of code, based on statistical
analysis of the system under test, but does not
implement SFL techniques. EZUnit can also
present a call-graph of the system under test.
Tarantula is a standalone tool that exhibits a
representation of the source code of the system
under test, highlighted with each line’s failure
probability. Tarantula’s visualization resembles
a code editor seen with a huge zoom out factor,
to allow the user to have a picture of the entire
project. EZUnit and Tarantula do not offer a way
to visualize the structure of the SUT, neither
how lines of code relate between each other in
terms of simultaneous executions.

AUTOMATIC DEBUGGING
USING THE ZOLTAR
FRAMEWORK

The process of pinpointing the fault(s) that
led to symptoms (failures/errors) is called
fault localization, and has been an active area
of research for the past decades. Based on a
set of observations, automatic approaches to
software fault localization yield a list of likely
fault locations. This list is subsequently used
either by the developer, to focus the software
debugging process, or by automatic recovery
mechanisms (Patterson et al., 2002).

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 45

GZoltar’s automatic debugging core,
Zoltar, is a recent framework that performs
statistical analysis of historical software test ex-
ecutions’ data to calculate the failure probability
of each component of a SUT. That calculation
is made using SFL algorithms. Zoltar’s SFL
algorithms are among the most efficient (Abreu,
Zoeteweij, & Germund, 2009). They are being
successfully used on academic and industrial
environments, and are currently under active
development.

SFL Concepts

The most predominant approaches to fault
localization can be classified as (1) statisti-
cal approaches or (2) reasoning approaches,
depending on the amount of knowledge that is
required about the system’s internal component
structure and behavior. The former approach
uses an abstraction of program traces, dynami-
cally collected at runtime, to produce a list of
likely candidates to be at fault, whereas the
latter combines a static model of the expected
behavior with a set of observations to compute
the diagnostic report.

A statistical approach to spectrum-based
fault localization (SFL) will now be described.
A program under analysis comprises a set of M
components (e.g., functions, statements) cj
where j∈{1, …, M} and can have multiple
faults, the number being denoted C (fault car-
dinality). A diagnostic report D=<…, dk, …>

is an ordered set of diagnosis candidates dk
ordered in terms of likelihood to be the true
diagnosis. Statistical approaches yield a single-
fault diagnostic report with the M components
ordered in terms of statistical similarity (e.g.,
<{3}, {1}, …>, in terms of the indices j of the
components cj). Program (component) activity
is recorded in terms of program spectra (Har-
rold, Rothermel, Wu, & Yi, 1998). This data is
collected at runtime, and typically consists of
a number of counters or different components
of a program. In this paper we use the so-called
hit spectra, which indicate whether a component
was involved in a (test) run or not. Both spec-
tra and program pass/fail (test) information are
input to the SFL algorithm. The program spec-
tra (see Figure 1) are expressed in terms of an
N×M activity matrix A. An element aij is equal
to 1 if component j was observed to be involved
in the execution of run i, and 0 otherwise. For
j≤M, the row Ai* indicates whether a compo-
nent was executed in run i, whereas the column
A*j indicates in which runs component j was
involved. The pass/fail information is stored in
a vector e, the error vector, where ei represents
whether run i has passed (ei=0) or failed (ei=1).
Note that the pair (A, e) is the only input to
SFL.

In SFL one measures the statistical similar-
ity between the error vector e and the activity
profile column A*j for each component cj. This
similarity is quantified by a similarity coeffi-

Figure 1. Matrix A (SFL input matrix). N means test executions, M means SUT components, a
means code coverage and e means test execution result

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

46 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

cient, expressed in terms of four counters npq(j)
that count the number of elements in which A*j
and e contain respective values p and q, i.e, for
p, q ∈{0,1}, we define npq(j)=|<i | aij=p∧
ei=q>|. An example of a well-known similarity
coefficient is the Ochiai coefficient, which is
among the best for fault localization [1,24]

s j =
n j

n j + n j n j + n j
10 01

() ()
() ()() ⋅ () ()()

11

11 11

For detailed information, refer to Abreu,
Zoeteweij, and Germund (2009). Ochiai is also
implemented in the Zoltar toolset (Janssen,
Abreu, & Van Gemund, 2009).

To compute the failure probability of
software components – typically lines of code
– Zoltar requires information about the num-
ber of times a given component was involved
in failed and successful tests. For this it is
necessary to instrument the source code, so
that during execution the information of which
lines were executed needs to get recorded. This
record represents the execution’s code cover-
age. With this information and the result of the
test execution (if it passed or failed), Zoltar
is able to calculate the failure probability of
each system component. This input data is
received by Zoltar in the form of a code cov-

erage matrix, where each column represents a
system component, and each line represents a
test execution. The result of the test executions
is received by Zoltar as an error vector (see
Figure 1) (Abreu, 2009).

Because Zoltar is based on test execu-
tions’ code coverage and results, its accuracy
will depend on the quality of test cases. During
the statistical analysis, Zoltar processes the
failure probability of each system component,
and at the end it returns that information in the
form of a list, with the component and its cor-
responding failure probability.

Zoltar’s core automatic debugging
processing is very efficient but this tool has
some shortcomings, mainly related to its user
interface. Its default output is a list with the
system components and their failure probability
(see Figure 2), presented in a text-based user
interface. Zoltar also has a graphical interface,
XZoltar, but it is very limited. XZoltar is es-
sentially a code viewer with each line of code
highlighted and color-coded with its failure
probability (see Figure 3). The lack of inte-
gration with an IDE is also an issue, because
the developer has to localize its faults on one
environment and fix them on another, which
may lead to a loss of productivity. Besides, at
this moment XZoltar is only available for the
Linux operating system.

Figure 2. Zoltar output

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 47

GZOLTAR INTERACTIVE
VISUALIZATION’S
FRAMEWORK ARCHITECTURE

GZoltar is an Eclipse Plugin (McCullough,
2006) developed in Java. It accesses Eclipse’s
Workspace features to be able to obtain infor-
mation about opened projects and it accesses
Workbench features to be able to create the
plugin’s user interface.

GZoltar components can be divided into
five main areas (for a representation of GZoltar
technological layers see Figure 5):

• Initial Eclipse Integration;
• Zoltar Input Generation;
• Zoltar;
• Visualization Framework;
• Final Eclipse Integration;

Initial Eclipse Integration allows the de-
tection of all open projects, classes and test
classes. Zoltar Input Generation executes test
cases and produces code coverage informa-
tion, to create the needed SFL matrix. Zoltar

executes the Ochiai algorithm and processes
software components relations. Visualization
Framework displays different visualizations of
the processed debugging data, and allows user
to navigate through that information. At the
end, Final Eclipse Integration creates standard
Eclipse warning messages and integrates into
default Eclipse code editors. For a detailed dia-
gram about process components, see Figure 4.

Because GZoltar’s output is an Eclipse
view, it uses the toolkit that produces Eclipse
views SWT which is part of Eclipse’s Work-
bench (Lintern, Michaud, Storey, & Wu, 2003).
Inside the view, GZoltar uses OpenGL as
the base technology for rendering. OpenGL’s
multi-platform support and hardware accel-
eration support, when properly used, allow to
efficiently display complex scenes exploring
the potential of 2D and 3D graphics. Further-
more, its well-known API eases the learning
curve for someone who wants to create new
visualizations within GZoltar (FiGure 5).
Although OpenGL is not available directly for
Java, there is a tool, JOGL (Wolf, 2005), that
provides OpenGL library bindings to Java.

Figure 3. XZoltar output

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

48 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

To render OpenGL scenes, JOGL uses Java’s
AWT (O’Neal & Stewart, 1996), which is a
multiplatform toolkit to produce Java GUI’s
(Lintern, Michaud, Storey, & Wu, 2003). Eclipse
has a bridge that connects SWT and AWT, al-
lowing Eclipse to have OpenGL scenes on one

of its default views. Finally, GZoltar needs to
obtain the code coverage info (if a component
was used or not) about each test execution, to
be able to calculate the failure probability of
each component. To obtain that info, GZoltar
uses JaCoCo (Hoffmann, 2011).

Figure 4. GZoltar Brief Process Flow. GZoltar integrates well into Eclipse. It detects its proj-
ects, processes needed data, creates a visualization on an Eclipse View and integrates with the
default Code Editor

Figure 5. GZoltar technological layers

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 49

Creating a new visualization for GZoltar is
a simple task, because the visualization frame-
work provides a set of features that allows the
developer to focus only on the OpenGL scene.
The developer has access to a tree-structured
data set, which has all the information needed
for the visualization itself. Some features are
common to all visualizations, and do not need to
be implemented by the developer. For instance,
the node color and label are automatically set
by GZoltar’s visualization framework. Other
features such as the nodes’ highlighting and
selection (to expand or jump to the source code),
the source code lines relationship highlighting,
and navigation features like zoom and root-
change are also provided by the visualization
framework. The visualization developer only
needs to create a cycle that renders all nodes from
the received tree-structured data set, with the
desired shape and location. Every other feature
is assured by the visualization framework. It
is the framework that determines which nodes
will be displayed and when, in which color,
and with which label, according to the debug-
ging report results and the user interaction for
data navigation. Nevertheless, the visualiza-
tion developer is able to create powerful 3D
visualizations, and if wanted, can even bypass
some of the automatic features provided by the
visualization framework, to have more control
over the scene.

As an example, a pseudo-code is presented
in Box 1, with a sample visualization that could
be added to GZoltar´s framework:

VISUALIZATIONS OF
DEBUGGING RESULTS

As stated earlier, current automatic debugging
tools (including Zoltar) lack efficient visualiza-
tions and integration with IDE’s. The purpose
of GZoltar is to fill this gap, by presenting a
visualization of the SUT’s source code struc-
ture. The visualization is complemented with
debugging information related with each SUT
component.

Eclipse uses the workspace paradigm.
A workspace contains a set of projects, each
consisting of packages with classes within, and
ultimately lines of code, which correspond to
the components of the SUT in GZoltar’s ter-
minology. This structure can be represented as
a tree where each node represents a component
or a group of components. A node can therefore
be a project, a package, a class, a method or a
line of code (these being the leaves of the tree).
GZoltar supports multi-level packages, so it
has to deal with trees with an arbitrary number
of levels.

There are many ways to visually represent
tree data structures. A given representation may
be effective for a tree with a given pattern of
node weight distribution and node relationships,
but too confuse for a differently structured tree.
Furthermore, people react differently to the
same visualization, so it is important to give
alternatives to the user (Stasko, Catrambone,
Guzdial, & McDonald, 2000).

Box 1.
public class NewVisualization {
 public static void draw(GL gl, float ratio, ZoltarTree z) {
 Vector<ZoltarTree> children = z.getChildren();
 gl.(…); // Scene’s OpenGL code goes here
 for(ZoltarTree child: children) {
 String curNode = child.getLabel();
 String curRoot = Visualizations.getCurRoot();
 Float curPercent = z.getPercent();
 Float[] colors = Visualizations.nodeColor(child,
false);
 gl.(…); // Node’s OpenGL code goes here
 }
 }
}

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

50 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

For this reason, GZoltar was implemented
in a modular way that easily allows adding
different visualizations to the system. In the
current version of the tool, two visualizations
are provided: sunburst and treemap. The first
is more focused on the tree hierarchy, while the
other is more focused on the tree leaves. In both
of them, the debugging information, namely the
component failure probability, is represented by
color-coding each node, using colors ranging
from pure green (no failure probability) to pure
red (maximum failure probability). The two
visualizations are described in more detail in
the following sections.

Sunburst

Sunburst is a circular visualization (Stasko,
Catrambone, Guzdial, & McDonald, 2000)
that can be compared to a multiple-level ring
graph. Each level of the visualization repre-
sents a different hierarchical level (packages,
classes, methods, etc.) of the tree-structured
data. Because it supports multi-level packages,
the same level of the visualization can represent
different kinds of components (the same visu-
alization level can have classes and packages,
for instance). The tree leaves (which represent
lines of code) have a fixed area, calculated by the
total number of lines of code on the system. The
inner nodes (methods, classes, etc.) have their
area calculated based on the sum of the areas

of their descendants (see Figure 6). Sunburst
uses the green-to-red coloring scheme referred
earlier. It has however an additional coloration
method that is activated on user interaction:
when the user places the mouse cursor over a
representation of a line of code, the coloration of
the visualization changes to reveal the relations
between different lines of code of the system.

When the user places the mouse cursor over
a leaf node, all the inner nodes will render in
gray color, and the leaf nodes will render in a
color that varies from the color of the selected
node to gray, depending on the relationship
between that node and the selected one. This
information is obtained from the percentage of
simultaneous executions, between two given
lines of code. With this information it is pos-
sible not only to have a notion about the way
components relate with each other, but also the
depth of the relation.

Treemap

Treemap is a rectangular visualization (Johnson
& Shneiderman, 1991) that is widely used on
disc space usage analyzers, because it focuses
more on the tree’s leaves than on its hierarchy.
Each node is represented as a rectangle with
an inner margin, and its interior is divided
proportionally by its descendants according
to their weight. To avoid node representations
with disproportionate width and height, nodes

Figure 6. GZoltar sunburst visualization

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 51

at odd levels of the hierarchy are divided hori-
zontally and nodes at even levels are divided
vertically (see Figure 7). With this concept the
leaves occupy the majority of the display area
(the remaining corresponds to the margins).

Comparison

These two visualization concepts highlight
different aspects so they are both useful. Sun-
burst focuses more on the tree hierarchy, which
reflects the system organization. The system
organization knowledge is important to isolate
groups (packages, classes, etc.), which should
be seen in more detail (in this case, which
have higher failure probability). Treemap fo-
cuses more on the tree leaves, which represent
lines of code. Fast access to lines of code is
important when errors are well isolated, and
the user wants to access directly to the source
code at the desired line. Furthermore, as the
render area is rectangular and treemap offers
a rectangular visualization, it makes better use
of the available space.

A comparison between Sunburst and
Treemap view is displayed in Figure 8. GZoltar
considers all packages as levels so a composed
package like “org.demo” will have two levels
on GZoltar tree. This feature aims to provide
a better visualization of the system’s structure,
to help the user in his fault localization task.

To better understand the differences be-
tween visualizations, two sample systems are
presented in Figure 9, having sunburst and
treemap visualizations side-by-side. It is clear
that although the visualizations provide an
overview of the systems and the fault probability
distribution, the more complex system is not
trivial to analyze using just this broad view. In
these cases, it would be useful to have additional
control over the visualization, allowing to focus
the visualization on specific parts of the system,
and even accessing the faulty sources directly
from the visualization. This leads to the other
important component of GZoltar, the interac-
tion with the visualization and its connection to
the IDE, presented in the next section.

INTERACTION

A software developer tends to use tools that are
more comfortable to him. Usually, software is
developed in some IDE, which provides a lot
of useful tools that help the developer during
software development. Those tools can give not
only useful functionalities about code editing,
like line numbers and syntax highlighting, but
also about project organization, code comple-
tion, integrated help and the ability to analyze
the system state at a given stage. However,
the most state-of-the-art automatic debugging
tools (e.g. Tarantula and Zoltar) are external to

Figure 7. GZoltar treemap visualization

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

52 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

IDE’s, which may compromise their adoption.
To ease wide adoption, GZoltar is integrated in
the Eclipse IDE. All GZoltar’s visualizations
are rendered on a standard Eclipse view. This
allows the user to place and resize the visual-
ization area to the desired place and size, to
enhance comfort. Default Eclipse code editors
can be opened directly from the visualization,
and standard Eclipse warnings are generated
by GZoltar. Those warnings are displayed
on Eclipse “Problems” list, and as tooltips
in the code editor (see Figure 10; for a video
demonstration of GZoltar, please consult
(Riboira, 2011)).

A user can interact with GZoltar visual-
izations using a mouse and a keyboard. The
user can expand and collapse progressively
each of the system components or expand all
components at a time. Zooming and panning is

also possible to increase detail in a particular
visualization area. It is also possible to make a
“root change”, by choosing any inner tree node
to be the new visualization root. The user can
also swap between visualizations.

Navigation

By default, only the components placed on the
top tree level are displayed. The user can expand
any inner tree node by clicking on it to navi-
gate through the project structure (see Figure
11). If the user clicks on a node that is already
open, it will collapse. Pressing the “space” key
will expand all nodes. If the user presses the
“space” key again it will return to the previous
state. Navigation history is preserved even on
visualization swap. When the user clicks on
a representation of a line of code, an Eclipse

Figure 9. GZoltar visualizations of a simple (top) and complex (bottom) systems

Figure 8. GZoltar visualizations comparative

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 53

code editor is opened with the corresponding
source file. The text cursor is placed on the
corresponding line of code so the developer
can quickly fix the fault.

Zoom and Pan

One feature that is useful to the user when deal-
ing with large systems is zoom and pan. A user
can zoom into a specific visualization area using
the mouse wheel, the keyboard or by double-
clicking on a visualization spot without releas-

ing the mouse button on second click. Panning
is also possible by clicking on a visualization
spot and dragging the visualization without
releasing the left mouse button. By zooming in
and panning to the desired place, the user can
click easily on tiny nodes, or analyze in detail
a small portion of the system (see Figure 12).

Root Change

Another feature useful for large projects is root
change. The user can chose any inner tree node

Figure 10. GZoltar integration with Eclipse IDE

Figure 11. GZoltar navigation

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

54 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

to be the new visualization root. To do a root
change, the user has to click on a node with
the right mouse button. A new visualization is
then created, with the same levels, but ignoring
all the nodes that are not directly related to the
chosen one. Only its ancestors, descendants and
siblings will be present on the new visualization
(see Figure 13). To return to a more complete
tree, the user just has to click on a node that
belongs to a parent level. Selecting a tree node
of the first level to be the new visualization root
will display the entire tree.

USER STUDY

In order to validate the usefulness of the cur-
rent version of the plug-in, seven users were
selected to test the efficiency of the interactive
visualizations. It was recorded the time that
each user took to finish a debugging task. At
the end of this process, each user filled a form
with the feedback of their experience and some
suggestions for future work. This usability test
was important not only to test the efficiency
of the presented plug-in but also to aid the
development team to fulfill the user’s needs in
future versions of this tool.

Users Description

Seven developers composed the users group.
The users were picked randomly from the

Department of Informatics Engineering of
the Faculty of Engineering at the University
of Porto.

The number of users was based on J.
Nielsen’s work related with usability and user
tests (Nielsen & Landauer, 1993). Nielsen ad-
vocates that for a small software project, seven
is the optimal number of users to participate in
the usability test (Nielsen & Landauer, 1993).
This small number of users should be enough
to identify the main usability issues. This ex-
periment was conducted to identify the main
users’ difficulties while using the GZoltar
plug-in. This information was helpful to create
guidelines to improve future versions of this tool
and to have a first assessment of the impact of
this plug-in among the users.

The user group was composed of MSc
and PhD students in Informatics Engineer-
ing, aged 22 to 26 years old, and from both
genders. The users were familiarized with
three main operating systems: Linux (85.7%),
Microsoft Windows (85.7%) and Apple Mac OS
X (42.9%). The most common programming
languages used by the group members were Java
(100%), C (100%), C++ (100%), PHP (100%),
C# (85.7%), Python (71.4%) and Assembly
(57.1%). The majority of the developers used
regularly an IDE, being the most popular IDEs
Eclipse (85.7%) and Microsoft Visual Studio
(85.7%). However, 14.3% of the users did not
use regularly any IDE. The most used debug-

Figure 12. GZoltar zoom and pan

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 55

ging techniques were breakpoints (85.7%) and
“print” statements in the code (71.4%). JUnit is
the main testing tool used by the group (71.1%).
On the other hand, 28.6% of the elements of the
group stated that they do not use any particular
testing technique.

Experiment Conditions

The experiment was conducted in laboratories
of the Department of Informatics Engineering
and classrooms of the Faculty of Engineering at
the University of Porto. Computers with Linux
and Eclipse IDE with the GZoltar plug-in were
available for the experiments.

Each user had to debug a faulty version
of the NanoXML v2.2.3 application5. This ap-
plication has 5396 lines of code (LOC), and a
suite of JUnit tests. A fault was injected in the
class XMLUtil, from the net.n3.nanoxml pack-
age. The line 109 (from method skipTag) was
changed from “case ‘>’:” to “case ‘]’:”. Users
had no previous contact with the application
source code and the JUnit tests. A brief expla-
nation (less than 5 minutes) was given to each
user, to explain the goals of the task (pinpoint
the faulty code) and how GZoltar works.

The users had 20 minutes to localize and
fix the faults. After the debugging task, each
user filled a survey with questions on their
experience.

Results and Feedback

As mentioned before, the time limit for this task
was very short – only 20 minutes. The goal was
not to record how long the users would take to
find and fix the faults, but to obtain feedback
about the plug-in usability and usefulness by a
set of independent users. It is important to note
that 71.4% of the users were able to find the
fault in less than 20 minutes (and 42.9% even
fixed the fault to ascertain that the suspicion
was justified). It is important to highlight that
the users did not know which application was
going to be used in the experiment, and they
did not have any previous knowledge about
the source code. From the users that were not
able to find and correct the fault, 50% were
able to point the most likely fault localization.
However, because they were not able to fix
the fault, they could not confirm that the fault
localization was right. It is important to note
that some users were rather uncomfortable with
the Eclipse IDE because they never used it or
they did not use it on a regular basis.

The survey had a section where the users
answered questions related with their profile and
development experience, and a section where
the users could give their feedback. Replies
to the questions about the plug-in interface,
performance and associated concepts were

Figure 13. GZoltar root change

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

56 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

provided using a scale from 1 (unacceptable)
to 5 (excellent).

A considerable amount of users (42.9%)
found the plug-in difficult to understand at
first. However, the majority (57.1%) stated
that they understood in a short period of time
how the tool works. The debugging tasks, us-
ing GZoltar plug-in, were considered fast and
logic by 71.4% of the users.

The users group also analyzed the perfor-
mance of the plug-in. An expressive slice of the
group (85.7%) considered the responsiveness
of the plug-in as very good. The majority of
users (71.4%) found that the plug-in usefulness
increased with their experience and knowledge
about the tool. Most importantly, all the users
considered that they were able to obtain good
results with little knowledge about the tool
operation.

The users group also gave feedback about
the associated concepts in GZoltar. All the
users considered automatic debugging as an
important concept, where 85.7% classified it
as “essential”. Debugging techniques integrated
into IDE were also considered important, hav-
ing the majority of users (57.1%) considered
them as “essential”. A large number of users
(71.4%) also considered visual debugging as
an important concept.

The final part of the survey had an open
question where the users could leave their
comments and suggestions. Some suggestions
were related with the colors. Some users found
that the full-color spectrum affected negatively
the visualization analysis. They suggested the
limitation of the number of colors (having
for example color red for “high probability”,
yellow for “low probability” and green to “no
probability”). The users’ comments were very
positive. Two users stated that without the
GZoltar plug-in, they would probably never
have found the software faults, because they
did not know the software they were testing.

This experiment with developers validated
our hypothesis. An interactive visualization of
automatic debugging reports can help develop-
ers to find fault localizations in a short period of
time. Moreover, an IDE plug-in facilitates not

only the faults localization but also the fixing of
the localized faults. Even not knowing the faulty
software, most of the participants were able to
find and fix the faults in less than 20 minutes.

CONCLUSION AND
FUTURE WORK

Debugging is an important task in software
development. Almost all existent software has
bugs that can lead to a considerable loss of
productivity and money. Debugging software
– finding and fixing faults – is a time-intensive
task. There are some tools and techniques to
help in bug localization. Some of them use
statistical approaches to allow automatic de-
bugging. GZoltar’s goal was to fill a gap in
current automatic debugging tools, i.e., no tool
offers an IDE-integrated, powerful interactive
visualization to the diagnostic reports produced
by automatic fault localization techniques
(Riboira, 2011). GZoltar offers an extendable
visualization framework and is described us-
ing, as proof-of-concept, two potentially useful
visualizations for the diagnostic reports.

GZoltar provides a quick view of a project
structure, the relationships between lines of
code, and the probability of each component
to be at fault. GZoltar is integrated in Eclipse,
a popular IDE (Geer, 2005). GZoltar uses
Eclipse’s standard features, such as integra-
tion with code editors and standard Eclipse
warnings generation, and offers interactive
visualizations of the system under test, directly
inside an Eclipse view. Users can swap between
visualizations to better understand the system
architecture and failure distribution among
it. Users can also navigate through the visu-
alizations to analyze in detail a specific area
of the system under test. They can use some
navigation techniques such as node expand/
collapse, zoom and pan, root change, and can
see relations between lines of code. They can
also jump directly to the software source code
to fix quickly the identified fault.

The effectiveness of the presented tool was
assessed with a usability test, performed with

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 57

a small group of informatics engineering MSc
and PhD students. The results of this study
were very positive, and shown that users found
GZoltar to be a powerful debugging tool. The
study was also useful to get users’ feedback to
aid in future developments of this tool.

Being an active project, GZoltar can be
enhanced in many ways. First, we are taking
into account the feedback of the user study
to improve the plug-in. Second, we plan to
add new visualizations to the framework, and
provide some features which are useful to all
visualizations, like a mini-map to be displayed
when the user zooms into a specific system area
(showing the entire system and the area that has
been zoomed in), and a color spectrum bar to aid
the user to better identify the failure probability
of each component. Finally, further user testing
and enquiries are also required, to evaluate in
a meaningful way the effectiveness of the new
additions to this system, and to collect more
ideas for different types of visualization that
may be identified as useful.

REFERENCES

Abreu, R. (2009). Spectrum-based fault localization
in embedded software. PhD Thesis, Delft University
of Technology, NL.

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. C.
(2009). A practical evaluation of spectrum-based
fault localization. Journal of Systems and Software,
82(11), 1780–1792. doi:10.1016/j.jss.2009.06.035.

Agrawal, H., de Millo, R., & Spafford, E. (1991).
An execution backtracking approach to program
debugging. IEEE Software. doi:10.1109/52.88940.

Balzer, R. M. (1969). EXDAMS: Extendible debug-
ging and monitoring system. In Proceedings of the
AFIPS Spring Joint Conference, AFIPS Press.

Bouillon, P., Krinke, J., Meyer, N., & Steimann, F.
(2007), Ezunit: A framework for associating failed
unit tests with potential programming errors. In
Proceedings of the International Conference on Agile
Processes in Software Engineering and Extreme
Programming (XP’07). Springer.

Burnette, E. (2005). Eclipse IDE pocket guide.
O’Reilly Media, Inc..

Dale, C., & Anderson, T. (2009). In Proceedings of
the Seventeenth Safety-Critical Systems Symposium
on Safety-Critical Systems: Problems, Process and
Practice. Springer Publishing Company, Inc.

Geer, D. (2005). Eclipse becomes the dominant
Java IDE. Computer, 38(7), 16–18. doi:10.1109/
MC.2005.228.

Hailpern, B., & Santhanam, P. (2002). Software
debugging, testing, and verification. IBM Systems
Journal, 41(1), 4–12. doi:10.1147/sj.411.0004.

Harrold, M., Rothermel, G., Wu, R., & Yi, L. (1998).
An empirical investigation of program spectra. ACM
SIGPLAN Notices.

Hoffmann, M. R. (2011), JaCoCo. Retrieved from
http://www.eclemma.org/jacoco/

Janssen, T., Abreu, R., & Van Gemund, A. J. C. (2009),
Zoltar: A toolset for automatic fault localization. In
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering (pp.
662–664). Washington, DC: IEEE Computer Society.

Johnson, B., & Shneiderman, B. (1991). Tree-maps:
A spacefilling approach to the visualization of hier-
archical information structures. In Proceedings of
the 2nd Conference on Visualization, Los Alamitos,
CA (pp. 284–291). IEEE Computer Society Press.

Jones, J. A., Harrold, M. J., & Stasko, J. T. (2002).
Visualization of test information to assist fault
localization. In Proceedings of the International
Conference on Software Engineering (ICSE’02),
ACM Press.

Ko, A. J., & Myers, B. A. (2009). Finding causes of
program output with the Java Whyline. In Proceed-
ings of the Human Factors in Computing Systems
(CHI’2009) (pp. 1569-1578).

Lintern, R., Michaud, J., Storey, M.-A., & Wu,
X. (2003). Plugging-in visualization: experiences
integrating a visualization tool with eclipse. In Pro-
ceedings of the 2003 ACM Symposium on Software
Visualization (SoftVis’03) (pp. 47–56). New York,
NY: ACM.

McCullough, M. (2006). Developing eclipse plugins.
Linux Journal, 143, 11.

Nielsen, J., & Landauer, T. K. (1993). A mathematical
model of the finding of usability problems. Transport,
206, 206–213.

O’Neal, M., & Stewart, T. (1996). Awt program-
ming for Java (1st ed.). New York, NY: Henry Holt
and Co. Inc..

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

58 International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

Patterson, D., Brown, A., Broadwell, P., Candea,
G., Chen, M., & Cutler, J. … Treuhaft, N. (2002),
Recovery oriented computing (ROC): Motivation,
definition, techniques, and case studies, Technical
Report UCB/CSD-02-1175, University of California
at Berkeley, CA.

Riboira, A. (2011). GZoltar: A graphical debug-
ger interface. Master’s thesis, University of Porto,
Portugal.

Riboira, A. (2011). GZoltar: Fixing faults (vid-
eo). Retrieved from http://www.youtube.com/
watch?v=JkimgY0NGSc

RTI. (2002). Planning report 02-3: The economic
impacts of inadequate infrastructure for software
testing. Planning report, National Institute of Stan-
dards and Technology.

Shreiner, D., & Group, T. K. O. A. W. (2009). OpenGL
programming guide: The official guide to learning
OpenGL, Versions 3.0 and 3.1 (7th ed.). Addison-
Wesley Professional.

Stallman, R. (1994). Debugging with GDB - The GNU
source level debugger. Free Software Foundation.

Stasko, J., Catrambone, R., Guzdial, M., & Mc-
Donald, K. (2000). An evaluation of space-filling
information visualizations for depicting hierarchi-
cal structures. International Journal of Human-
Computer Studies, 53(5), 663–694. doi:10.1006/
ijhc.2000.0420.

Sun Microsystems, Inc. (1990). DBX. - Debugging
tools DBX, SunOS 4.1.1 ed.

Van Wijk, J. (2005). The value of visualization.
In Proceedings of the Visualization 2005 (VIS’05)
(pp. 79–86).

Wolff, D. (2005). Using opengl in java with jogl.
The Journal of Computing Science in Small Col-
leges, 21, 223–224.

Zeller, A., & Lütkehaus, D. (1996). DDD - A free
graphical front-end for UNIX debuggers. ACM
SIGPLAN Notices. doi:10.1145/249094.249108.

ENDNOTES
1 http://www.eclipse.org/ (May, 2012)
2 http://www.microsoft.com/visualstudio/

(May, 2012)
3 http://developer.apple.com/xcode/ (May,

2012)
4 http://www.embarcadero.com/products/del-

phi/ (May, 2012)
5 http://devkix.com/nanoxml.php (May, 2012)

André Riboira graduated in Informatics Engineering (BSc) at the Higher Institute of Engineer-
ing of Porto, Portugal, in 2006, and in Informatics and Computing Engineering (MSc) at the
Faculty of Engineering of the University of Porto, Portugal, in 2011, with a thesis on automatic
debugging. He worked as a software developer for the Faculty of Medicine of the University of
Porto, and also as a freelancer software developer for 6 years. He founded its own company in
2007 focused in web application development, where he was manager for 4 years. During 2011
he was a researcher at the University of Minho and enrolled on doctoral program on Informat-
ics Engineering at the Faculty of Engineering of the University of Porto, where he is currently
a researcher in automatic testing and debugging.

Rui Rodrigues graduated in Systems and Informatics Engineering at Minho University in 1998.
During his PhD he researched in the area of 3D reconstruction from Images divided between
Philips Research, Eindhoven, and Minho University, until he concluded in 2006. He worked in
the industry in the field of interactive systems, until he joined FEUP as Invited Assistant Profes-
sor in 2009, to teach and research in the areas of Computer Graphics, Interaction and Gaming.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012 59

Rui Abreu graduated in Systems and Informatics Engineering at University of Minho, Portugal,
in 2004, carrying out his graduation thesis project at Siemens S.A., Portugal. Between Septem-
ber 2002 and February 2003, Rui followed courses of the Software Technology Master Course
at Utrecht University, the Netherlands, as an Erasmus Exchange Student. He was a (student)
researcher at Philips Research Labs, the Netherlands, between October 2004 and June 2005.
In 2009, he concluded his PhD in Computer Science at the Deflt University of Technology, the
Netherlands. He is currently with the Faculty of Engineering of University of Porto as an As-
sistant Professor in Software Engineering.

José Campos concluded his MSc in Informatics and Computing Engineering at Faculty of En-
gineering of University of Porto, Portugal in 2012. During his MSc he investigated in the area
of regression testing that focusing primarily on the reduction of test suites, with the main goal of
reducing the cost of re-testing a software program. Currently he is a researcher at the Faculty of
Engineering of University of Porto in a project related with automatic error detection in software.

