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ABSTRACT
Automated debugging techniques based on statistical analysis of historical test executions data have recently 
received considerable attention due to their diagnostic capabilities. However, the tools that materialize such 
techniques suffer from a common, rather important shortcoming: the lack of effective diagnostic reports’ 
visualizations. This limitation prevents the wide adoption of such tools, as it is difficult to understand the di-
agnostic reports yielded by them. To fill this gap, the authors propose a framework for integrating interactive 
visualizations of automatic debugging reports in a popular development environment (namely, the Eclipse 
integrated development environment). The framework, coined GZoltar, provides several important features 
to aid the developer’s efficiency to find the root cause of observed failures quickly, such as direct links to 
the source code editor. Furthermore, the authors report on the results of a user study conducted to assess 
GZoltar‘s effectiveness.
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INTRODUCTION

When unexpected behavior is observed on a 
software system, developers need to identify the 
root cause that makes the system deviate from 
its intended behavior. This task (also known as 
software debugging, fault localization, or fault 
diagnosis) is the most time-intensive and expen-
sive phase of the software development cycle 
(Hailpern & Santhanam, 2002). Regardless, it 
is performed since the beginning of computer 
history. As an indication of the downtime, 
debugging, and repair costs involved, a 2002 
landmark study indicated that software bugs 
posed an annual $60 billion cost to the US 
economy alone (RTI, 2002). Software faults 
can also lead to major accidents when occurring 
on safety-critical systems (Dale & Anderson, 
2009). Testing and debugging tasks should 
therefore receive considerable attention during 
the software development life-cycle. Hence, it is 
important to have powerful tools to help testers 
and developers on that crucial task.

Visualization is rather important for infor-
mation comprehension (Van Wijk, 2005). In 
general, human beings find it more intuitive 
to understand information laid out in a logical, 
hierarchical way, than with a simple, rather 
plain and textual list of values. Nevertheless, 
currently available automatic debugging tools 
do not offer powerful visualizations of their 
debugging reports (Riboira, 2011).

In this paper, we present GZoltar, a visual 
debugger for Java programs that aims to fill the 
gap of currently available automatic debugging 
tools. The main premises for GZoltar are 
therefore the following:

• Implement a robust automatic debugging 
framework that allows different visualiza-
tion techniques, and that may be easily 
expanded in the future;

• Help the user to find software faults faster, 
by aiding the understanding of debugging 
results;

• Be highly integrated in a multi-platform 
development environment to reduce the 

learning curve, and the time spent on 
swapping between faults’ localization and 
their fixing;

• Have an easy and fast installation process 
to facilitate its adoption and use;

The automatic debugging tool behind 
GZoltar is Zoltar (Janssen, Abreu, & Van 
Gemund, 2009), a Spectrum-Based Fault Lo-
calization (SFL) framework whose performance 
is amongst the best ones for fault localiza-
tion (Abreu, Zoeteweij, & Germund, 2009). 
GZoltar is implemented as a plug-in for the 
Eclipse integrated development environment 
(IDE) (Burnette, 2005) due to its wide adoption 
(Geer, 2005) and plug-in development facilities 
(McCullough, 2006). The interactive visual-
ization framework uses OpenGL for graphics 
rendering due to (i) its flexibility to produce 
both 2D and 3D graphics, (ii) its performance 
supported by hardware acceleration, and (iii) its 
multi-platform availability (Shreiner & Group, 
2009). As Eclipse cannot access OpenGL di-
rectly, some supporting libraries such as JOGL 
were used to create bindings to OpenGL native 
system libraries (Wolf, 2005). The interactive 
visualization framework can be easily extended 
with new visualizations, and we present two 
examples of possible visualizations as proof-
of-concept: sunburst and treemap (Stasko, 
Catrambone, Guzdial, & McDonald, 2000).

The proposed interactive visualization 
framework eases the creation of different debug-
ging data visualizations and allows navigation 
and integration with default Eclipse features, 
such as the code editor and the building warn-
ings’ list.

The remainder of this paper is organized 
as follows. In the next section we present a 
review of the state-of-the-art. Then, we explain 
automatic debugging and outline the Zoltar 
framework. The presentation of the GZoltar‘s 
architecture follows. Subsequently, we propose 
GZoltar’s visualizations, followed by their 
interaction. Next, we report on the results of 
the user study. Finally, we conclude and discuss 
future work.
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State-of-the-Art

A traditional approach to fault localization is 
to insert “print” statements in the program to 
generate additional debugging information to 
help identifying the root cause of the observed 
failure(s). Essentially, the developer adds these 
statements to the program to get a glimpse of the 
runtime state or to verify whether the execution 
has reached a particular part of the program or 
not. Another common technique is the use of a 
symbolic debugger, which supports additional 
features such as breakpoints, single stepping, 
and state modifying. Examples of symbolic 
debuggers are GDB (Stallman, 1994), DBX 
(Sun Microsysterms, Inc., 1990), DDD (Zeller 
& Lutkehaus, 1996), EXDAMS (Balzer, 1969), 
and the debugger proposed by Agrawal et al. 
(1991). Symbolic debuggers are included in 
many IDE such as Eclipse1, Microsoft Visual 
Studio2, Xcode3, and Delphi4. Whyline (Ko & 
Myers, 2009) is a graphical debugging tool that 
uses a different concept, where the user is able 
to query “why” the software behaves in a certain 
way. Whyline is more oriented to the dynamic 
execution path (i.e., dynamic slicing), and not 
so much oriented to the structure of the source 
code. It uses dynamic slicing to track down 
the set of statements that have an impact in a 
specific value. Furthermore, it is not designed 
to calculate the failure probability based on the 
results of a set of test executions, but only to 
discover statements that impact another one. 
The user has to interact almost permanently with 
the tool, and analyze each failing execution of 
the system under test (SUT).

These traditional, manual fault localization 
approaches have a number of important limita-
tions. The placement of print statements as well 
as the inspection of their output are unstructured 
and ad-hoc, and are typically based on the 
developer’s intuition. In addition, developers 
tend to use only test cases that reveal the failure 
(i.e., failing test cases), and therefore do not 
use valuable information from successful test 
cases. Furthermore, the size of the program state 
at each point can be large, and there are many 
combinations of program executions that have 

to be examined. Hence, such techniques still 
require a detailed knowledge of the program, 
and also suffer from a substantial execution 
overhead in terms of execution time and space 
to store historical run-time data. Last, but not 
least, manual debugging is extremely expensive 
in terms of labor cost.

Aimed at drastic cost reduction, much 
research has been performed in developing 
automatic fault localization techniques/tools, 
being the spectrum-based fault localization 
(SFL) techniques the most efficient (Janssen, 
Abreu, & Van Gemund, 2009). Notwithstand-
ing, little work has focused on developing a 
visual representation of the diagnostic report, 
being EZUnit (Bouillon, Krinke, Meyer, & 
Steimann, 2007) and Tarantula (Jones, Harrold, 
& Stasko, 2002) the most significant efforts. 
EZUnit is an Eclipse plugin that presents a list of 
possible faulty lines of code, based on statistical 
analysis of the system under test, but does not 
implement SFL techniques. EZUnit can also 
present a call-graph of the system under test. 
Tarantula is a standalone tool that exhibits a 
representation of the source code of the system 
under test, highlighted with each line’s failure 
probability. Tarantula’s visualization resembles 
a code editor seen with a huge zoom out factor, 
to allow the user to have a picture of the entire 
project. EZUnit and Tarantula do not offer a way 
to visualize the structure of the SUT, neither 
how lines of code relate between each other in 
terms of simultaneous executions.

AUTOMATIC DEBUGGING 
USING THE ZOLTAR 
FRAMEWORK

The process of pinpointing the fault(s) that 
led to symptoms (failures/errors) is called 
fault localization, and has been an active area 
of research for the past decades. Based on a 
set of observations, automatic approaches to 
software fault localization yield a list of likely 
fault locations. This list is subsequently used 
either by the developer, to focus the software 
debugging process, or by automatic recovery 
mechanisms (Patterson et al., 2002).



Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012   45

GZoltar’s automatic debugging core, 
Zoltar, is a recent framework that performs 
statistical analysis of historical software test ex-
ecutions’ data to calculate the failure probability 
of each component of a SUT. That calculation 
is made using SFL algorithms. Zoltar’s SFL 
algorithms are among the most efficient (Abreu, 
Zoeteweij, & Germund, 2009). They are being 
successfully used on academic and industrial 
environments, and are currently under active 
development.

SFL Concepts

The most predominant approaches to fault 
localization can be classified as (1) statisti-
cal approaches or (2) reasoning approaches, 
depending on the amount of knowledge that is 
required about the system’s internal component 
structure and behavior. The former approach 
uses an abstraction of program traces, dynami-
cally collected at runtime, to produce a list of 
likely candidates to be at fault, whereas the 
latter combines a static model of the expected 
behavior with a set of observations to compute 
the diagnostic report.

A statistical approach to spectrum-based 
fault localization (SFL) will now be described. 
A program under analysis comprises a set of M 
components (e.g., functions, statements) cj 
where j∈{1, …, M} and can have multiple 
faults, the number being denoted C (fault car-
dinality). A diagnostic report D=<…, dk, …> 

is an ordered set of diagnosis candidates dk 
ordered in terms of likelihood to be the true 
diagnosis. Statistical approaches yield a single-
fault diagnostic report with the M components 
ordered in terms of statistical similarity (e.g., 
<{3}, {1}, …>, in terms of the indices j of the 
components cj). Program (component) activity 
is recorded in terms of program spectra (Har-
rold, Rothermel, Wu, & Yi, 1998). This data is 
collected at runtime, and typically consists of 
a number of counters or different components 
of a program. In this paper we use the so-called 
hit spectra, which indicate whether a component 
was involved in a (test) run or not. Both spec-
tra and program pass/fail (test) information are 
input to the SFL algorithm. The program spec-
tra (see Figure 1) are expressed in terms of an 
N×M activity matrix A. An element aij is equal 
to 1 if component j was observed to be involved 
in the execution of run i, and 0 otherwise. For 
j≤M, the row Ai* indicates whether a compo-
nent was executed in run i, whereas the column 
A*j indicates in which runs component j was 
involved. The pass/fail information is stored in 
a vector e, the error vector, where ei represents 
whether run i has passed (ei=0) or failed (ei=1). 
Note that the pair (A, e) is the only input to 
SFL.

In SFL one measures the statistical similar-
ity between the error vector e and the activity 
profile column A*j for each component cj. This 
similarity is quantified by a similarity coeffi-

Figure 1. Matrix A (SFL input matrix). N means test executions, M means SUT components, a 
means code coverage and e means test execution result
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cient, expressed in terms of four counters npq(j) 
that count the number of elements in which A*j 
and e contain respective values p and q, i.e, for 
p, q ∈{0,1}, we define npq(j)=|<i | aij=p∧
ei=q>|. An example of a well-known similarity 
coefficient is the Ochiai coefficient, which is 
among the best for fault localization [1,24]

s j =
n j

n j + n j n j + n j
10 01

( ) ( )
( ) ( )( ) ⋅ ( ) ( )( )
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For detailed information, refer to Abreu, 
Zoeteweij, and Germund (2009). Ochiai is also 
implemented in the Zoltar toolset (Janssen, 
Abreu, & Van Gemund, 2009).

To compute the failure probability of 
software components – typically lines of code 
– Zoltar requires information about the num-
ber of times a given component was involved 
in failed and successful tests. For this it is 
necessary to instrument the source code, so 
that during execution the information of which 
lines were executed needs to get recorded. This 
record represents the execution’s code cover-
age. With this information and the result of the 
test execution (if it passed or failed), Zoltar 
is able to calculate the failure probability of 
each system component. This input data is 
received by Zoltar in the form of a code cov-

erage matrix, where each column represents a 
system component, and each line represents a 
test execution. The result of the test executions 
is received by Zoltar as an error vector (see 
Figure 1) (Abreu, 2009).

Because Zoltar is based on test execu-
tions’ code coverage and results, its accuracy 
will depend on the quality of test cases. During 
the statistical analysis, Zoltar processes the 
failure probability of each system component, 
and at the end it returns that information in the 
form of a list, with the component and its cor-
responding failure probability.

Zoltar’s core automatic debugging 
processing is very efficient but this tool has 
some shortcomings, mainly related to its user 
interface. Its default output is a list with the 
system components and their failure probability 
(see Figure 2), presented in a text-based user 
interface. Zoltar also has a graphical interface, 
XZoltar, but it is very limited. XZoltar is es-
sentially a code viewer with each line of code 
highlighted and color-coded with its failure 
probability (see Figure 3). The lack of inte-
gration with an IDE is also an issue, because 
the developer has to localize its faults on one 
environment and fix them on another, which 
may lead to a loss of productivity. Besides, at 
this moment XZoltar is only available for the 
Linux operating system.

Figure 2. Zoltar output
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GZOLTAR INTERACTIVE 
VISUALIZATION’S 
FRAMEWORK ARCHITECTURE

GZoltar is an Eclipse Plugin (McCullough, 
2006) developed in Java. It accesses Eclipse’s 
Workspace features to be able to obtain infor-
mation about opened projects and it accesses 
Workbench features to be able to create the 
plugin’s user interface.

GZoltar components can be divided into 
five main areas (for a representation of GZoltar 
technological layers see Figure 5):

• Initial Eclipse Integration;
• Zoltar Input Generation;
• Zoltar;
• Visualization Framework;
• Final Eclipse Integration;

Initial Eclipse Integration allows the de-
tection of all open projects, classes and test 
classes. Zoltar Input Generation executes test 
cases and produces code coverage informa-
tion, to create the needed SFL matrix. Zoltar 

executes the Ochiai algorithm and processes 
software components relations. Visualization 
Framework displays different visualizations of 
the processed debugging data, and allows user 
to navigate through that information. At the 
end, Final Eclipse Integration creates standard 
Eclipse warning messages and integrates into 
default Eclipse code editors. For a detailed dia-
gram about process components, see Figure 4.

Because GZoltar’s output is an Eclipse 
view, it uses the toolkit that produces Eclipse 
views SWT which is part of Eclipse’s Work-
bench (Lintern, Michaud, Storey, & Wu, 2003). 
Inside the view, GZoltar uses OpenGL as 
the base technology for rendering. OpenGL’s 
multi-platform support and hardware accel-
eration support, when properly used, allow to 
efficiently display complex scenes exploring 
the potential of 2D and 3D graphics. Further-
more, its well-known API eases the learning 
curve for someone who wants to create new 
visualizations within GZoltar (FiGure 5). 
Although OpenGL is not available directly for 
Java, there is a tool, JOGL (Wolf, 2005), that 
provides OpenGL library bindings to Java. 

Figure 3. XZoltar output
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To render OpenGL scenes, JOGL uses Java’s 
AWT (O’Neal & Stewart, 1996), which is a 
multiplatform toolkit to produce Java GUI’s 
(Lintern, Michaud, Storey, & Wu, 2003). Eclipse 
has a bridge that connects SWT and AWT, al-
lowing Eclipse to have OpenGL scenes on one 

of its default views. Finally, GZoltar needs to 
obtain the code coverage info (if a component 
was used or not) about each test execution, to 
be able to calculate the failure probability of 
each component. To obtain that info, GZoltar 
uses JaCoCo (Hoffmann, 2011).

Figure 4. GZoltar Brief Process Flow. GZoltar integrates well into Eclipse. It detects its proj-
ects, processes needed data, creates a visualization on an Eclipse View and integrates with the 
default Code Editor

Figure 5. GZoltar technological layers
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Creating a new visualization for GZoltar is 
a simple task, because the visualization frame-
work provides a set of features that allows the 
developer to focus only on the OpenGL scene. 
The developer has access to a tree-structured 
data set, which has all the information needed 
for the visualization itself. Some features are 
common to all visualizations, and do not need to 
be implemented by the developer. For instance, 
the node color and label are automatically set 
by GZoltar’s visualization framework. Other 
features such as the nodes’ highlighting and 
selection (to expand or jump to the source code), 
the source code lines relationship highlighting, 
and navigation features like zoom and root-
change are also provided by the visualization 
framework. The visualization developer only 
needs to create a cycle that renders all nodes from 
the received tree-structured data set, with the 
desired shape and location. Every other feature 
is assured by the visualization framework. It 
is the framework that determines which nodes 
will be displayed and when, in which color, 
and with which label, according to the debug-
ging report results and the user interaction for 
data navigation. Nevertheless, the visualiza-
tion developer is able to create powerful 3D 
visualizations, and if wanted, can even bypass 
some of the automatic features provided by the 
visualization framework, to have more control 
over the scene.

As an example, a pseudo-code is presented 
in Box 1, with a sample visualization that could 
be added to GZoltar´s framework:

VISUALIZATIONS OF 
DEBUGGING RESULTS

As stated earlier, current automatic debugging 
tools (including Zoltar) lack efficient visualiza-
tions and integration with IDE’s. The purpose 
of GZoltar is to fill this gap, by presenting a 
visualization of the SUT’s source code struc-
ture. The visualization is complemented with 
debugging information related with each SUT 
component.

Eclipse uses the workspace paradigm. 
A workspace contains a set of projects, each 
consisting of packages with classes within, and 
ultimately lines of code, which correspond to 
the components of the SUT in GZoltar’s ter-
minology. This structure can be represented as 
a tree where each node represents a component 
or a group of components. A node can therefore 
be a project, a package, a class, a method or a 
line of code (these being the leaves of the tree). 
GZoltar supports multi-level packages, so it 
has to deal with trees with an arbitrary number 
of levels.

There are many ways to visually represent 
tree data structures. A given representation may 
be effective for a tree with a given pattern of 
node weight distribution and node relationships, 
but too confuse for a differently structured tree. 
Furthermore, people react differently to the 
same visualization, so it is important to give 
alternatives to the user (Stasko, Catrambone, 
Guzdial, & McDonald, 2000).

Box 1.
public class NewVisualization { 
     public static void draw(GL gl, float ratio, ZoltarTree z) { 
          Vector<ZoltarTree> children = z.getChildren(); 
          gl.(…); // Scene’s OpenGL code goes here 
          for(ZoltarTree child: children) { 
               String curNode = child.getLabel(); 
               String curRoot = Visualizations.getCurRoot(); 
               Float curPercent = z.getPercent(); 
               Float[] colors = Visualizations.nodeColor(child, 
false); 
               gl.(…); // Node’s OpenGL code goes here 
          } 
     } 
}
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For this reason, GZoltar was implemented 
in a modular way that easily allows adding 
different visualizations to the system. In the 
current version of the tool, two visualizations 
are provided: sunburst and treemap. The first 
is more focused on the tree hierarchy, while the 
other is more focused on the tree leaves. In both 
of them, the debugging information, namely the 
component failure probability, is represented by 
color-coding each node, using colors ranging 
from pure green (no failure probability) to pure 
red (maximum failure probability). The two 
visualizations are described in more detail in 
the following sections.

Sunburst

Sunburst is a circular visualization (Stasko, 
Catrambone, Guzdial, & McDonald, 2000) 
that can be compared to a multiple-level ring 
graph. Each level of the visualization repre-
sents a different hierarchical level (packages, 
classes, methods, etc.) of the tree-structured 
data. Because it supports multi-level packages, 
the same level of the visualization can represent 
different kinds of components (the same visu-
alization level can have classes and packages, 
for instance). The tree leaves (which represent 
lines of code) have a fixed area, calculated by the 
total number of lines of code on the system. The 
inner nodes (methods, classes, etc.) have their 
area calculated based on the sum of the areas 

of their descendants (see Figure 6). Sunburst 
uses the green-to-red coloring scheme referred 
earlier. It has however an additional coloration 
method that is activated on user interaction: 
when the user places the mouse cursor over a 
representation of a line of code, the coloration of 
the visualization changes to reveal the relations 
between different lines of code of the system.

When the user places the mouse cursor over 
a leaf node, all the inner nodes will render in 
gray color, and the leaf nodes will render in a 
color that varies from the color of the selected 
node to gray, depending on the relationship 
between that node and the selected one. This 
information is obtained from the percentage of 
simultaneous executions, between two given 
lines of code. With this information it is pos-
sible not only to have a notion about the way 
components relate with each other, but also the 
depth of the relation.

Treemap

Treemap is a rectangular visualization (Johnson 
& Shneiderman, 1991) that is widely used on 
disc space usage analyzers, because it focuses 
more on the tree’s leaves than on its hierarchy. 
Each node is represented as a rectangle with 
an inner margin, and its interior is divided 
proportionally by its descendants according 
to their weight. To avoid node representations 
with disproportionate width and height, nodes 

Figure 6. GZoltar sunburst visualization
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at odd levels of the hierarchy are divided hori-
zontally and nodes at even levels are divided 
vertically (see Figure 7). With this concept the 
leaves occupy the majority of the display area 
(the remaining corresponds to the margins).

Comparison

These two visualization concepts highlight 
different aspects so they are both useful. Sun-
burst focuses more on the tree hierarchy, which 
reflects the system organization. The system 
organization knowledge is important to isolate 
groups (packages, classes, etc.), which should 
be seen in more detail (in this case, which 
have higher failure probability). Treemap fo-
cuses more on the tree leaves, which represent 
lines of code. Fast access to lines of code is 
important when errors are well isolated, and 
the user wants to access directly to the source 
code at the desired line. Furthermore, as the 
render area is rectangular and treemap offers 
a rectangular visualization, it makes better use 
of the available space.

A comparison between Sunburst and 
Treemap view is displayed in Figure 8. GZoltar 
considers all packages as levels so a composed 
package like “org.demo” will have two levels 
on GZoltar tree. This feature aims to provide 
a better visualization of the system’s structure, 
to help the user in his fault localization task.

To better understand the differences be-
tween visualizations, two sample systems are 
presented in Figure 9, having sunburst and 
treemap visualizations side-by-side. It is clear 
that although the visualizations provide an 
overview of the systems and the fault probability 
distribution, the more complex system is not 
trivial to analyze using just this broad view. In 
these cases, it would be useful to have additional 
control over the visualization, allowing to focus 
the visualization on specific parts of the system, 
and even accessing the faulty sources directly 
from the visualization. This leads to the other 
important component of GZoltar, the interac-
tion with the visualization and its connection to 
the IDE, presented in the next section.

INTERACTION

A software developer tends to use tools that are 
more comfortable to him. Usually, software is 
developed in some IDE, which provides a lot 
of useful tools that help the developer during 
software development. Those tools can give not 
only useful functionalities about code editing, 
like line numbers and syntax highlighting, but 
also about project organization, code comple-
tion, integrated help and the ability to analyze 
the system state at a given stage. However, 
the most state-of-the-art automatic debugging 
tools (e.g. Tarantula and Zoltar) are external to 

Figure 7. GZoltar treemap visualization
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IDE’s, which may compromise their adoption. 
To ease wide adoption, GZoltar is integrated in 
the Eclipse IDE. All GZoltar’s visualizations 
are rendered on a standard Eclipse view. This 
allows the user to place and resize the visual-
ization area to the desired place and size, to 
enhance comfort. Default Eclipse code editors 
can be opened directly from the visualization, 
and standard Eclipse warnings are generated 
by GZoltar. Those warnings are displayed 
on Eclipse “Problems” list, and as tooltips 
in the code editor (see Figure 10; for a video 
demonstration of GZoltar, please consult 
(Riboira, 2011)).

A user can interact with GZoltar visual-
izations using a mouse and a keyboard. The 
user can expand and collapse progressively 
each of the system components or expand all 
components at a time. Zooming and panning is 

also possible to increase detail in a particular 
visualization area. It is also possible to make a 
“root change”, by choosing any inner tree node 
to be the new visualization root. The user can 
also swap between visualizations.

Navigation

By default, only the components placed on the 
top tree level are displayed. The user can expand 
any inner tree node by clicking on it to navi-
gate through the project structure (see Figure 
11). If the user clicks on a node that is already 
open, it will collapse. Pressing the “space” key 
will expand all nodes. If the user presses the 
“space” key again it will return to the previous 
state. Navigation history is preserved even on 
visualization swap. When the user clicks on 
a representation of a line of code, an Eclipse 

Figure 9. GZoltar visualizations of a simple (top) and complex (bottom) systems

Figure 8. GZoltar visualizations comparative
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code editor is opened with the corresponding 
source file. The text cursor is placed on the 
corresponding line of code so the developer 
can quickly fix the fault.

Zoom and Pan

One feature that is useful to the user when deal-
ing with large systems is zoom and pan. A user 
can zoom into a specific visualization area using 
the mouse wheel, the keyboard or by double-
clicking on a visualization spot without releas-

ing the mouse button on second click. Panning 
is also possible by clicking on a visualization 
spot and dragging the visualization without 
releasing the left mouse button. By zooming in 
and panning to the desired place, the user can 
click easily on tiny nodes, or analyze in detail 
a small portion of the system (see Figure 12).

Root Change

Another feature useful for large projects is root 
change. The user can chose any inner tree node 

Figure 10. GZoltar integration with Eclipse IDE

Figure 11. GZoltar navigation
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to be the new visualization root. To do a root 
change, the user has to click on a node with 
the right mouse button. A new visualization is 
then created, with the same levels, but ignoring 
all the nodes that are not directly related to the 
chosen one. Only its ancestors, descendants and 
siblings will be present on the new visualization 
(see Figure 13). To return to a more complete 
tree, the user just has to click on a node that 
belongs to a parent level. Selecting a tree node 
of the first level to be the new visualization root 
will display the entire tree.

USER STUDY

In order to validate the usefulness of the cur-
rent version of the plug-in, seven users were 
selected to test the efficiency of the interactive 
visualizations. It was recorded the time that 
each user took to finish a debugging task. At 
the end of this process, each user filled a form 
with the feedback of their experience and some 
suggestions for future work. This usability test 
was important not only to test the efficiency 
of the presented plug-in but also to aid the 
development team to fulfill the user’s needs in 
future versions of this tool.

Users Description

Seven developers composed the users group. 
The users were picked randomly from the 

Department of Informatics Engineering of 
the Faculty of Engineering at the University 
of Porto.

The number of users was based on J. 
Nielsen’s work related with usability and user 
tests (Nielsen & Landauer, 1993). Nielsen ad-
vocates that for a small software project, seven 
is the optimal number of users to participate in 
the usability test (Nielsen & Landauer, 1993). 
This small number of users should be enough 
to identify the main usability issues. This ex-
periment was conducted to identify the main 
users’ difficulties while using the GZoltar 
plug-in. This information was helpful to create 
guidelines to improve future versions of this tool 
and to have a first assessment of the impact of 
this plug-in among the users.

The user group was composed of MSc 
and PhD students in Informatics Engineer-
ing, aged 22 to 26 years old, and from both 
genders. The users were familiarized with 
three main operating systems: Linux (85.7%), 
Microsoft Windows (85.7%) and Apple Mac OS 
X (42.9%). The most common programming 
languages used by the group members were Java 
(100%), C (100%), C++ (100%), PHP (100%), 
C# (85.7%), Python (71.4%) and Assembly 
(57.1%). The majority of the developers used 
regularly an IDE, being the most popular IDEs 
Eclipse (85.7%) and Microsoft Visual Studio 
(85.7%). However, 14.3% of the users did not 
use regularly any IDE. The most used debug-

Figure 12. GZoltar zoom and pan
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ging techniques were breakpoints (85.7%) and 
“print” statements in the code (71.4%). JUnit is 
the main testing tool used by the group (71.1%). 
On the other hand, 28.6% of the elements of the 
group stated that they do not use any particular 
testing technique.

Experiment Conditions

The experiment was conducted in laboratories 
of the Department of Informatics Engineering 
and classrooms of the Faculty of Engineering at 
the University of Porto. Computers with Linux 
and Eclipse IDE with the GZoltar plug-in were 
available for the experiments.

Each user had to debug a faulty version 
of the NanoXML v2.2.3 application5. This ap-
plication has 5396 lines of code (LOC), and a 
suite of JUnit tests. A fault was injected in the 
class XMLUtil, from the net.n3.nanoxml pack-
age. The line 109 (from method skipTag) was 
changed from “case ‘>’:” to “case ‘]’:”. Users 
had no previous contact with the application 
source code and the JUnit tests. A brief expla-
nation (less than 5 minutes) was given to each 
user, to explain the goals of the task (pinpoint 
the faulty code) and how GZoltar works.

The users had 20 minutes to localize and 
fix the faults. After the debugging task, each 
user filled a survey with questions on their 
experience.

Results and Feedback

As mentioned before, the time limit for this task 
was very short – only 20 minutes. The goal was 
not to record how long the users would take to 
find and fix the faults, but to obtain feedback 
about the plug-in usability and usefulness by a 
set of independent users. It is important to note 
that 71.4% of the users were able to find the 
fault in less than 20 minutes (and 42.9% even 
fixed the fault to ascertain that the suspicion 
was justified). It is important to highlight that 
the users did not know which application was 
going to be used in the experiment, and they 
did not have any previous knowledge about 
the source code. From the users that were not 
able to find and correct the fault, 50% were 
able to point the most likely fault localization. 
However, because they were not able to fix 
the fault, they could not confirm that the fault 
localization was right. It is important to note 
that some users were rather uncomfortable with 
the Eclipse IDE because they never used it or 
they did not use it on a regular basis.

The survey had a section where the users 
answered questions related with their profile and 
development experience, and a section where 
the users could give their feedback. Replies 
to the questions about the plug-in interface, 
performance and associated concepts were 

Figure 13. GZoltar root change
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provided using a scale from 1 (unacceptable) 
to 5 (excellent).

A considerable amount of users (42.9%) 
found the plug-in difficult to understand at 
first. However, the majority (57.1%) stated 
that they understood in a short period of time 
how the tool works. The debugging tasks, us-
ing GZoltar plug-in, were considered fast and 
logic by 71.4% of the users.

The users group also analyzed the perfor-
mance of the plug-in. An expressive slice of the 
group (85.7%) considered the responsiveness 
of the plug-in as very good. The majority of 
users (71.4%) found that the plug-in usefulness 
increased with their experience and knowledge 
about the tool. Most importantly, all the users 
considered that they were able to obtain good 
results with little knowledge about the tool 
operation.

The users group also gave feedback about 
the associated concepts in GZoltar. All the 
users considered automatic debugging as an 
important concept, where 85.7% classified it 
as “essential”. Debugging techniques integrated 
into IDE were also considered important, hav-
ing the majority of users (57.1%) considered 
them as “essential”. A large number of users 
(71.4%) also considered visual debugging as 
an important concept.

The final part of the survey had an open 
question where the users could leave their 
comments and suggestions. Some suggestions 
were related with the colors. Some users found 
that the full-color spectrum affected negatively 
the visualization analysis. They suggested the 
limitation of the number of colors (having 
for example color red for “high probability”, 
yellow for “low probability” and green to “no 
probability”). The users’ comments were very 
positive. Two users stated that without the 
GZoltar plug-in, they would probably never 
have found the software faults, because they 
did not know the software they were testing.

This experiment with developers validated 
our hypothesis. An interactive visualization of 
automatic debugging reports can help develop-
ers to find fault localizations in a short period of 
time. Moreover, an IDE plug-in facilitates not 

only the faults localization but also the fixing of 
the localized faults. Even not knowing the faulty 
software, most of the participants were able to 
find and fix the faults in less than 20 minutes.

CONCLUSION AND 
FUTURE WORK

Debugging is an important task in software 
development. Almost all existent software has 
bugs that can lead to a considerable loss of 
productivity and money. Debugging software 
– finding and fixing faults – is a time-intensive 
task. There are some tools and techniques to 
help in bug localization. Some of them use 
statistical approaches to allow automatic de-
bugging. GZoltar’s goal was to fill a gap in 
current automatic debugging tools, i.e., no tool 
offers an IDE-integrated, powerful interactive 
visualization to the diagnostic reports produced 
by automatic fault localization techniques 
(Riboira, 2011). GZoltar offers an extendable 
visualization framework and is described us-
ing, as proof-of-concept, two potentially useful 
visualizations for the diagnostic reports.

GZoltar provides a quick view of a project 
structure, the relationships between lines of 
code, and the probability of each component 
to be at fault. GZoltar is integrated in Eclipse, 
a popular IDE (Geer, 2005). GZoltar uses 
Eclipse’s standard features, such as integra-
tion with code editors and standard Eclipse 
warnings generation, and offers interactive 
visualizations of the system under test, directly 
inside an Eclipse view. Users can swap between 
visualizations to better understand the system 
architecture and failure distribution among 
it. Users can also navigate through the visu-
alizations to analyze in detail a specific area 
of the system under test. They can use some 
navigation techniques such as node expand/
collapse, zoom and pan, root change, and can 
see relations between lines of code. They can 
also jump directly to the software source code 
to fix quickly the identified fault.

The effectiveness of the presented tool was 
assessed with a usability test, performed with 
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a small group of informatics engineering MSc 
and PhD students. The results of this study 
were very positive, and shown that users found 
GZoltar to be a powerful debugging tool. The 
study was also useful to get users’ feedback to 
aid in future developments of this tool.

Being an active project, GZoltar can be 
enhanced in many ways. First, we are taking 
into account the feedback of the user study 
to improve the plug-in. Second, we plan to 
add new visualizations to the framework, and 
provide some features which are useful to all 
visualizations, like a mini-map to be displayed 
when the user zooms into a specific system area 
(showing the entire system and the area that has 
been zoomed in), and a color spectrum bar to aid 
the user to better identify the failure probability 
of each component. Finally, further user testing 
and enquiries are also required, to evaluate in 
a meaningful way the effectiveness of the new 
additions to this system, and to collect more 
ideas for different types of visualization that 
may be identified as useful.

REFERENCES

Abreu, R. (2009). Spectrum-based fault localization 
in embedded software. PhD Thesis, Delft University 
of Technology, NL.

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. C. 
(2009). A practical evaluation of spectrum-based 
fault localization. Journal of Systems and Software, 
82(11), 1780–1792. doi:10.1016/j.jss.2009.06.035.

Agrawal, H., de Millo, R., & Spafford, E. (1991). 
An execution backtracking approach to program 
debugging. IEEE Software. doi:10.1109/52.88940.

Balzer, R. M. (1969). EXDAMS: Extendible debug-
ging and monitoring system. In Proceedings of the 
AFIPS Spring Joint Conference, AFIPS Press.

Bouillon, P., Krinke, J., Meyer, N., & Steimann, F. 
(2007), Ezunit: A framework for associating failed 
unit tests with potential programming errors. In 
Proceedings of the International Conference on Agile 
Processes in Software Engineering and Extreme 
Programming (XP’07). Springer.

Burnette, E. (2005). Eclipse IDE pocket guide. 
O’Reilly Media, Inc..

Dale, C., & Anderson, T. (2009). In Proceedings of 
the Seventeenth Safety-Critical Systems Symposium 
on Safety-Critical Systems: Problems, Process and 
Practice. Springer Publishing Company, Inc.

Geer, D. (2005). Eclipse becomes the dominant 
Java IDE. Computer, 38(7), 16–18. doi:10.1109/
MC.2005.228.

Hailpern, B., & Santhanam, P. (2002). Software 
debugging, testing, and verification. IBM Systems 
Journal, 41(1), 4–12. doi:10.1147/sj.411.0004.

Harrold, M., Rothermel, G., Wu, R., & Yi, L. (1998). 
An empirical investigation of program spectra. ACM 
SIGPLAN Notices.

Hoffmann, M. R. (2011), JaCoCo. Retrieved from 
http://www.eclemma.org/jacoco/

Janssen, T., Abreu, R., & Van Gemund, A. J. C. (2009), 
Zoltar: A toolset for automatic fault localization. In 
Proceedings of the 2009 IEEE/ACM International 
Conference on Automated Software Engineering (pp. 
662–664). Washington, DC: IEEE Computer Society.

Johnson, B., & Shneiderman, B. (1991). Tree-maps: 
A spacefilling approach to the visualization of hier-
archical information structures. In Proceedings of 
the 2nd Conference on Visualization, Los Alamitos, 
CA (pp. 284–291). IEEE Computer Society Press.

Jones, J. A., Harrold, M. J., & Stasko, J. T. (2002). 
Visualization of test information to assist fault 
localization. In Proceedings of the International 
Conference on Software Engineering (ICSE’02), 
ACM Press.

Ko, A. J., & Myers, B. A. (2009). Finding causes of 
program output with the Java Whyline. In Proceed-
ings of the Human Factors in Computing Systems 
(CHI’2009) (pp. 1569-1578).

Lintern, R., Michaud, J., Storey, M.-A., & Wu, 
X. (2003). Plugging-in visualization: experiences 
integrating a visualization tool with eclipse. In Pro-
ceedings of the 2003 ACM Symposium on Software 
Visualization (SoftVis’03) (pp. 47–56). New York, 
NY: ACM.

McCullough, M. (2006). Developing eclipse plugins. 
Linux Journal, 143, 11.

Nielsen, J., & Landauer, T. K. (1993). A mathematical 
model of the finding of usability problems. Transport, 
206, 206–213.

O’Neal, M., & Stewart, T. (1996). Awt program-
ming for Java (1st ed.). New York, NY: Henry Holt 
and Co. Inc..



Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

58   International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012

Patterson, D., Brown, A., Broadwell, P., Candea, 
G., Chen, M., & Cutler, J. … Treuhaft, N. (2002), 
Recovery oriented computing (ROC): Motivation, 
definition, techniques, and case studies, Technical 
Report UCB/CSD-02-1175, University of California 
at Berkeley, CA.

Riboira, A. (2011). GZoltar: A graphical debug-
ger interface. Master’s thesis, University of Porto, 
Portugal.

Riboira, A. (2011). GZoltar: Fixing faults (vid-
eo). Retrieved from http://www.youtube.com/
watch?v=JkimgY0NGSc

RTI. (2002). Planning report 02-3: The economic 
impacts of inadequate infrastructure for software 
testing. Planning report, National Institute of Stan-
dards and Technology.

Shreiner, D., & Group, T. K. O. A. W. (2009). OpenGL 
programming guide: The official guide to learning 
OpenGL, Versions 3.0 and 3.1 (7th ed.). Addison-
Wesley Professional.

Stallman, R. (1994). Debugging with GDB - The GNU 
source level debugger. Free Software Foundation.

Stasko, J., Catrambone, R., Guzdial, M., & Mc-
Donald, K. (2000). An evaluation of space-filling 
information visualizations for depicting hierarchi-
cal structures. International Journal of Human-
Computer Studies, 53(5), 663–694. doi:10.1006/
ijhc.2000.0420.

Sun Microsystems, Inc. (1990). DBX. - Debugging 
tools DBX, SunOS 4.1.1 ed.

Van Wijk, J. (2005). The value of visualization. 
In Proceedings of the Visualization 2005 (VIS’05) 
(pp. 79–86).

Wolff, D. (2005). Using opengl in java with jogl. 
The Journal of Computing Science in Small Col-
leges, 21, 223–224.

Zeller, A., & Lütkehaus, D. (1996). DDD - A free 
graphical front-end for UNIX debuggers. ACM 
SIGPLAN Notices. doi:10.1145/249094.249108.

ENDNOTES
1  http://www.eclipse.org/ (May, 2012)
2  http://www.microsoft.com/visualstudio/ 

(May, 2012)
3  http://developer.apple.com/xcode/ (May, 

2012)
4  http://www.embarcadero.com/products/del-

phi/ (May, 2012)
5  http://devkix.com/nanoxml.php (May, 2012)

André Riboira graduated in Informatics Engineering (BSc) at the Higher Institute of Engineer-
ing of Porto, Portugal, in 2006, and in Informatics and Computing Engineering (MSc) at the 
Faculty of Engineering of the University of Porto, Portugal, in 2011, with a thesis on automatic 
debugging. He worked as a software developer for the Faculty of Medicine of the University of 
Porto, and also as a freelancer software developer for 6 years. He founded its own company in 
2007 focused in web application development, where he was manager for 4 years. During 2011 
he was a researcher at the University of Minho and enrolled on doctoral program on Informat-
ics Engineering at the Faculty of Engineering of the University of Porto, where he is currently 
a researcher in automatic testing and debugging.

Rui Rodrigues graduated in Systems and Informatics Engineering at Minho University in 1998. 
During his PhD he researched in the area of 3D reconstruction from Images divided between 
Philips Research, Eindhoven, and Minho University, until he concluded in 2006. He worked in 
the industry in the field of interactive systems, until he joined FEUP as Invited Assistant Profes-
sor in 2009, to teach and research in the areas of Computer Graphics, Interaction and Gaming.



Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Creative Interfaces and Computer Graphics, 3(2), 42-59, July-December 2012   59

Rui Abreu graduated in Systems and Informatics Engineering at University of Minho, Portugal, 
in 2004, carrying out his graduation thesis project at Siemens S.A., Portugal. Between Septem-
ber 2002 and February 2003, Rui followed courses of the Software Technology Master Course 
at Utrecht University, the Netherlands, as an Erasmus Exchange Student. He was a (student) 
researcher at Philips Research Labs, the Netherlands, between October 2004 and June 2005. 
In 2009, he concluded his PhD in Computer Science at the Deflt University of Technology, the 
Netherlands. He is currently with the Faculty of Engineering of University of Porto as an As-
sistant Professor in Software Engineering.

José Campos concluded his MSc in Informatics and Computing Engineering at Faculty of En-
gineering of University of Porto, Portugal in 2012. During his MSc he investigated in the area 
of regression testing that focusing primarily on the reduction of test suites, with the main goal of 
reducing the cost of re-testing a software program. Currently he is a researcher at the Faculty of 
Engineering of University of Porto in a project related with automatic error detection in software.


