
Parallel Many-Objective Search for Unit Tests
Verena Bader

Chair of Software Engineering II
University of Passau, Germany

José Campos
University of Washington

WA, USA

Gordon Fraser
Chair of Software Engineering II
University of Passau, Germany

Abstract—Meta-heuristic search algorithms such as genetic
algorithms have been applied successfully to generate unit tests,
but typically take long to produce reasonable results, achieve
sub-optimal code coverage, and have large variance due to their
stochastic nature. Parallel genetic algorithms have been shown
to be an effective improvement over sequential algorithms in
many domains, but have seen little exploration in the context
of unit test generation to date. In this paper, we describe
a parallelised version of the many-objective sorting algorithm
(MOSA) for test generation. Through the use of island models,
where individuals can migrate between independently evolving
populations, this algorithm not only reduces the necessary search
time, but produces overall better results. Experiments with
an implementation of parallel MOSA on the EVOSUITE test
generation tool using a large corpus of complex open source Java
classes confirm that the parallelised MOSA algorithm achieves
on average 84% code coverage, compared to 79% achieved by a
standard sequential version.

Index Terms—unit test generation, search-based test genera-
tion, parallel genetic algorithm, EvoSuite

I. INTRODUCTION

Automated test generation techniques support testers and
developers in the difficult and tedious task of selecting effective
test cases. Meta-heuristic search algorithms, for example
Genetic Algorithms (GAs), have shown promise in the context
of unit test generation for object-oriented software. These
algorithms are typically used in order to generate test suites
that maximise code coverage while minimising the number
of test cases generated. Even though these approaches have
been shown to achieve good levels of code coverage, they are
far from optimal. In particular, achieving high levels of code
coverage requires running the search for impractically long
time, and the stochastic nature means that the quality of the
results varies between individual runs.

A promising approach to improve evolutionary search
algorithms is parallelisation: The common availability of multi-
core processors means that computationally expensive aspects
of the search algorithms can immediately be parallelised.
However, parallelisation of GAs goes even further than this: By
independently evolving separate sub-populations in parallel in
island models, and occasionally allowing migration of candidate
solutions between the sub-populations, parallel GAs can achieve
overall better results, not just cut down time. To date, there
has been very little exploration of parallel GAs in the context
of unit test generation. It is not obvious that results of parallel
GAs from other domains can be carried over to test generation,
since test generation uses specialised search algorithms, such as
the many-objective sorting algorithm (MOSA) [21]. Thus, there

is the necessity to investigate whether parallel GAs can be used
to improve the performance and applicability of search-based
test generation.

In this paper, we describe a parallelised version of the many-
objective sorting algorithm (MOSA) for test generation. MOSA
is the state-of-the-art search algorithm for unit test generation.
It casts test generation as a many-objective search problem,
where each coverage goal (e.g., branch in the source code) is
represented as a distinct optimisation goal, and a population of
unit tests (i.e., sequences of API calls) is evolved to cover as
many goals as possible. The parallelisation consists of creating
an island model, where multiple independent sub-populations
of MOSA evolve independently. The sub-populations are linked
by a scarce migration of individuals, where some individuals
are selected from one population, and sent to another one,
chosen based on a ring topology. The migration needs to be
carefully balanced in order to avoid premature convergence
of the sub-populations and to maintain the benefits of parallel
evolution. Migrants are integrated into the populations when
MOSA decides on individuals for the next generation, and
the final test suite is created from a combination of all sub-
populations.

We have implemented this parallel model in the EVOSUITE
test generator [13], which provides a sequential implementation
of MOSA. To fully de-couple the evolution of the sub-
populations aside of migration, our implementation of parallel
MOSA executes each island on a separate process. This has
the additional benefit that it overcomes inherent technical
challenges of Java dependency handling, and accommodates for
the computational needs of independent evolution. Furthermore,
this approach seems particularly suitable in the face of
ubiquitously available multi-core architectures.

In detail, the contributions of this paper are:
• A parallel extension of the MOSA algorithm (pMOSA)

using an island model and migration strategy.
• An implementation of the parallel MOSA variant in the

EVOSUITE test generation tool.
• A detailed tuning study to determine the optimal parame-

ters of the parallel MOSA.
• An empirical evaluation of the effects and improvements

caused by the parallelisation.
We have applied our implementation of pMOSA to a large

corpus of complex open source Java classes. Our experiments
confirm that the parallelised MOSA algorithm achieves higher
code coverage than the sequential version. While running
MOSA with a single client and a single population achieves



an average code coverage of 79%, increasing the number of
parallel evolving sub-populations to eight increases coverage to
84%. To some extent, the coverage increase can be attributed
to the increased resources, but our experiments confirm that
the migration strategy also positively influences coverage.

II. BACKGROUND

A. Search-based Unit Test Generation

A common objective in automated test generation is code
coverage; search-based testing is well suited for optimising
test suites that achieve the highest possible code coverage. A
code coverage criterion can be interpreted as a set of distinct
coverage goals, such as branches in the program control flow.
For each such coverage goal it is possible to derive an estimate
of how close a given program execution is to covering it. This
estimate serves as fitness function during a search for test
cases.

Most coverage-oriented fitness function are based on the
approach level and branch distance metrics [19], [25]. The
approach level approximates the distance between the execution
path of a test case t and a target execution covering a coverage
goal x ∈ X (for any given set of coverage goals X , defined
by a coverage criterion). The approach level A(t, x) is defined
as the minimal number of control dependent edges in the
control dependency graph between the target goal x and the
control flow path represented by the test case t. The branch
distance d(t, x) heuristically quantifies how far a branch in
the control flow graph is from being evaluated to true or to
false. The overall fitness function is usually a combination of
approach level and branch distance, and can be further adapted
for specific coverage criteria. For example, for branch coverage
the fitness function to minimise the approach level and branch
distance between a test t and a branch coverage goal x is
defined as:

f(t, x) = A(t, x) + ν(d(t, x)) (1)

where ν is any normalising function in the range [0, 1] [3].
More recently, there is a trend to optimise for multiple

coverage criteria at the same time [23]. For example, the
EVOSUITE test generation tool by default now optimises for
(1) method coverage, (2) method coverage without exceptions,
(3) line coverage, (4) branch coverage, (5) branch coverage
with method direct calls, (6) exception coverage, (7) weak
mutation coverage, and (8) output coverage.

In unit test generation, a test case is a sequence of calls
on instances of a class under test, and coverage (and thus
fitness) is measured on this class. The representation of a unit
test for search-based generation consequently is a variable
length sequence of calls, where individual statements in the
sequence can define values that other statements use (e.g.,
as parameters). Mutation consists of inserting, deleting, or
changing some of these calls; crossover consists of cutting and
merging two sequences, while maintaining the validity of value
dependencies. Further details of the search operators can be
found in the literature [13].

F1

F2
F3

F0

F0

fit
ne

ss
 v

al
ue

 2

fitness value 1

Figure 1: Ranking of individuals by their vector of fitness
values into non-dominating fronts F0-F3.

To avoid the challenges of selecting an order in which to
handle individual coverage goals and deciding how much of
the overall available resources to invest in each goal, whole
test suite optimisation was introduced, where a set of test cases
is optimised for all coverage goals at the same time. More
recently, however, it has been shown that the reformulation as
a many-objective search problem is the most effective way to
generate test suites [21].

B. Many-Objective Sorting Algorithm MOSA

The many-objective approach considers each coverage goal
as an individual objective. Since there is now more than one
fitness value for one individual, each individual gets assigned
a fitness vector of m values for m objectives. To compare the
fitness vectors and to find the individuals with the best vectors,
MOSA uses the method of Pareto dominance and Pareto
optimality [11]. As the fitness values should be minimised,
a test case x dominates another test case y if and only if
there exists at least one objective function whose value is
smaller using x than using y. Assuming that all other objective
functions do not have a greater value when using x.

Figure 1 shows a set of individuals with a vector of values
of two objectives each. The individuals are arranged according
to their fitness vector. The Pareto dominance arranges the
individuals into subsets of non-dominating fronts where the
individuals from different fronts dominate the other but the
individuals of the same front are indifferent. The individuals
assigned to F0 and F1 create the first front. They are the Pareto
optimum of this set, as there is no individual with a better
fitness vector according to the defined dominance criterion.

An additional preference criterion is introduced to focus the
search effort on individuals that are closer to uncovered fitness
goals. A test case x is preferred over another test case y if
and only if the values of the objective function for a coverage
goal bi are smaller for x than for y. This preference creates
a subset of the first front which is depicted as the set F0
in Figure 1. As the algorithm searches for individuals that
contribute to maximise the total coverage, these individuals of



Algorithm 1 Main evolutionary loop of MOSA
Input: Population size n, Stopping condition C
Output: Archive of fittest individuals A

1: iteration← 0
2: P ← initialise with random population size n
3: A← update with P
4: while ¬C do
5: Pnext ← breed next generation
6: Pnext ← Pnext ∪ P
7: R← preference sorting of Pnext

8: P = { }
9: P ← select best n from Pnext with ranking R

10: A← update with A ∪ P
11: iteration← iteration+ 1
12: end while
13: return A

F0 are possible candidates. A secondary preference criterion is
the test case length to keep the test cases as short as possible.

Algorithm 1 shows the main steps of the algorithm. MOSA
starts with an initial population of randomly generated test
cases. The population evolves through succeeding iterations
by producing a new population or generation every iteration.
Individuals for a new population are chosen from the set of
current population combined with the set of offspring which are
generated by combining two selected test cases using crossover
and mutations.

To decide which test cases are selected for the new genera-
tion, a ranking for the combined test cases is calculated using
the previously described Pareto dominance and the preference
criteria. The algorithm only creates a total of two fronts. The
test cases that are chosen for the first front F0 have the lowest
objective score for each uncovered fitness goals and are given
the highest chance of being selected for the next generation
by assigning them to rank 0. The remaining test cases are
ranked according to the traditional sorting algorithm used by
NSGA-II [10] starting with rank 1. The new population is filled
first with the test cases from F0, then with the remaining test
cases respecting the assigned rank, if the configured population
size is not yet achieved.

MOSA uses an archive [24] to store the best and shortest
test cases that cover the fitness goals of the software under test.
After each iteration the archive includes test cases that cover
previously uncovered fitness goals and exchanges an already
stored test case with another if the new one is shorter. This
archive forms the resulting test suite when the algorithm has
terminated.

C. Parallel Genetic Algorithms

There are several ways to parallelise a genetic algorithm.
Cantú-Paz describes a categorisation [9] that covers the basic
possibilities. Firstly, the algorithms can be distinguished by
the number of populations involved. Consequently, the three
main types of parallel genetic algorithms are: single population
master-slave, single population fine-grained, and multiple

population coarse-grained genetic algorithms. There is also
the possibility of hybrids of these three general models.

A master-slave genetic algorithm consists of a single
population. The master contains the population and executes all
operations of the genetic algorithm. As crossover and selection
consider the entire population these operations need to be done
globally in the master. The fitness evaluation considers each
individual on its own which is why this step can be executed in
parallel. Each slave gets assigned a few individuals for which
it calculates the fitness values. This can be an improvement for
a genetic algorithm when the calculation of the fitness function
is computation-intensive.

The second type is a fine-grained genetic algorithm where
all evolutionary steps are parallelised. It also uses a single
population but it is spatially structured into small groups of
individuals. Every group has a fixed set of neighbouring groups
with which it shares a few individuals that lie in the edge
area to create overlapping regions. Selection and crossover are
restricted to the individuals within the group with the only
interaction to other groups coming from the overlap. This
type is best suited for massively parallel systems, e.g., in grid
computing.

A coarse-grained genetic algorithm consists of several sub-
populations which exchange individuals occasionally, which is
called migration. Selection and crossover individually take place
in the different sub-populations. This form of parallelisation is
often called island model which has its origins in population
genetics.

Another important difference between the types is whether
the parallelisation introduces changes to the genetic algorithm.
Master-slave genetic algorithms do not change the behaviour
of the original genetic algorithm, as they always consider the
whole population and do not restrict the individuals in their
choice of a crossover partner. In fine- or coarse-grained genetic
algorithms selection and crossover is restricted to a subset of
the individuals.

D. Island Model – Coarse-Grained Parallelisation

The island model mimics the natural evolution by distributing
a large population among a number of semi-isolated sub-
populations [2]. Each island maintains its own population and
in each island all genetic operators (selection, mutation, and
crossover) are performed locally [18]. All island populations are
completely isolated which means that each island can search
in its own local search space and can develop in different
directions with respect to the other populations. Additionally
the islands can start their search in different parts of the search
space. This helps covering more of the possible global search
space and preserves genetic diversity [27].

Occasionally, migration occurs where a few selected indi-
viduals, called immigrants, are sent to a selected neighbouring
island. There are two main types of migration: blocking and
non-blocking. Both forms are initiated at a predefined constant
interval, but blocking migration waits for the receiver to accept
the individuals whereas non-blocking continues with the next
task [1]. Figure 2 shows the island populations with their



Figure 2: Schematic depiction of the island model; Each island
maintains its own population while individuals can migrate to
a neighbouring island.

respective sets of individuals and the communication of the
immigrants. The displayed communication channels in this
figure are logical and can be mapped to a physical network,
for example a ring or a hypercube topology, as a part of the
migration strategy. After termination the best set of individuals
ever found is the resulting end population and the solution for
the parallel genetic algorithm [2].

When using this model there is always a fine line between
premature convergence and complete isolation of the sub-
populations [16]. On one hand, if migrations are too frequent
the risk of hitting a local optimum is increased. On the other
hand, if the migration occurs too rarely the population might
drift aimlessly without converging [8]. A migration policy
that is too aggressive, by producing too many immigrants,
having an excessive frequency or selecting immigrants that
are too “good”, could negatively affect the solution quality by
converging too fast [8].

E. Migration Parameters

The island model is affected by several parameters due
to the concept of migration. As simple as it is to integrate
the model into a genetic algorithm, it is difficult to find an
optimal migration strategy that suits the problem due to the
number of possible parameter combinations [9]. For instance,
the topology that defines the communication and migration
from one island to another, the migration rate that controls the
amount of immigrants, the migration frequency that defines
the interval between migrations, etc.

The communication topology defines the neighbours an
island can communicate with. Previous work [2], [9], [16] states
that ring and hypercube topologies are the most commonly used
static topologies. The alternative is using dynamic topologies
which select the receiving island anew for every communication.
The simplest dynamic topology is choosing a random receiver
for every communication. The topology influences the number
of connections between islands and as such the communication
costs. Therefore, it is important to choose a topology that

allows the islands to develop separate populations but also
spreads “good” solutions among the populations [16].

The migration frequency decides on the point in time an
exchange of individuals takes place. Its value defines the
interval between two of those exchanges [18]. There are two
possibilities to define and measure the interval, either using
real time or iterations. Using the time as a constant interval
is not an option in the context of test generation, because
during the evaluation of the individuals some test cases can
take longer to finish, e.g., when they wait for a timeout to
occur. This entails that the defined moment will be missed
or that the same individuals are sent again because the next
generation has not been evolved yet. Therefore, the number of
iterations (i.e., GA generations) is the chosen measurement for
the migration frequency.

The migration rate defines the number of (copies of) individ-
uals that are selected and exchanged every time migration takes
place. In theory there is no upper bound, but in practice the
migration rate is bound by the population size [1]. This leaves
the question of selecting and integrating immigrants. Cantú-Paz
showed that the selection strategy has a greater impact on the
convergence than the replacement strategy when integrating the
new individuals [8]. Selecting the individuals with the highest
fitness value as immigrants causes a faster convergence than
selecting the immigrants at random or using, for instance, a
linear rank selection. The received immigrants can, e.g., replace
random individuals or the ones with the worst fitness value.
Bravo et al. [6] showed that replacing the worst individuals of
a population with the worst ones from the neighbouring island
has the best positive influence on the diversity.

III. PARALLEL MANY-OBJECTIVE SORTING ALGORITHM
FOR TEST GENERATION

In this section we describe the combination of the island
model (see Section II-D) with the MOSA algorithm. In general,
each island executes its own instance of the MOSA algorithm
and the islands communicate with each other to exchange
migrants. To enable communication within MOSA the concept
of migration has to be added to the algorithm.

To describe the needed changes to MOSA in more detail,
one has to look again at the steps of the algorithm. Algo-
rithm 2 shows MOSA covering the main steps to compute
the generations. This adapted version includes the new migra-
tion parameters frequency F and rate K, the receiving and
integration of immigrants (lines 8 and 9), and the selection
and sending of emigrants (lines 14 and 15). At the start of a
generation, possibly received immigrant sets are added to the
new population. After selecting the best individuals for the next
generation, depending on the communication frequency, a set
of emigrants is selected to be sent to the neighbouring island.
If the islands are arranged in a ring topology (as represented
in Figure 2), every island has exactly one neighbour who it
receives migrants from and one who it sends migrants to.

The selection of emigrants to send to the neighbour island can
be performed with usual selection functions, e.g., selection of
the best k individuals, selection of k individuals at random, or



Algorithm 2 MOSA extended with migration
Input: Population size n, Stopping condition C, Migration

frequency F , Migration rate K
Output: Archive of fittest individuals A

1: iteration← 0
2: immigrants← from neighbouring island
3: P ← initialise with random population size n
4: A← update with P
5: while ¬C do
6: Pnext ← breed next generation
7: Pnext ← Pnext ∪ P
8: if immigrants 6= { } then
9: Pnext ←− Pnext ∪ immigrants

10: end if
11: R← preference sorting of Pnext

12: P = { }
13: P ← select best n from Pnext with ranking R
14: if (iteration+ 1) mod F == 0 then
15: emigrate selected K from P
16: end if
17: A← update with A ∪ P
18: iteration← iteration+ 1
19: end while
20: return A

rank selection. Best k selection chooses the k individuals with
the highest fitness value from the recently evolved population.
Random k selection chooses randomly k individuals from the
new population. The rank selection proposed by Whitley [26]
takes a random value r ∈ [0, 1] and computes the index of the
selected individual as:

s

2 · (b− 1)
· (b−

√
b2 − 4 · (b− 1) · r)

where s represents the population size and b ∈ [1, 2] the
selection pressure. Individuals with a higher fitness value have
a higher chance of being selected than individuals with a lower
fitness value. Note that individuals can be selected more than
once during the migrant selection as both random selection
and rank selection depend on the probability of generating a
different r value.

After receiving a set of immigrants from the neighbouring
island, these individuals have to be integrated in the current
population. The immigrants need to be integrated into the
system of fronts created by the ranking described in Sec-
tion II-B. As the replacement strategy has a smaller impact on
the genetic algorithm [8], the strategy is fixed to suppressing
the individuals with the worst value to keep the variable
parameters manageable. The immigrants with a higher fitness
value suppress the individuals with a lower fitness by getting
sorted in higher ranked fronts.

In general, as already described, after termination the best
set of individuals ever found is the resulting end population
and the solution for the parallel genetic algorithm [2]. However,
when using a many-objective algorithm, one cannot compare

sets of individuals that easily because the set as a whole has
no assigned fitness value. The only possibility to decide which
is the best set of individuals, is to compare all individuals
with each other. To address this problem the solution sets from
all islands are collected to perform one last evolutionary step.
During this step all individuals are compared and the best ones
are collected in a final solution. This solution is the end result
of the parallelised MOSA.

IV. IMPLEMENTATION

We have implemented the parallelised MOSA algorithm
as part of the EVOSUITE test generator. EVOSUITE is a
search-based tool for automatic test suite generation for Java
code [12]. It produces JUnit test suites with high code coverage,
integrated assertions and a minimal set of tests. EVOSUITE
implements several algorithms and techniques to generate a
test suite for a given Java project such as dynamic symbolic
execution [14] and whole test suite generation [13]. Furthermore
the many-objective sorting algorithm (MOSA) is implemented
in EVOSUITE [21].

EVOSUITE is separated into different modules of which
the master and the client module are the main components
participating in the parallelisation. The master module processes
the user input, starts a client, monitors the client and collects
statistics. The client module performs the instrumentation and
the test suite generation using the chosen algorithm. It also
handles the post processing tasks, like minimising the test suite
or placing assertions, and writes the test suite to disk.

A few changes needed to be introduced to EVOSUITE to
make parallelisation possible. The first step is to start and
maintain more than one client. Since the master module already
starts the client process it is its task to manage the new set of
clients. The clients are started as a group which means that
either all clients are running or all are stopped. To be able to
distinguish the clients each gets assigned a unique id which
is added to its name. Also parameters like the communication
frequency and rate are introduced to EVOSUITE.

The next step is to adapt the MOSA implementation to
perform communication and integration of selected individuals.
To generate a final solution, client 0 takes on a special role
to collect all end results of all other clients. An additional
iteration in client 0 produces the final end result. Because
of this distribution of roles client 0 is the only client post
processing the resulting test suite. The same applies for saving
generated tests on disk and writing statistics as all other clients
only have tests and statistics for an intermediate result.

In the context of parallelising MOSA, asynchronous (non-
blocking) migration is used to migrate individuals. The island
on the receiving side may be at a different generation than the
sending one, because the duration of each iteration depends
on the runtime of the generated individuals. To prevent any
unnecessary waiting time, the islands do not have a synchro-
nised generation counter. The asynchronous communication
requires a buffer that can accept transferred sets of immigrants
which will later be fetched by the receiving client or island. To
implement this synchronisation approach a listener is introduced



in each client which creates the communication link to the
running genetic algorithm. The listener accepts incoming sets
of immigrants and stores them in a queue. The elements of
the queue will be processed and integrated one by one by the
genetic algorithm at the start of a new generation. One could
think that a queue is not necessary because older sets can be
discarded and the newer set contains fitter individuals. This is
true if the best k individuals are selected for migration. But
if k individuals are randomly chosen it can not be guaranteed
that the newer set has a higher fitness. For that case it might
be interesting to evaluate the difference between discarding
and integrating older sets.

The implementation of the parallelised MOSA algorithm
includes several migrant selection functions: Random k, best
k, and linear rank selection. Rank selection was already
implemented in EVOSUITE, to select the individuals for the
next generation of the GA, and it was proposed by Alba and
Troya [2] as migrant selection function. EVOSUITE provides
other selection functions that are only used to select the
individuals for the next generation and can be easily used for
the selection of migrants. As previously described in Section III,
the migrant selection functions return one selected index of an
individual in the population at a time. When filling the set of
emigrants there is a possibility that indices, which represent the
individuals, are selected more than once. The implementation
uses the Java Set<> to collect the selected emigrants which
eliminates duplicates of selected emigrants. It can occur that
the set of emigrants is smaller than the configured migration
rate.

Since the arriving sets of immigrants are stored in a queue,
they can be integrated whenever the algorithm starts a new
generation of individuals. The potential individuals for the
next generation are a combination of individuals from the
previous iteration and newly bred individuals. However, when
a new set of immigrants is available, they are included with
other candidates to form the next generation. This way the
immigrants are ranked with the other individuals which allows
them to get sorted into one of the two fronts and assigned a
rank.

When the algorithm terminates, client 0 waits for all the other
clients to send their end solution (which has been collected as a
set of individuals in each client’s archive). Note that this is the
only synchronisation point of the proposed parallelised MOSA
algorithm which forces client 0 to need at least as much time as
the slowest client. Once all clients have sent their end solutions,
client 0 combines all received solutions and recomputes the
fitness value of each individual. Individuals that do not cover
previously uncovered goals or are not better (e.g., shorter) than
the ones in client 0’s archive are discarded, otherwise they are
added to client 0’s archive. In the end, the updated archive of
client 0 contains the final result of the parallel run of MOSA.

V. EVALUATION

The empirical evaluation focuses on two main goals. As the
parallelisation introduces new parameters for the communica-
tion between islands and the selection of immigrants, the first

goal is to find a combination of parameters that maximise the
achieved results. As a second goal the resulting coverage of
the MOSA algorithm is compared to the parallelised version of
MOSA to assess if the parallel MOSA presents an improvement
or not. Consequently, we aim to answer the following research
questions:

RQ1: Does parallel MOSA improve over sequential MOSA?
RQ2: Does migration contribute to better performance?
RQ3: Does parallelisation reduce the overall runtime to

achieve coverage?

A. Experimental Setup

1) Study Objects: For the empirical evaluation, we used the
set of 346 Java classes used to evaluate MOSA [21] and its
variant DynaMOSA [22]. These classes have been selected
with the goal to be as diverse as possible, and to cover different
levels of complexity and functionality [21].

2) Methodology: We conducted two empirical experiments:
First we performed a tuning experiment to find the best
combination of migration parameters; then, we conducted
an experiment comparing the tuned parallel MOSA with the
sequential MOSA. A randomly selected subset of 34 classes
(10% of all classes) was used to conduct the tuning experiments
which have the goal to find the best combination of migration
parameters. The rest of the classes were used for the comparison
of the parallel and the sequential MOSA. We only applied
tuning to the parameters introduced for the parallelisation;
for all other parameters we relied on EVOSUITE’s default
values, which were empirically determined in previous tuning
studies [5], and some MOSA-specific parameters that were
determined in a more recent study [7], in particular a population
size of 25 individuals.

For the tuning experiments, the chosen sets of values
for the migration parameters are: number of clients =
{2, 4, 8}, migration frequency = {1, 5, 10, 25}, migration
rate = {1, 5, 10, 15, 20, 25}, and migrant selection function
= {randomk, bestk, rank}. For each class all combinations
that emerge from the cross product of these sets are run to
collect the metric. Additionally, each class was executed with
different number of clients and no communication to analyse if
communication makes a difference or if an improvement just
results from the use of multiple populations. To identify the
“best” parameter settings for the parallel MOSA, we performed
a pairwise comparison of the overall coverage achieved by
using any number of clients, migration frequency, rate, and
selection function. The configuration for which the parallel
MOSA achieved a significantly higher overall coverage more
often was selected as the best.

After the tuning study, we ran parallel MOSA using the
optimal parameters, as well as non-parallel MOSA, on the
remaining classes. In order to answer RQ2, we also ran parallel
MOSA with migration deactivated, but all other parameters
unchanged. For all experiments we used a search budget of
60 seconds, similar to previous experiments [7]. However,
to answer RQ3 we additionally ran sequential MOSA with
different search budgets (60s – 180s).



1 5 10 15 20 25
Migration Rate

1

5

10

25

M
ig

ra
tio

n 
Fr

eq
ue

nc
y 2 Clients, RANDOMK

1 5 10 15 20 25
Migration Rate

1

5

10

25

M
ig

ra
tio

n 
Fr

eq
ue

nc
y 4 Clients, RANK

1 5 10 15 20 25
Migration Rate

1

5

10

25

M
ig

ra
tio

n 
Fr

eq
ue

nc
y 8 Clients, RANDOMK

0.56

0.58

0.60

0.62

0.64

0.66

Average Coverage

0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67 Average Coverage

0.63

0.64

0.65

0.66

0.67

0.68
Average Coverage

Figure 3: Tuning results: For two clients, random selection of 20 individuals for migration every 25 generations achieves the
overall best coverage; for four clients, rank selection of one individual every 5 generations achieves the overall best coverage;
for eight clients random selection of one individual every 10 generations achieves the overall best coverage. In general, lower
migration rates are better, and the frequency depends on the number of clients, with larger numbers of clients requiring more
frequent migration.

As is common when evaluating randomised algorithms, each
individual configuration was repeated 30 times with different
seeds for the random number generator.

3) Analysis: To compare different parameter settings and the
parallel MOSA vs. the sequential MOSA, we used coverage as
a measure. EVOSUITE uses a combination of seven coverage
criteria (line, branch, weak mutation, output, method, method
without exceptions considering only normal behaviour and
context, and branch coverage), and coverage values refer to
the average over these criteria [23].

Using raw coverage values for parameter setting comparisons
would be noisy, since most branches are always covered
regardless of the chosen parameter setting, while many others
are simply infeasible. We therefore use relative coverage r
calculated using the following normalisation [5], given the
coverage c achieved in an execution of EVOSUITE for a class
under test CUT :

r(c, CUT ) =
c−minc

maxc −minc
,

where minc is the worst coverage obtain in all the experiments
for that class CUT , and maxc is the maximum coverage
obtained in all experiments. If minc == maxc, then r = 1.

We statistically analysed all results following standard guide-
lines [4]. Effect sizes were measured using the Vargha-Delaney
Â12 effect size, and statistical tests were performed using the
Wilcoxon-Mann-Whitney U-test with a 95% confidence level.

4) Threats to Validity: There are factors that might be threats
to the internal validity. Although the framework and the new
implementation was tested thoroughly, the risk of leftover faults
remains. Additionally the algorithm depends on randomness
which can lead to unexpected outliers. To deal with this all
experiment executions were repeated 30 times and the results
were statistically analysed.

Threats to construct validity come from what measure we
chose to evaluate the success of our techniques. To measure
improvements on testing effectiveness, we considered the
achieved coverage, using EVOSUITE’s default set of coverage
criteria. However, code coverage does not tell us how easy it
will be for the final user to understand the generated test cases,

and the link between fault detection ability and code coverage
is an ongoing point of discussion in the research community.

Threats to external validity regard the generalisation of
the experiment results. Although the classes that served as
experiment subjects where chosen with the goal to introduce a
degree of diversity, further experiments on a larger set of classes
would improve the generalisation of the achieved results. Aside
from that can the chosen parameters from the tuning experiment
potentially threaten a generalisation. Different parameters for
the genetic algorithm could lead to different results. The results
for the migration parameters from the tuning experiment might
only be valid for the chosen set of parameters of the genetic
algorithm.

B. Parameter Tuning

There are previous studies on how communication parame-
ters like frequency, rate or migrant selection influence a genetic
algorithm in general, or in a specific application. For example,
Luque and Alba [18] formulated models that approximate the
influence of these parameters on a parallel genetic algorithm,
and other studies [1], [6], [8] focus on evaluating the com-
munication or migration parameters. Unfortunately there are
no experiences yet with the combination of parallel genetic
algorithms and test generation, which is why these parameters
need further investigation in the context of test generation.

According to our tuning study, for 2 and 8 clients, the
overall best selection strategy is random selection; for 4
clients the overall best selection strategy is rank selection.
Figure 3 visualises the results of the tuning experiments for
these selection strategies as heatmaps, where the coverage for
each parameter combination is indicated by the shading of
the cell. Generally, if migration is done too frequently this
negatively affects code coverage, and in particular the first row
of the heatmap, where migration is done for each generation,
shows the lowest code coverage. Similarly, lower migration
rate generally seems to be better, and so the lowest code
coverage can be found in the upper right parts of the heatmaps.
Comparing the three heatmaps suggests that migration should
be done more frequently the more sub-populations there are;



1 2 4 8
Number of clients of pMOSA

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Co
ve

ra
ge

Figure 4: Average code coverage achieved using different
numbers of sub-populations.

2 4 8
Number of clients of pMOSA

0.2

0.4

0.6

0.8

1.0

Â1
2

Figure 5: Â12 effect size for the comparison between single-
population MOSA vs. different numbers of sub-populations.

1 2 4 8
Number of clients of pMOSA

0.0

0.1

0.2

0.3

0.4

St
an

da
rd

 D
ev

ia
tio

n

Figure 6: Standard deviation using different numbers of sub-
populations.

for 8 clients the best configurations are with migration rates
of 5–10, whereas for 2 clients the best configuration performs
migration only every 25 configurations.

C. RQ1: Improvement over sequential MOSA

Figure 4 shows the average code coverage achieved by
MOSA and the parallelised versions, using 2, 4, and 8 clients.
The plot suggests a steady increase of code coverage with
increasing number of clients (average coverage of 79% for
MOSA vs. 81%, 82%, and 84% for parallelised MOSA).
Statistical analysis confirms this trend: Figure 5 summarises the
Â12 effect sizes comparing standard MOSA and parallelised
MOSA; values of Â12 > 0.5 mean that the parallelised version
was better. Using 2 clients, pMOSA achieved significantly
higher coverage on 80 classes; with 4 clients, pMOSA achieved
significantly higher coverage on 133 classes; and with 8 clients
pMOSA achieved significantly higher coverage on 142 classes.
This increase is substantial, considering that MOSA already
achieves very high (and often optimal) code coverage on many
of the classes.

Overall, pMOSA with eight clients was significantly worse
on 21 classes, compared to standard MOSA. Although for
all the 21 classes the reduction in coverage is very small (<
1%), we nevertheless investigated these classes in detail to
understand the reasons for this reduction. The main reason
seems to be problems with memory consumption when using
multiple processes; indeed multiple Java processes may lead
to substantial memory consumption, and may thus slow down
execution. Another reason is that migration may have a negative
impact on the search time, depending on how suitable the
configuration is for the class under test; for example, we
observed a reduction of the number of generations of the
GA run by up to half on some classes. Consequently, one way
to improve parallelisation of MOSA might be to adaptively
select migration frequency and rate depending on the specifics
of the class under test.

To see whether the parallelisation not only increases cov-
erage, but also reduces the variation in the results that is
common with stochastic algorithms, Figure 6 shows the
standard deviation for each of the configurations. Although
the difference is small, there is a decrease: Whereas default
MOSA has a standard deviation of 7.2%, this reduces with
increasing number of clients to 5.9% for eight clients.

RQ1: In our experiments, the average code coverage
increased from 79% to 84% using parallelisation with eight

clients with one minute search time.

D. RQ2: Influence of migration

To understand whether the code coverage increase observed
for RQ1 is caused simply by the increased computational
time by using multiple processes, or whether the island model
contributes beyond the basic parallelisation, we compared each
of the parallel configurations with a configuration of MOSA
using the same number of clients, but no migration. Figure 7
shows the effects on coverage, and Figure 8 summarises the
effects using the Â12 effect size measurement. The coverage
values in Figure 7 suggest that migration achieves slightly better
coverage depending on the number of clients: For two clients,
migration makes almost no difference, with average effect size



2 4 8
Number of clients of pMOSA

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

Co
ve

ra
ge

without migration
with migration

Figure 7: Average code coverage with/without migration.

2 4 8
Number of clients of pMOSA

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Â1
2

Figure 8: Â12 effect size comparing parallel runs with different
numbers of sub-populations with/without migration.

of 0.49 (suggesting there even are cases where it is worse), for
four clients migration leads to significantly higher coverage on
39 classes (average Â12 = 0.53), and for eight clients migration
leads to significantly higher coverage on 39 classes (average
Â12 = 0.54). Overall, these are small effect sizes, suggesting
that the improvement over MOSA observed in RQ1 to some
extent is a result of the multiplication of computational time,
but it is additionally improved by migration. It is not surprising
that migration has a larger effect for larger numbers of clients,
since it is done less frequently with fewer clients (e.g., only
every 25 generations for 2 clients vs. every 10 generations for
8 clients).

RQ2: Our experiments confirmed that migration has a
positive effect on code coverage; this effect is larger the

more sub-populations are independently evolved.

E. RQ3: Runtime reduction

Although the main incentive for applying parallelisation in
the context of test generation is to increase the resulting code
coverage, a similar objective from a practical point of view
would be to reduce the overall test generation time without
affecting coverage. To see how the effects of the parallelisation
compare to the runtime of a purely sequential, single-population

algorithm, Figure 9 shows the Â12 values comparing pMOSA
with 8 clients run for 60 seconds with default MOSA with
different values for the search budget. Up to 80 seconds, all
parallelised versions of MOSA run for 60 seconds achieve the
same or higher coverage than MOSA. After more than twice
the runtime of the parallelised MOSA with 8 clients does the
default configuration catch up, and median Â12 suggests that
after around 150s the default configuration achieves higher
coverage.

While the parallelisation does make it possible to reduce
the overall runtime, what we can see from Figure 9 is that
the parallelisation does not lead to a 1:1 mapping of net
computational time: Running pMOSA for 60 seconds with
two clients does not achieve the same result as running MOSA
with a single client for 2 × 60 seconds. Consequently, while
parallelisation can serve as a boost to regular evolution, it
cannot replace regular evolution. Our conjecture is that the
evolutionary search in EVOSUITE will initially spend some
time with an initial exploration where test cases grow in length,
e.g., until all methods are called and all the easy branches
are covered, etc. Using our parallelisation model, this initial
exploration needs to be done by each of the clients, meaning
that there is some redundancy before the parallelisation can
deliver some net benefits. On one hand, this redundancy is
necessary since it leads to the higher diversity, which ultimately
leads to higher coverage. Consequently, an interesting direction
for follow-up experiments would be to run pMOSA with
larger search budgets, and study whether the net benefits over
sequential MOSA increase over time. On the other hand, it
is conceivable that the parallelisation could be improved by
making it adaptive to the runtime and coverage achieved. For
example, until a kind of equilibrium coverage state is reached,
maybe fewer parallel clients might be needed.

RQ3: Our experiments show that parallelisation can be
used to reduce the overall runtime of the search, but cannot

completely replace the sequential effects of evolution.

VI. RELATED WORK

While both, research on search-based test generation and
research on parallel genetic algorithms, are quite mature, there
is not much existing work on using parallel search-based
approaches for automated test case generation.

Whitley et al. [27] introduced the island model and its
parameters, and Alba and Troya [1] and Cantú-Paz [8] analysed
migration for this model further. Other studies [2], [9], [16]
provide an overview over the different parallel models for
genetic algorithms, specifically for island models. A modified
island model was introduced by Kurdi [17]: Each island uses
different evolution methods, for example for selection, instead
of all islands using the same methods like in the traditional
island model. An additional modification is that individuals
that are the least adapted to the environment migrate first.
The proposed model is described as a more realistic model
of the nature. In our experiments we used a classical island
model, where each island is evolved using the same parameters.



60 70 80 90 100 110 120 130 140 150 160 170 180
Search budget of sequential MOSA in s

0.0

0.2

0.4

0.6

0.8

1.0
Â1

2
2 clients
4 clients
8 clients

Figure 9: Â12 effect size comparing parallelised MOSA run for 60 seconds with default MOSA run for different search budgets.

However, it is conceivable that an improvement is possible by
using different evolution strategies on different clients, such
as, using different coverage criteria for different islands.

There exist a few parallel search-based models for automated
test case generation. The work of Geronimo et al. [15] focuses
on a faster execution of a genetic algorithm for test case
generation. Their parallel genetic algorithm is implemented by
using Hadoop MapReduce. The model is similar to a classical
master-slave genetic algorithm. The time consuming fitness
evaluation is parallelised with the MapReduce model while all
other parts of the genetic algorithm are executed globally. In
contrast, our approach uses a coarse-grained parallelisation that
does not simply aim to reduce run-time, but to also improve
the results of the evolution.

Pachauri and Srivasatava [20] created a parallel hybrid
master-slave model for test data generation for branch coverage.
The model is structured in slaves that run a genetic algorithm
respectively and a master that selects the branches that need to
be covered. The master uses an extended path prefix strategy to
select the branches. The branches are distributed to the slaves
where a search to cover the assigned branches is conducted.
Similar to the previous study, the main goal is to speed up
the test generation process. While our approach uses migration
between the sub-populations among others to improve diversity,
the slaves in this model cannot communicate with each other.

VII. CONCLUSIONS

Improving search-based test generation algorithms is an
important step towards achieving better software quality.
Traditionally, search-based testing applies standard genetic
algorithms, in which a single population is evolved sequentially.
In this paper, we considered the parallel evolution of multiple
populations by extending the MOSA search algorithm in
the EVOSUITE test generation tool. Experiments on a set
of complex Java classes confirms that the parallel evolution
leads to higher coverage, and is supported by models where
individuals migrate between independent islands.

While our findings demonstrate the feasibility and benefits
of parallel search, there is ample opportunity to further improve
the algorithms and coverage of the test suites they produce:

• Our current implementation uses a ring-topology; as
part of our future work we plan to implement and
analyse different topologies, such as hypercubes or random
assignment.

• In our experiments we assumed a 1:1 mapping of islands
to CPU cores, to enable true parallelisation of the evolution
on independent islands. As part of our future work, we
plan to evaluate whether island models are beneficial
in a sequential setting, where evolution steps for sub-
populations would be performed sequentially.

• In our experiments, all islands evolved tests for the
same algorithm, with the same parameters. However, it
is conceivable that each island applies different search
algorithms or strategies [17].

• We parallelised the MOSA algorithm [21], which was
originally introduced to optimise for branch coverage
only; however, recently the DynaMOSA [22] algorithm
was introduced as an extension that can handle the
larger number of coverage criteria and objectives used in
practice [23]. In particular, there is opportunity to further
improve MOSA/DynaMOSA by configuring different
islands to optimise for different criteria. For example,
one island might optimise for branch coverage, while the
other might optimise for mutation testing, thus further
increasing diversity.

The proposed parallelised MOSA algorithm has been inte-
grated in EVOSUITE and it is freely available for download at
https://github.com/EvoSuite/evosuite.

REFERENCES

[1] E. Alba and J. M. Troya, “Influence of the migration policy in parallel
distributed gas with structured and panmictic populations,” Applied
Intelligence, vol. 12, no. 3, pp. 163–181, May 2000.

[2] ——, “A survey of parallel distributed genetic algorithms,” Complexity,
vol. 4, no. 4, pp. 31–52, Mar 1999.

https://github.com/EvoSuite/evosuite


[3] A. Arcuri, “It really does matter how you normalize the branch distance
in search-based software testing,” Software Testing, Verification and
Reliability (STVR), vol. 23, no. 2, pp. 119–147, 2013.

[4] A. Arcuri and L. Briand, “A Hitchhiker’s Guide to Statistical Tests for
Assessing Randomized Algorithms in Software Engineering,” Software
Testing, Verification & Reliability (STVR), vol. 24, no. 3, pp. 219–250,
May 2014.

[5] A. Arcuri and G. Fraser, “Parameter tuning or default values? An
empirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, no. 3, pp. 594–623, Jun 2013.

[6] Y. Bravo, G. Luque, and E. Alba, “Migrants selection and replacement
in distributed evolutionary algorithms for dynamic optimization,” in
Distributed Computing and Artificial Intelligence. Springer International
Publishing, 2013, pp. 155–162.

[7] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri, “An
Empirical Evaluation of Evolutionary Algorithms for Unit Test Suite
Generation,” Information and Software Technology, 2018.

[8] E. Cantú-Paz, “Migration policies, selection pressure, and parallel
evolutionary algorithms,” Journal of Heuristics, vol. 7, no. 4, pp. 311–334,
Jul 2001.

[9] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs
paralleles, reseaux et systems repartis, vol. 10, no. 2, pp. 141–171, 1998.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” Trans. Evol. Comp, vol. 6,
no. 2, pp. 182–197, Apr 2002.

[11] K. Deb, Multi-Objective Optimization. Boston, MA: Springer US, 2005,
pp. 273–316.

[12] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Generation for
Object-Oriented Software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11, Sept 2011, pp. 416–419.

[13] ——, “Whole Test Suite Generation,” IEEE Transactions on Software
Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[14] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test suite
generation with dynamic symbolic execution,” in Software Reliability
Engineering (ISSRE), 2013 IEEE 24th International Symposium on.
IEEE, 2013, pp. 360–369.

[15] L. D. Geronimo, F. Ferrucci, A. Murolo, and F. Sarro, “A parallel genetic
algorithm based on hadoop mapreduce for the automatic generation
of junit test suites,” in 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, Apr 2012, pp. 785–793.

[16] D. S. Knysh and V. M. Kureichik, “Parallel genetic algorithms: a survey

and problem state of the art,” Journal of Computer and Systems Sciences
International, vol. 49, no. 4, pp. 579–589, Aug 2010.

[17] M. Kurdi, “An effective new island model genetic algorithm for job shop
scheduling problem,” Computers and Operations Research, vol. 67, pp.
132 – 142, 2016.

[18] G. Luque and E. Alba, Parallel Genetic Algorithms: Theory and Real
World Applications. Springer Publishing Company, Incorporated, 2013.

[19] P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–156,
Jun 2004.

[20] A. Pachauri and G. Srivasatava, “Towards a parallel approach for test
data generation for branch coverage with genetic algorithm using the
extended path prefix strategy,” in 2015 2nd International Conference on
Computing for Sustainable Global Development (INDIACom), Mar 2015,
pp. 1786–1792.

[21] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch
coverage as a many-objective optimization problem,” in 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation
(ICST), Apr 2015, pp. 1–10.

[22] ——, “Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets,” IEEE Transactions on
Software Engineering, vol. 44, no. 2, pp. 122–158, Feb 2018.

[23] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri, “Combining
Multiple Coverage Criteria in Search-Based Unit Test Generation,” in
Search-Based Software Engineering: 7th International Symposium, SSBSE
2015, Bergamo, Italy, September 5-7, 2015, Proceedings, M. Barros and
Y. Labiche, Eds. Cham: Springer International Publishing, 2015, pp.
93–108.

[24] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A Detailed
Investigation of the Effectiveness of Whole Test Suite Generation,”
Empirical Software Engineering, vol. 22, no. 2, pp. 852–893, Apr. 2017.
[Online]. Available: https://doi.org/10.1007/s10664-015-9424-2

[25] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment
for automatic structural testing,” Information and Software Technology,
vol. 43, no. 14, pp. 841–854, 2001.

[26] D. Whitley, “The genitor algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best,” in Proceedings of the 3rd
International Conference on Genetic Algorithms. Morgan Kaufmann
Publishers Inc., 1989, pp. 116–121.

[27] D. Whitley, S. Rana, and R. Heckendorn, “The island model genetic
algorithm: On separability, population size and convergence,” vol. 7, Dec
1998.

https://doi.org/10.1007/s10664-015-9424-2

