
The Smelly Eight: An Empirical Study on the
Prevalence of Code Smells in Quantum Computing

Qihong Chen1, Rúben Câmara3, José Campos2,3, André Souto3,4, Iftekhar Ahmed1
1University of California, Irvine, USA

2Faculty of Engineering, University of Porto, Porto, Portugal
3LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

4Instituto de Telecomunicações, Lisboa, Portugal
chenqh@uci.edu, rcamara@lasige.di.fc.ul.pt, jcmc@fe.up.pt, ansouto@fc.ul.pt, iftekha@uci.edu

Abstract—Quantum Computing (QC) is a fast-growing field
that has enhanced the emergence of new programming languages
and frameworks. Furthermore, the increased availability of
computational resources has also contributed to an influx in the
development of quantum programs. Given that classical and QC
are significantly different due to the intrinsic nature of quantum
programs, several aspects of QC (e.g., performance, bugs) have
been investigated, and novel approaches have been proposed.
However, from a purely quantum perspective, maintenance, one
of the major steps in a software development life-cycle, has not
been considered by researchers yet. In this paper, we fill this
gap and investigate the prevalence of code smells in quantum
programs as an indicator of maintenance issues.

We defined eight quantum-specific smells and validated them
through a survey with 35 quantum developers. Since no tool
specifically aims to detect quantum smells, we developed a
tool called QSmell that supports the proposed quantum-specific
smells. Finally, we conducted an empirical investigation to
analyze the prevalence of quantum-specific smells in 15 open-
source quantum programs. Our results showed that 11 programs
(73.33%) contain at least one smell and, on average, a program
has three smells. Furthermore, the long circuit is the most
prevalent smell present in 53.33% of the programs.

Index Terms—Quantum computing, Quantum software engi-
neering, Empirical study, Quantum-specific code smell

I. INTRODUCTION

Quantum Computing (QC) is a fast developing field that
has the potential to solve computational problems in areas
such as cryptography, computational physics, and machine
learning [1, 2, 3] that were deemed intractable by classical
computing [4]. Due to such potential, private companies,
universities, and government labs worldwide have heavily
invested in QC. As a result, the field of QC has seen a
sequence of rapid scientific and engineering advancements and
an influx in the development of new programming languages
and frameworks [4, 5].

For instance, languages such as Q# by Microsoft and
frameworks such as Qiskit by IBM or Cirq by Google
have allowed practitioners to quickly develop more com-
plex Quantum Programs (QPs). Since there is an increasing
availability of universal quantum devices via Quantum-as-a-
Service (QaaS) [6, 7], continuous monitoring in the form
of performance improvement, mandatory upgrades, testing &
debugging, and fixing bugs is necessary to ensure the quality
of any QP [8, 9, 10, 11, 12, 13, 14, 15, 16].

Along with the aforementioned activities, maintenance of
QPs is required to ensure their continuous availability. Re-
search in classical software has shown that maintenance can
be hindered by poor design and implementation choices due
to developers’ lack of experience and skills [17, 5]. Also, the
programming practices in an emerging field like QC are evolv-
ing, and the related libraries and frameworks are undergoing
significant revisions, making that QPs are mostly consisting of
code that patches together the program. This led us to believe
that it is high time for the software engineering research
community to investigate techniques that can proactively help
maintain QPs before these problems become widespread. To
the best of our knowledge, the software engineering research
community has not investigated the maintenance of QPs from
a purely quantum perspective.

Prior research investigated indicators of maintenance issues
(in particular, code smells) and methods to identify and
quantify their impact on classical software [18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Openja et al. [32]
have recently studied the presence of generic smells in QC
projects. However, none of these works focus on quantum-
specific smells and only provide a partial picture of code
smells in QC.

Classical and quantum computing are significantly different
due to the intrinsic nature of QPs and their ability to have
multiple possible states in superposition at the same time
or entangled [33, 34]. Moreover, quantum logic is more
complex than classical logic, which makes the synthesis of
quantum circuits more challenging both in the algorithmic
design process and during implementation [35]. Hence, we
posit that defining code smells specific to QPs is essential. To
the best of our knowledge, no one has yet investigated the
prevalence of quantum-specific smells in QPs, prompting us
to ask:

RQ1: How do practitioners perceive quantum-specific
code smells?
RQ2: What is the prevalence of quantum-specific code
smells in quantum programs?

To answer RQ1, we first identified eight quantum-specific
smells extracted from the best practice in QC [36]. Then, and
to shed some light on the perceptions of real-world developers’

on the impact of these smells, we surveyed developers that
have contributed to quantum open-source projects to assess
their opinion on the set of quantum-specific smells. To answer
RQ2, we built QSMELL, a tool to detect the eight quantum-
specific smells in QPs. Finally, using the tool, we performed
an empirical study on the prevalence of code smells in 15 QPs.
This paper makes the following contributions:
• A catalog of eight novel smells tailored for quantum pro-

grams.
• A novel tool (coined QSMELL1) that automatically identifies

whether a quantum-specific smell occurs in a given quantum
program written in the Qiskit’s full-stack library.

• An empirical evaluation of the prevalence of quantum-
specific smells in 15 quantum programs.

• A detailed discussion on the implications of our findings in
future research on quantum computing.

• A replication package of our study for others to use available
at https://doi.org/10.5281/zenodo.7625865.

II. RELATED WORK

Code smells were introduced by Fowler [19] to describe the
design and implementation flaws in source code. These flaws
do not necessarily make the software behave incorrectly or
crash but make it harder to understand and maintain [28].
Generic Code Smells: Researchers have deeply investigated
the impact of generic code smells in classical programs,
e.g., how code smells impact fault-proneness and change-
proneness [27, 28, 37], code smells’ impact on maintain-
ability [38, 39, 29, 30, 31], when and why code smells are
introduced [21], and how code smells evolve over time [22, 23,
24, 25]. Openja et al. [32] have recently studied the presence
of technical debts, i.e., generic smells and coding errors, in QC
code. Their results showed that 80% of the technical debts are
related to code smells, and more than half of technical debts
are classified with major severity, implying that those debts
significantly impact developers’ productivity.
Domain-specific Code Smells: Besides studies on generic
smells, researchers have also been developing and studying
domain-specific code smells. For example, code smells for
deep learning systems [20, 40], SQL [41], and security code
smells for infrastructure as code scripts [42]. Due to the unique
characteristics of QC code vs. classical software, we foresee
that a domain-specific set of code smells for QC is required
(as it has been for other specific domains) as a proxy to assess,
e.g., long-term maintenance issues on QPs. This paper aims
to fill the gap by proposing eight novel quantum-specific code
smells. Furthermore, this paper is also the first to conduct
an empirical analysis regarding the prevalence of quantum-
specific code smells in QPs.
Code Smells Tools: Several techniques that include metric-
based, machine learning-based, history-based, textual-based,
search-based, and static analysis (the most popular) have been
developed to detect generic code smells [38, 39, 43, 44, 45, 46,

1QSMELL is officially available at https://github.com/jose/qsmell and also in
the replication package in tools/qsmell.

47, 48, 49]. Since our work focuses on identifying code smells
in QPs written in Python, we briefly discuss the code smell
detection tools developed for Python. Omari et al. [50] and
Bafatakis et al. [51] used Pylint to analyze Python code smells.
Chen et al. [52] investigated the detection and prevalence of
code smells using a tool named PySmell, which has been
validated by others [20]. To the best of our knowledge, no tool
aims specifically at identifying quantum-specific code smells
in QPs. Our tool, QSMELL addresses this gap.

III. QUANTUM COMPUTING BACKGROUND

Quantum computing is the generic term to identify the field
of computer science that uses quantum mechanics principles
to perform computations [53, 54].

Being governed by different physics laws, quantum infor-
mation and computation are different from classical ones. In
classical computation, the basic unit of information is the bit,
which has two possible values, 0 or 1. In quantum computa-
tion, the basic information unit is the qubit, and it is generically
represented by a superposition |φ〉 = α0 |0〉 + α1 |1〉 of two
orthogonal physical states |0〉 and |1〉, where α0 and α1 are
complex numbers. Note that a qubit can be, simultaneously, in
both states |0〉 and |1〉, but one cannot directly observe such
superposition.

To manipulate quantum information, one has to use quantum
gates, i.e., unitary transformations with complex coefficients.
Simple examples of common unitary gates are the Not gate
(i.e., Pauli-X operator [55]) and the Hadamard gate [56]
One can apply individual operations to single qubits, but one
can also apply more general operators involving several qubits
simultaneously.

Any quantum programming languages store classical and
quantum information in classical and quantum registers. In
practice, quantum computation is made through quantum
circuits, a generalization of classical circuits. Therefore, a
quantum program is expressed using unitary gates (describing
unitary operations) applied in a specific order. In a quantum
circuit, quantum gates play the same role as logic gates in
classical circuits. The major advantage of representing quan-
tum programs by quantum circuits is that there is no need to
know the intrinsic details of the programming languages used
to implement them, and it is independent of the programming
language used. The execution of a quantum circuit is made
through real quantum devices or simulators and entails the
creation of basis states and applying the operations, in order,
represented in the circuit. In the end, the output is measured
and sorted in classical registers. We say the circuit has a fault
if the probability distribution obtained by running the circuit
multiple times does not correspond to the expected one.

IV. QUANTUM-SPECIFIC CODE SMELLS

In this section, we first describe the methodology to derive
quantum-specific code smells for QC (Section IV-A), followed
by the definition and a motivational example of each code
smell (Sections IV-B to IV-D), and we finally answer RQ1 on
how practitioners perceive code smells in Section IV-E.

https://doi.org/10.5281/zenodo.7625865
https://github.com/jose/qsmell

Table I: Brief summary of the proposed quantum-specific smells. We opt to rename the best practices to better fit the proper description of
the (quantum) smell obtained from that practice.

Best Practice [36] Smell Name Acronym Summary Section

Running a circuit in hardware
“Getting a circuit to
run on hardware”

Use of Customized
Gates

CG Any customized gate is decomposable into built-in operators of the framework.
This decomposition requires a substantial higher number of operators when
compared to the equivalent solution made exclusively of built-in operators.

IV-B1

“Using CircuitOpera-
tion to reduce circuit
size”

Repeated set of Opera-
tions on Circuit

ROC Due to technological and physical limitations, the number of operations one
can pass to a quantum computer is limited, therefore the circuit implementing
the whole algorithm should be prepared in such a way that the number of
sequential repeated set of operations to be performed is the least possible.

IV-B2

Inefficient circuits
“Use sweeps when
possible”

Non-parameterized Cir-
cuit

NC Real devices work in a shared policy. To reduce communication payloads
and avoid queuing for different initial values, the circuit should be designed
parametrically to allow the different initial values to be provided at once.

IV-C1

Erroneous circuits
“Short gate depth” Long Circuit LC Unitary gates and measurements are prone to errors (specially due to quantum

noise). The higher the depth of the circuit and/or wider the circuit, the higher
is the probability of affecting a quantum circuit’s intended behavior.

IV-D1

“Terminal Measure-
ments”

Intermediate Measure-
ments

IM Measurements affect the state of the entire system, making it prone to more
errors. Therefore, measurements should be postponed to be the very last
operation on the circuit to avoid error propagation.

IV-D2

“Keep qubits busy” Idle Qubits IdQ With current technology it is only possible to ensure the correctness of a state
for very short periods of time. Having idle qubits for too long enhance the loss
of quantum information that may jeopardize the results of a quantum circuit.

IV-D3

“Delay initialization
of qubits”

Initialization of Qubits
differently from |0〉

IQ Keeping the coherence of a quantum excited state is technologically difficult.
Hence, initially one should keep it in its ground state (i.e., in state |0〉) as
long as possible.

IV-D4

“Qubit picking” No-alignment between
the Logical and Physi-
cal Qubits

LPQ The topology of real qubits impacts the circuit behavior, i.e., the results
obtained from the circuit can change according to the physical qubits con-
figuration. Therefore, not aligning the logical qubits to the proper physical
qubits may lead to less accurate results.

IV-D5

A. Mapping Best Practices to Code Smells

To derive the set of quantum-specific smells in QC, we
qualitatively analyzed the best practices proposed by Google
Cirq’s team [36] and categorized them into: Running a circuit
in hardware, Inefficient circuits, and Erroneous circuits. Then,
three authors of the paper independently identified a code
smell that violates a corresponding best practice. For example,
one of the best practices mentioned in the sub-section “Using
Circuit Operation to reduce circuit size” in [36]:

Particularly large batches (or sweeps) of circuits may
encounter errors when sent to Quantum Engine due to
an upper limit on request size. If the circuits in question
have a repetitive structure, cirq.CircuitOperations can be
used to reduce the request size and avoid this limit.
The recommendation is not to use a “repetitive structure”

in the quantum circuit to avoid hitting the request size limit.
The code smell is therefore, the use of repetitive structure (e.g.,
operations or sets of operations). Table I shows the mapping of
each smell and the corresponding best practice. To ensure the
reliability of the mapping, each smell underwent an agreement
process, and in case of uncertainty and disagreement, we
discussed it until we reached a consensus. We finally ended up
with a set of eight code smells. We call the reader’s attention
to the fact that the smells we propose are generic best practices
and therefore can be considered and implemented for any
quantum framework including, for example, Cirq, Qiskit, or
Forest. In this paper, we, however, focus mainly on programs
written in Qiskit as it is one of the most frequently used
frameworks in research [13, 15, 57, 58, 59, 60] and the most

popular quantum framework [61]. The following subsections
explain each quantum-specific smell in detail.

In order to have a uniform drawing representation of each
quantum circuit used in the remaining of the paper, we opt to
present the transpile [62] version of each circuit. Transpilation
is the process of converting a given quantum circuit into
instructions supported by current quantum devices.

B. Running a circuit in hardware

1) Use of Customized Gates (CG): Quantum frameworks
are very versatile and allow one to define and run customized
gates unavailable in the framework. It has been, however,
recommended that developers should only use built-in gates
for two reasons. First, before running the quantum circuit,
any customized gate must be converted into a sequence of
built-in gates that often require more operators than equivalent
solutions consisting exclusively of built-in operators. Second,
customized gates (not optimized by design as built-in gates)
increase the probability of circuit errors. Thus, the recommen-
dation is to avoid the use of customized gates.

Consider the example presented in Listing 12 illustrat-
ing a possible customized implementation of a Toffoli
gate which leads to the circuit represented in Figure 1
and its corresponding transpiled version in Figure 2a.

2Note that the purpose of each listing is to highlight one specific smell. It is,
however, conceivable that more than one smell may be present in a listing.
We tried to keep the number of smells per listing to one to avoid confusion,
but it was not always possible. To further help the reader to identify the main
smell represented in each listing, we highlighted (in red and green) the lines
that correspond to the main smell.

q0

q1

q2

0

1

2

Unitary

Figure 1:
CG smell
circuit.

If, instead the built-in Toffoli gate is used
(i.e., a CCNot gate corresponding to the ccx
gate in Listing 1 on line 13), which is directly
implemented in the platform using CNot and ro-
tations operations, we would have the transpiled
circuit represented in Figure 2b. Compared with
the former, this has lower depth and fewer gates

and therefore less error prone (see Section IV-D1 for details).

Listing 1: Implementation of a Toffoli gate by writing its de-
scribing unitary matrix highlighted with lines in red. The alternative
smell-free lines are colored in green and uses a (optimized) built-in
implementation of the same gate. (See Figure 2a for a translation of
the code into operations to be run in a real device.)
1 from qiskit import QuantumCircuit, transpile
2 qc = QuantumCircuit(3)
3 - qc.unitary([
4 - [1, 0, 0, 0, 0, 0, 0, 0],
5 - [0, 1, 0, 0, 0, 0, 0, 0],
6 - [0, 0, 1, 0, 0, 0, 0, 0],
7 - [0, 0, 0, 1, 0, 0, 0, 0],
8 - [0, 0, 0, 0, 1, 0, 0, 0],
9 - [0, 0, 0, 0, 0, 1, 0, 0],

10 - [0, 0, 0, 0, 0, 0, 0, 1],
11 - [0, 0, 0, 0, 0, 0, 1, 0]
12 -], [0, 1, 2])
13 + qc.ccx(0, 1, 2)

Metric: Number of occurrences of the UnitaryGate [63],
HamiltonianGate [64], or SingleQubitUnitary [65]
gates invoked with a matrix as input.
Detection: A program is said to have this smell if its CG metric
value is greater than or equal to 1.

2) Repeated set of Operations on Circuit (ROC): Due to
hardware limitations, the number of gates that one can send
to real devices is limited [66]. Hence, when preparing a circuit
to run on a quantum computer, one should minimize the set
of instructions using built-in operators such as repeat [67].
This operator allows to reduce the circuit size and preserve its
structure when serialized (e.g., when it is sent to a backend
to be executed on a real quantum computer). Consider the
example in Listing 2, which leads to the circuit represented
in Figure 3, where the for loop (lines 7-12) contains a set of
operations sent to the device in each iteration. This drastically
increases the circuit’s size (18 operations in total). On the
other hand, the use of the repeat [67] operator avoids the
repetitions of the operations in the circuit and produces an
equivalent circuit three times smaller.
Listing 2: Example of a circuit with a repeated set of operations (high-
lighted in red) and its alternative (i.e., smell-free highlighted in green)
version which uses a built-in operation to avoid such repetitions.
1 from qiskit import QuantumCircuit
2 qc = QuantumCircuit(3, 3) # 3 Quantum and 3 Classical

registers
3 hadamard = QuantumCircuit(1, name=’H’)
4 hadamard.h(0)
5 measureQubit = QuantumCircuit(1, 1, name=’M’)
6 measureQubit.measure(0, 0)
7 - for i in range(3):
8 for j in range(3):
9 qc.append(hadamard, [j])

10 for j in range(3):
11 qc.append(measureQubit, [j], [j])
12 qc.barrier()
13 + qc.repeat(3)

Metric: Number of sequential repeated sets of operations.

Detection: A program is said to have this code smell if its
ROC metric value is greater than or equal to 1.

C. Inefficient execution of a circuit
1) Non-parameterized Circuit (NC): In QP, it is typical to

run a circuit several times, each time with different parameters.
Therefore, it is recommended to minimize the number of
times instructions and results are communicated between the
backend and the client. This can be achieved by binding the
values to the circuit as parameters and run the circuit, con-
taining all values only once in the backend. Doing so reduces
the payload associated with the number of communications
between the backend and the client, which makes the process
more efficient. Furthermore, a positive side-effect of avoiding
this smell is reducing compilation time [68].

Listing 3 (adapted from [69]) shows an example of opti-
mizing the execution of circuits with real quantum devices
through a parameterized circuit. Instead of initializing the
circuit with different values of theta and sending each circuit
to the backend, we can bind theta values to the circuit as
parameters and run this circuit, containing all values only once
in the server backend. For QPs written in Qiskit, for example,
to evaluate the existence of this smell, one can identify the
number of methods that specifically run the code in a real
quantum device, e.g., run [70] or execute [71].

Listing 3: Example of a program to compute results of a circuit
depending on a parameter value theta. Smelly lines are highlighted
in red and alternative smell-free lines are highlighted in green.
1 from qiskit import QuantumCircuit, Aer
2 + from qiskit import transpile
3 + from qiskit.circuit import Parameter
4 + theta = Parameter(’0’)
5 def init_circuit(theta):
6 qc = QuantumCircuit(5, 1)
7 qc.h(0)
8 for i in range(4):
9 qc.cx(i, i+1)

10 qc.barrier()
11 qc.rz(theta, range(5))
12 qc.barrier()
13 for i in reversed(range(4)):
14 qc.cx(i, i+1)
15 qc.h(0)
16 qc.measure(0, 0)
17 return qc
18

19 theta_range = [0.00, 0.25, 0.50, 0.75, 1.00]
20

21 - for theta_val in theta_range:
22 - qc = init_circuit(theta_val)
23 - backend = Aer.get_backend(’qasm_simulator’)
24 - job = backend.run(qc)
25 - job.result().get_counts()
26 + qc = init_circuit(theta)
27 + circuits = [qc.bind_parameters({theta: theta_val})
28 + for theta_val in theta_range]
29 + backend = Aer.get_backend(’qasm_simulator’)
30 + job = backend.run(transpile(circuits, backend))
31 + job.result().get_counts()

Metric: Number of calls to execution methods such as
run [70] or execute [71] minus the number of calls to
the bind_parameters [72] method.
Detection: A program is said to have this code smell if
its NC metric value is greater than or equal to 1. In
other words, if the number of calls to execution meth-
ods such as run or execute is higher the number of

Global Phase: 0.035649

q0

q1

q2

q0

q1

q2

/4, /2, 0
U3

/2, , 0.784
U3

/4
RZ

3 /4, , /2
U3

1.57, 1.75e 06, 1.57
U3

, 0.0357, 2.39
U3

1.57, 3 /4, /2
U3

/4
RZ

/4
RZ

, 0, 0
U3

/4
RZ

0.00132, /2, 2e 14
U3

0,
U2

3 /4, , /2
U3

1.57, 1.75e 06, 1.57
U3

/4, ,
U3

/2, 3.14,
U3

0,
U2

0,
U2

, /4, /4
U3

0,
U2

0,
U2

0, ,
U3

0,
U2

/2
RZ

0, ,
U3

/2
RZ

, /2, /2
U3

(a) Smelly transpiled circuit shown in Figure 1.

q0

q1

q2 0,
U2

/4
U1

/4
U1

/4
U1

/4
U1

/4
U1

/4
U1

/4
U1

0,
U2

(b) Smell-free circuit.
Figure 2: Example of a customized Tofolli gate implementation in Qiskit with the automatic transpile to one- and two-qubit native gates
corresponding to Listing 1.

q0

q1

q2

3c

0,
U2

0,
U2

0,
U2

0 1 2

0,
U2

0,
U2

0,
U2

0 1 2

0,
U2

0,
U2

0,
U2

0 1 2

0,
U2

0,
U2

0,
U2

0 1 2

Figure 3: Example of a quantum circuit with the repeated set of
operations on circuit smell. The initial part of the circuit, i.e. up to the
barrier

q0

q1

q2

3c

0,
U2

0,
U2

0,
U2

0 1 2

0,
U2

0,
U2

0,
U2

0 1 2

0,
U2

0,
U2

0,
U2

0 1 2

0,
U2

0,
U2

0,
U2

0 1 2

is the set of operations repeated twice afterwards.

calls to the bind_parameters method. For example, a
program that calls twice the run method and once the
bind_parameters method is said to have this smell.

D. Erroneous circuits

1) Long Circuit (LC): Unitary gates in quantum circuits and
measurement devices are prone to errors due to imperfections
in the devices and especially due to noise [73]. Although
quantum hardware is becoming more accurate, it still has
significant error rates [66]. Therefore, if the circuit has high
depth (i.e., a high number of gates applied to the same qubit)
and/or high width (i.e., gates applied simultaneously to a high
number of qubits), then the result of the execution of such
circuit might be incorrect as the total amount of error may be
too high.

Listing 4 illustrates a very well-known identity example
within the quantum community related to Pauli operators,
HZH = X , which is applying a not operation to a qubit that
can be used to simplify the circuit (see [53] for more details).
The sequence of gates Hadamard [56], Pauli-Z [74], and
Hadamard [56] (lines 3-5) can be described solely by a
Pauli-X [55] gate (line 6). This example illustrates the
possibility of reducing the number of circuit operations.

Listing 4: Example of a long (i.e., more erroneous) circuit highlighted
in red and its equivalent and short (i.e., less erroneous and therefore
smell-free) version highlighted in green.
1 from qiskit import QuantumCircuit
2 qc = QuantumCircuit(1)
3 - qc.h(0)
4 - qc.z(0)
5 - qc.h(0)
6 + qc.x(0)

Metric: Likelihood of a circuit not having any error as (1 −
error)l·c, whereas error is the maximum error of any active
gate of the real device that is used to run the circuit and l
is the maximum number of operations in any qubit and c is
the maximum number of parallel operations in the circuit. For

example, in August 2022, the maximum error value on IBM’s
Kolkota quantum machine was 0.03512.

Detection: A program is said to have this code smell if its
LC metric value is lower than a threshold value. In other
words, the lower the value, the more likely the quantum
circuit’s output is to be incorrect. Although in practice (see
Section VI-B) we observed that quantum programs have a
median LC value of 0.39 and an average of 0.43, the majority
of the results are incorrect because they are not producing
accurate results. In order to be possible to run the circuit
multiple times to get some valid results (for example, using
majority voting [75] as a reasonable validation rule), we need
to have a threshold of at least 0.50 (i.e., 50%). Hence, any
program with a LC metric value lower than the threshold (i.e.,
0.50) is considered smelly.

2) Intermediate Measurements (IM): Observing (i.e., per-
forming a measurement) a qubit among several qubits used in
a circuit has an impact on the state of the remaining qubits
(specially if the operations entangle the measured qubit with
other ones). These interactions with the physical hardware
containing the quantum information may introduce undesirable
errors. In quantum computation, there exists a principle called
the deferred measurement principle that allows the construc-
tion of a circuit that is equivalent to the original circuit but
where all the measurements are postponed to the very last
operation in the circuit (see Section 4.4 of Reference [53] for a
detailed description of this principle). This principle applied in
practice means one can postpone the measurements to the last
moment of the circuit execution. Therefore, a circuit should
avoid intermediate measurements and alternatively should be
designed to measure all qubits with a single gate or by adding
the measurement gate after all optimizers have run, i.e., as the
last operation of the circuit.

Listing 5, which leads to Figure 4, is presented the code to
implement two truly random bits. The smelly code contains
an intermediate measurement in line 11 and then immediately
applies the Hadamard [56] operation (line 12) to one of
the qubits that was measured (i.e., the first qubit). To avoid
having this intermediate measurement, one can, for example,
simulate the behavior of the intermediate measurement by
storing the result in the second qubit by applying a C-Not
(line 9) involving qubit 0 and qubit 1 and then undoing the
Hadamard and then measuring the qubit 1. Notice that one
can keep the original state of the first qubit by also simulating

q0

q1

q2

2c

0,
U2

0

0,
U2

1

(a) Smelly.

q0

q1

q2

2c

0,
U2

0

0,
U2

1

(b) Smell-free.
Figure 4: Example of a circuit with the IM smell (left) where one
intermediate measurementq0

q1

q2

2c

0,
U2

0

0,
U2

1

is performed between the Hadamard
gates, and the equivalent circuit (right) that does not have the smell.

the final measurement (line 12) by applying a C-Not (line 10)
involving qubit 0 and qubit 2 and then measuring the qubit 2.

Listing 5: Example of a circuit to compute two random bits with
an intermediate measurement (smelly) highlighted in red and its
equivalent smell-free version highlighted in green. The smelly version
uses qubit 0 to perform twice Hadamard and measurement of the qubit to
store in two different classical registers the two results, while the smell-free
version uses Hamadard and two C-Not’s from the first to the two last qubits
to simulate both intermediate (the smelly one) and final measurement.
1 from qiskit import QuantumRegister, ClassicalRegister,

QuantumCircuit
2

3 qreg_q = QuantumRegister(3, ’q’)
4 creg_c = ClassicalRegister(2, ’c’)
5 qc = QuantumCircuit(qreg_q, creg_c)
6

7 qc.h(qreg_q[0])
8 - qc.measure(qreg_q[0], creg_c[0])
9 + qc.cnot(qreg_q[0], qreg_q[1])

10 + qc.cnot(qreg_q[0], qreg_q[2])
11 qc.h(qreg_q[0])
12 - qc.measure(qreg_q[0], creg_c[1])
13 + qc.measure(qreg_q[1], creg_c[0])
14 + qc.measure(qreg_q[2], creg_c[1])

Metric: Number of non-terminal measurements.
Detection: A program is said to have this code smell if its IM
metric value is greater than or equal to 1.

3) Idle Qubits (IdQ): With current technology, keeping the
quantum information in its correct state is only possible for a
short period [66]. Therefore, the lifetime of a qubit is limited
and being idle leads to dephase and decoherence, which leads
to a decrease of accuracy of the results. To avoid this problem,
if some qubit is idle for a long period of time, one should apply
twice an idempotent operator like a Pauli Y -gate to force the
qubit to be active and keep its coherence. Notice that if we
apply the operator Y twice to a qubit, it is the same as applying
the identity operator (idempotent), i.e., the operator that leaves
the qubits as they are.

Listing 6 represents a circuit involving several operations
(Hadamard, Pauli-Z, Phase rotations) over a few
qubits. It first applies the Hadamard operator (in Fig-
ure 5, this operator is shown by its general representation
U2(φ, λ) [76] with φ = 0 and λ = π where U2 is a X + Z
axis rotation) to all the qubits (line 6) and then, after all the
remaining operations are done, measures all the qubits at the
end (line 23). For example, the number of operations between
the last unitary operation applied to the 1st qubit (line 6)
and the final measurement (line 23) is 8. So, by the time the
quantum computer measures the 1st qubit, its state may have
been changed. On the other hand, in the smell-free version, the
measurement is done right after all the operations involving

the 1st qubit. Figure 5 shows the smelly and smell-free circuits
after fixing the IdQ smell.

Listing 6: Example of a circuit with idle qubits (smelly) highlighted
in red and its equivalent smell-free version highlighted in green.
1 from qiskit import QuantumRegister, ClassicalRegister,

QuantumCircuit
2 from numpy import pi
3 qreg_q = QuantumRegister(3, ’q’)
4 creg_c = ClassicalRegister(3, ’c’)
5 qc = QuantumCircuit(qreg_q, creg_c)
6 - qc.h(qreg_q)
7 + qc.h(qreg_q[0])
8 qc.p(pi / 2, qreg_q[0])
9 qc.z(qreg_q[0])

10 qc.s(qreg_q[0])
11 + qc.measure(qreg_q[0], creg_c[0])
12 qc.barrier()
13 + qc.h(qreg_q[1])
14 qc.p(pi / 4, qreg_q[1])
15 qc.z(qreg_q[1])
16 qc.s(qreg_q[1])
17 + qc.measure(qreg_q[1], creg_c[1])
18 qc.barrier()
19 qc.h(qreg_q[2])
20 qc.p(pi / 8, qreg_q[2])
21 qc.z(qreg_q[2])
22 qc.s(qreg_q[2])
23 - qc.measure_all(add_bits=False)
24 + qc.measure(qreg_q[2], creg_c[2])

Metric: Maximum number of circuit operations between one
operation using a qubit and the subsequent operation where
that qubit is used again.
Detection: A program is said to have this code smell if its
IdQ metric value is higher than a threshold value. The exact
threshold calculation mechanism is explained in Section VI-B.

4) Initialization of Qubits (IQ): It is known that qubits in an
equilibrium state, usually |0〉, are more robust than qubits in an
excited state, usually |1〉 or a uniform superposition 1√

2
(|0〉+

|1〉). From a practical point of view, this means that a qubit in
its initial state |0〉 may be accurate for longer than in any other
state. Therefore, if any qubit needs to be set to a particular
initial state, this should only happen before a gate is applied
to it. In other words, if a qubit is initialized at the beginning of
the circuit but a gate is only applied to that qubit after several
other gates were applied to other qubits, the intended state of
the first qubit might no longer be the expected one. The smell
IQ differs from the smell IdQ since the former only refers to
the difference between the first and the second time a qubit
is used, and therefore one can consider it a particular case of
IdQ.

We use Listing 6 once more to illustrate the smell. Notice
that the Hadamard operation initializes the 3rd qubit in line
6. However, this qubit, is only used again in line 19, which
corresponds to 7 operations distance between initialization and
actual use. As in the previous smell description, by the time
the quantum computer performs the second operation on the
3rd qubit, the state of that qubit may have already changed. On
the other hand, in the smell-free version, the first Hadamard
is applied right before the operations involving the 3rd qubit
are performed.
Metric: Maximum number of operations performed in the
circuit between the initialization of any qubit (usually the

q0

q1

q2

3c

0,
U2

0,
U2

0,
U2

/2
U1 U1

/2
U1

/4
U1 U1

/2
U1

0,
U2

/8
U1 U1

/2
U1

0 1 2

(a) Smelly.

q0

q1

q2

3c

0,
U2

0, 0, /2
U3 U1

/2
U1

0

0,
U2

0, 0, /4
U3 U1

/2
U1

1

0,
U2

0, 0, /8
U3 U1

/2
U1

2

(b) Smell-free.

Figure 5: Example of a circuit with the IdQ smell (left) and the equivalent circuit without the smell (right).

first operation applied to the qubit) and the second operation
applied to the same qubit.
Detection: A program is said to have this code smell if its IQ
metric value is higher than a threshold value.

5) No-alignment between the Logical and Physical Qubits
(LPQ): The design of quantum memories with current tech-
nology has asymmetries among the qubits. This means that
the geometry of physical qubits, their interaction, and their
readout error affect the results. As stated in Qiskit’s documen-
tation [77] “the choice of initial layout can mean the difference
between getting a result, and getting nothing but noise”.
Therefore, depending on the device that the code is executed
on, choosing which physical qubit should be picked for which
logical qubit in the code/circuit is an essential operation to
achieve more accurate results. For example, in Qiskit, this can
be achieved by using the parameter initial_layout in
the transpile method [62].

The smelly version in Listing 7 transpiles the cir-
cuit using a default layout. However, one could config-
ure her layout to produce the most efficient results and
a smell-free version. To do so, one can pass a list of
integers to qiskit.compiler.transpile() via the
initial_layout keyword argument, where the index la-
bels the virtual qubit in the circuit and the corresponding value
is the label for the physical qubit to map onto. For example,
mapping virtual qubits 0, 1, and 2 to physical qubit 3, 4, and
2 (as described in line 11).

Listing 7: Example of a circuit that does not properly align logical
and physical qubits represented with lines colored in red and its
equivalent smell-free version represented with lines colored in green
where a explicit correspondence between logical and physical qubits
is provided as a initial layout.
1 from qiskit import QuantumCircuit, transpile
2 from qiskit.providers.fake_provider import FakeVigo
3 backend = FakeVigo()
4 qc = QuantumCircuit(3, 3)
5 qc.h(0)
6 qc.cx(0,range(1,3))
7 qc.barrier()
8 qc.measure(range(3), range(3))
9 - qc = transpile(qc, backend)

10 + qc = transpile(qc, backend,
11 + initial_layout=[3, 4, 2])

Metric: Number of calls to the transpile method without
the parameter initial_layout set.
Detection: The transpile method is invoked by Qiskit by
default. In that case, the choice of mapping depends on the
properties of the circuit, the target device, and the chosen
optimization level. Thus, we label a program with this code
smell if the transpile method is explicitly invoked and its
LPQ metric value is greater than or equal to 1.

Table II: Survey results per smell.
CG ROC NC LC IM IdQ IQ LPQ Average

Agree 25.71% 34.29% 60.00% 71.43% 31.43% 82.86% 42.86% 71.43% 52.50%
Disagree 45.71% 25.71% 28.57% 20.00% 57.14% 11.43% 22.86% 22.86% 29.29%
Do not know 28.57% 40.00% 11.43% 8.57% 11.43% 5.71% 34.29% 5.71% 18.21%

E. RQ1: How do practitioners perceive quantum-specific code
smells?

1) Subjects: To validate our defined code smells, we sur-
veyed a larger population of quantum developers. We focused
on quantum developers who had contributed to the curated set
of 21 active quantum projects (the detailed process of curating
this list of projects is explained in Section VI-A). We used
the GitHub API [78] to mine contributor emails from these
21 projects. After removing emails of accounts that were no
longer active, we were left with 470 developer email addresses.

2) Survey: Our survey comprised 16 questions, a mix of
multiple-choice and open-ended questions, which can be found
in the replication package in survey/survey-doc.pdf.
The survey included demographic questions and participant
experiences with quantum programming. Then, we showed
the participants a quantum code snippet and its circuit draw
and asked them to assess whether the snippet was affected
by a specific code smell. We asked one question per code
smell (a total of eight), and at the end, we asked about
participants’ perceptions of the severity of these code smells.3

We conducted three pilot studies with graduate students and
professionals with quantum experience. After each pilot study,
we collected feedback and refined the survey based on the
feedback.

3) Procedure: We used Qualtrics [79] as a distribution
platform to deploy our survey. We emailed the survey to 470
developers (following university-approved IRB protocol), and
5 emails bounced (giving 465 valid emails). The survey was
open for two weeks, during which we received 35 responses or
a response rate of 7.53%. These response rates are consistent
with other studies in software engineering [80]. We quan-
titatively analyzed the closed-ended questions to understand
developers’ perceptions of the definition and example of the
shown code smells.

4) Results: Most of our respondents had 2 to 20 years of
programming experience. In addition, the participants had 1 to
5 years of quantum programming experience, with a median
of 2 years of quantum programming experience.

Table II reports the percentage of participants that agreed,
disagreed, or did not know whether a shown example was
affected by a quantum-specific smell. On average, 52.50% of

3Note that we did not ask participants for additional smells because that would
require additional interviews and surveys to understand and validate the new
smells.

Table III: Quantum-specific smell’s severity. Severity ranges from 1 (the
most severe) to 8 (the least severe). 10 out of 35 participants ranked LC as
being the most severe (rank 1) and 17 participants ranked the CG smell as
being the least severe (rank 8). Taking the median of the rank positions given
by all participants to all smells, we have, from the most severe smell to the
least, the following order: LC (2.50), NC, IdQ, and LQP (3.00), ROC and IM
(4.00), and CG.

CG ROC NC LC IM IdQ IQ LPQ

Average 5.82 3.59 4.15 2.62 4.76 3.85 4.44 3.41
Median 7.00 4.00 3.00 2.50 4.00 3.00 5.00 3.00

all participants agreed that each shown example was affected
by a quantum-specific smell. Contrary to the authors of this
paper that derived the quantum-specific smells, 1/4 of all
participants did not agree on CG and nearly 1/3 on IM.
One interpretation is that participants perceived the smells
as unharmful because they are used to seeing this style of
programming / quantum circuits. Regarding the CG smell, one
participant that did not agree mentioned that

“Using customized gates may be the only possible route
for some applications, but if you have a better construc-
tion, that should be used, of course.”

Regarding the IM smell, one participant mentioned that
“It is not a bad practice. If your algorithm requires it,
use it. Else, do not use it. Try to limit their number, but
if you need a C-NOT, you use a C-NOT, your choice.”

Interestingly, 40% of all participants did not know whether
the example with the ROC smell was or was not smelly.
We hypothesize that identifying a sequential set of repeated
operations on a quantum circuit drawing was not easy for the
participants, leading them to select a more conservative answer
(“do not know”).

We also had interesting comments that support the other
quantum-specific smells we derived, for example, “Things like
ROC and NC are the most ‘serious’ to resolve.” and “Aligning
the physical and logical qubit topologies is a good idea.”

Additionally, we also asked the participants about their
perceptions of the severity of the smells. LC, NC, IdQ, and
LPQ smells were identified as the top-3 most severe. Details
of the severity reported by participants are shown in Table III.

V. QSMELL

To identify the list of curated smells in code written in
Qiskit, we developed a tool called QSMELL. In this section, we
first describe QSMELL’s operating modes and then describe
the evaluation conducted to assess QSMELL’s effectiveness
at detecting quantum-specific code smells. Instructions on
how to install QSMELL and usage examples are provided at
https://github.com/jose/qsmell and in the replication package
in tools/qsmell/README.md.

A. Code Analysis

Code smell tools that other have proposed (e.g., SLIC [42]
and PyNose [81]) mostly perform static analysis to detect
whether a code smells occurs in a piece of code. QSMELL, on
the other hand, depending on the smell metric either performs
a dynamic (preferably) or static analysis.

The metrics of CG, ROC, LC, IM, IdQ, and IQ that rely on
an accurate set of qubits and/or set of operations performed
in the circuit, are computed using dynamic analysis. For these
smells, a static analysis would not be able to handle common
code as loops or to track objects passed as arguments to
other functions. For example, in Listing 3 (lines 8-9), a static
analysis approach will not be able to detect to which qubit is
applied the cx gate. The metrics for the other smells, i.e., NC
and LPQ, which do not rely on the quantum circuit but the
actions performed on the circuit, e.g., calls to methods that
are not part of a quantum circuit object (e.g., transpile,
or Qiskit backends’ methods) cannot be computed with the
same dynamic analysis and are therefore computed using static
analysis.

1) Dynamic Analysis: To perform a dynamic analysis on
a QP, QSMELL takes as input an execution matrix, whereas
each row represents a quantum or classical bit, each column
represents a timestamp in the circuit, and each cell represents
a quantum operation performed in the circuit. Given, for
example, the QP in Listing 3, one would have to inject the
following piece code
from quantum_circuit_to_matrix import qc2matrix
qc2matrix(qc, output_file_path=’example-matrix.csv’)

and run it to generate the execution matrix. Note that the
quantum_circuit_to_matrix module was built by us
on top of Qiskit’s API and is part of the QSMELL distribution.
In a nutshell, the module first collects the set of qubits from
the qc object’s data and then iterates over all operations
performed in each qubit. The execution matrix for the example
in Listing 3 is shown below

1 2 3 4 5 6 7 8 9 10 11 12 13 14
q0 u2(int,float) cx() barrier() rz(float) barrier() cx() u2(int,float) measure()
q1 cx() cx() barrier() rz(float) barrier() cx() cx()
q2 cx() cx() barrier() rz(float) barrier() cx() cx()
q3 cx() cx() barrier() rz(float) barrier() cx() cx()
q4 cx() barrier() rz(float) barrier() cx()
c0 measure()

Once the execution matrix has been generated, to compute,
e.g., the LC metric, QSMELL first computes the maximum
number of operations in any qubit (any row in the matrix), i.e.,
six in the execution matrix above. It then computes the max-
imum number of operations performed simultaneous (in the
same timestamp), i.e., five at the seventh timestamp. Finally,
the LC metric value is (1−0.03512)6∗5 = 0.34. As this value
is lower than the threshold value 0.50 (see Section IV-D1), we
can say the LC smell is present in Listing 3. Recall that lower
values of LC mean the circuit is more prone to be affected by
a gate error.

2) Static Analysis: As the information of the quantum
backend (see lines 29-31 in Listing 3, for example) is not kept
in the quantum circuit object itself, QSMELL performs a static
analysis for smell metrics NC and LPQ. It takes a source code
.py file and analysis it using Python AST [82]. For instance,
to compute the LPQ metric for the example in Listing 3,
QSMELL first finds all calls to the transpile method in the
program’s under analysis AST and counts how many do not
define the initial_layout parameter. As there is one call
to the transpile method without the initial_layout
parameter being set, the LPQ metric is 1 and therefore, smelly.

https://github.com/jose/qsmell

Table IV: Rater A/B vs. QSMELL. Values in bold face represent
disagreement between rater A/B vs. QSMELL. Values highlighted in gray
point out the values that are above the threshold and hence exhibit the smell.
Name CG ROC NC LC IM IdQ IQ LPQ

Metric values assigned by human raters
(qiskit-machine-learning) qsvc 0 1 0 0.49 0 1 0 0
(qiskit-terra) fae 0 4 1 0.10 0 0 0 0

Metric values assigned by QSmell
(qiskit-machine-learning) qsvc 0 1 0 0.49 0 1 0 0
(qiskit-terra) fae 0 4 2 0.10 0 0 0 0

B. Tool Evaluation

We conducted an evaluation on the effectiveness of QS-
MELL at correctly computing quantum-specific smell metrics
and then at detecting them. As no existing dataset contains
information for quantum smells, we constructed our validation
oracle dataset by applying closed coding [83], where a rater
identifies a pre-determined pattern. Other researchers have
used this approach while preparing a validation dataset for
other code smell detection tools [42, 81].

We start by randomly selecting 10% of the programs
collected in Section VI-A, i.e., a total of two programs: qsvc
and fae. Then two raters (i.e., authors of the paper but not
developers of QSMELL) equipped with the (1) definitions of
each smell along with its threshold, and (2) the program’s
source code and its quantum circuit (draw and execution
matrix), manually computed each smell metric and labeled
the programs with the smells they exhibit, if any. To ensure
an unbiased annotation process, the raters individually labeled
programs and discussed their results afterward to reach a
consensus. Finally, we also compared the raters’ data against
QSMELL output on the same set of programs.

1) Rater A vs. Rater B: Once both raters finished their task,
metric values and labels of raters were calculated using the
inter-rater reliability Cohen’s Kappa (k) [84]. Regarding metric
values, raters agreed on 87.5% of the values with an inter-
rater reliability k of 0.78, which indicates an almost perfect
agreement. There was one disagreement for the ROC smell in
both programs. Rater A computed the value 2 for qsvs and the
value 5 for fae. Rater B computed the value 1 for qsvs and
the value 1 for fae. Raters met and reviewed them together,
and for each program, the raters discussed their respective
reasoning and the source of disagreement. In this experiment,
the root cause of the disagreement was due to whether the first
occurrence of the repeated set of operations should be counted
as repeated. Both raters agreed that it should not count, i.e., if
a set of operations appears three times in the quantum circuit,
only two are considered a repetition. This further clarified
the ROC’s metric definition and achieved an agreement of
100% with an inter-rater reliability k of 1, indicating a perfect
agreement. Table IV (top) reports the metric values and the
labels computed and assigned by both raters for each program
per smell. Regarding labels (i.e., whether a program exhibits
a code smell), raters agreed on 100% of all smells. LC, NC,
and ROC are present in fae; LC and ROC are present in qsvs.

2) Rater A/B vs. QSmell: Next, we ran QSMELL on the
same set of programs and compared our results against the
oracle. Table IV reports the metric values and the labels

computed and assigned by QSMELL for each program per
smell. Regarding metric values, rater A/B and QSMELL agreed
on all values but the NC value for fae, 1 vs. 2. Although
there are indeed two calls to the execute method in the fae
program, one is in an if and the other one is the correspondent
else. Thus, at runtime, only one would be executed. As the
threshold value for the LC metric is 1, such disagreement did
not affect QSMELL’s labeling of the LC smell. Regarding
labels (i.e., whether a program exhibits a code smell), first,
no occurrences of the CG, IM, IQ, and LPQ smells exist
in the oracle dataset or QSMELL’s output. Second, QSMELL
achieved 100% precision, recall, and F1 on all smells. Such
high precision/recall is due to QSMELL’s dynamic analysis,
which reliable computes the required data for six out of the
eight smells.

VI. EMPIRICAL EVALUATION

In this section, we aim to answer the following research
question using QSMELL:
RQ2: What is the prevalence of quantum-specific code smells

in quantum programs?

A. Experimental Subjects

To select representative quantum projects, we started by
doing a keyword search using the GitHub search API. We
searched for projects with a description containing the word
“quantum computing”. We scoped our search to projects
written in Python and that use the Qiskit library by searching
for projects containing the words “qiskit” and “import qiskit”.
This choice was due to two main reasons: (1) Qiskit is one
of the most popular quantum frameworks [61] and one of the
most frequently used frameworks in research [13, 15, 57, 58,
59, 60], and (2) QSMELL only supports Qiskit’s API. The
search procedure returned 628 quantum projects.

Next, we further filtered the projects following the guide-
lines proposed by Kalliamvakou et al. [85]. Specifically, we
selected projects based on two criteria: number of commits in
2022 and number of contributors. 1 We filtered out projects
with less than 100 commits in total in 2022, to ensure we
only elect projects with sufficient development activity that
have not been abandoned or considered inactive [35]. 2 We
discarded projects with just one contributor to avoid selecting
toy projects or students assignments. The two criteria, when
applied, resulted in 21 projects (which can be found in the
replication package in subjects/README.md). 3 We
manually inspected the 21 projects and discarded those re-
lated to documentation, lecture notes, and hardware platforms.
We ended up with a total of three projects: qiskit-machine-
learning, qiskit-terra, and qiskit-nature, which are umbrella
projects containing multiple QPs. 4 We then collected all
QPs (15 in total) available in these three projects. The list of
the 15 programs and some metrics per program can be found
in the replication package in subjects/README.md. On
average, the programs have 229 lines of code, 4 qubits, 1
classical bit, and 1130 operations.

Table V: Quantum-specific smells. Values highlighted in gray point out
the values that are above the threshold for CG, ROC, NC, IM, IdQ, IQ, and
LPQ or below the threshold for the LC smell, and therefore exhibits the smell.
Name CG ROC NC LC IM IdQ IQ LPQ

(qiskit-machine-learning) qgan 0 0 0 0.75 0 0 0 0
(qiskit-machine-learning) vqc 0 2 0 0.39 0 1 0 0
(qiskit-nature) adapt vqe 0 7 0 0.00 0 19 5 0
(qiskit-nature) qeom 0 0 0 0.01 0 19 0 0
(qiskit-terra) ae 0 49 2 0.00 0 821 0 0
(qiskit-terra) grover 0 1 4 0.22 0 2 1 0
(qiskit-terra) hhl 0 0 0 0.75 0 1 1 0
(qiskit-terra) iae 0 4 3 0.22 0 0 0 0
(qiskit-terra) ipe 0 0 4 0.96 0 0 0 0
(qiskit-terra) mlae 0 15 2 0.01 0 0 0 0
(qiskit-terra) phase estimation 0 0 1 0.96 0 0 0 0
(qiskit-terra) qaoa 0 0 0 0.81 0 0 0 0
(qiskit-terra) shor 0 0 2 0.00 0 15650 15650 0
(qiskit-terra) vqd 0 0 0 0.70 0 0 0 0
(qiskit-terra) vqe 0 0 0 0.70 0 0 0 0

Median 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00
Average 0.00 5.20 1.20 0.43 0.00 1100.87 1043.80 0.00

Threshold 1.00 1.00 1.00 0.50 1.00 0.00 0.00 1.00

B. Experimental Procedure

We first executed QSMELL on 15 of the 17 programs and
computed all quantum-specific code smells metrics. Note that
two programs were used to evaluate QSMELL’s effectiveness
in Section V-B and therefore discarded from the empirical
evaluation. Then, as there is no prior work based on which
we could define the thresholds for QPs, we have (1) used
the already defined thresholds in Section IV for smells CG,
ROC, NC, LC, IM, and LPQ; and (2) calculated the median
of IdQ and IQ smell metrics on all programs and used that as
the threshold of each metric. Finally, for each smell metric,
we identified which programs have a smell metric value higher
than the threshold as being smelly. Exception for the LC smell
metric, where a program has the LC smell when the metric
value is lower than the threshold.

C. Results

Table V reports the quantum-specific smells found on all
QPs. Overall, at least one smell occurs in 11 out of 15
programs (73.33%), and the ratio of smells in a program is
26.67% (i.e., a program has, on average, 2.13 smells). shor
has the highest number of smells (ROC, NC, LC, IdQ, and
IQ), ipe and phase estimation has the lowest number of smells
(NC), and no smell was detected on qaoa, qgan, vqd, and vqe.
Regarding individual quantum-specific smells, LC occurs in
most programs (8), followed by NC and IdQ (7), ROC (6), and
IQ (4). The CG, IM, and LPQ do not occur in any program.

1) Occurring code smells: LC code smell is related to
the error of physical devices. If the circuit has a high depth
or width, then the execution of such circuit could lead to
inconclusive results as the total error may be too high. As
the survey results suggest (Table II), developers are aware of
this smell’s severity. However, it is possible that they have to
use a larger number of gates to perform simple operations as
no built-in gate exists for the intended purpose. One interesting
future research direction would be to analyze frequent co-
occurring operations, optimally implement the required gates
and offer them as a single built-in gate (similar to the Toffoli
gate discussed in Section IV-B1).

IdQ and IQ smells were defined due to quantum hardware
limitations at keeping qubits in the correct state for long
periods of time. Even though developers are aware of their

severity, these smells’ prevalence might be explainable by the
fact that looking only at the source code, it is hard to realize
how long any qubit is idle. Thus, having the circuit depicted
(e.g., directly in the IDE) might help alleviate this situation.

We hypothesize that one reason for the prevalence of the
ROC smell could be due to the lack of developer knowledge
regarding the built-in repeat operator and the negative conse-
quence ROC has in the circuit’s performance. Most, Qiskit
online tutorials [86], experimental examples [87, 88], and
books [89] do not mention the repeat operator.

2) Non-occurring code smells: We hypothesize that built-
in gates have been sufficient for the developers’ needs and,
therefore, the usage of customized gates has not been required
by developers to implement their programs. The survey results
also suggest that CG is the least severe smell.

Due to the lack of access to physical quantum computers,
developers still execute their QPs mostly on simulators which
do not require an alignment between logical and physical
qubits. This can be one of the likely reasons for not finding
any occurrence of the LPQ smell. As the technology becomes
more mature and quantum computing resources become more
available, this smell will become frequent and critical.

VII. IMPLICATIONS

The study performed in this paper is a call for action for the
community to proactively (1) investigate code smells tailored
for QPs, (2) develop novel tools to assist developers in detect-
ing quantum-specific code smells, and (3) train developers. We
list some implications of our study below.

1) Further studies: Although our results show that QPs
have a wide variety and prevalence of code smells, only one
study investigated code smells in QC [32]. Nevertheless, our
findings show the uniqueness, prevalence, and perceived sever-
ity of code smells from the developer’s perspective. Thus, we
encourage others to investigate further code smells specially
tailored for QPs that explore other quantum properties not
explored by our set of smells.

2) Tools: Some code smells are easier to identify in a
quantum circuit drawing than in the source code (e.g., ROC).
Thus, we foresee a system where developers can directly write
source code and/or manipulate a quantum circuit, which would
help developers at writing smell-free programs.

3) Training: The variety and prevalence of code smells in
QPs illustrate the importance of educating developers about
code smells. Educators can illustrate design principles by
showing well-designed programs and those that exhibit code
smells (as we have done in Sections IV-B to IV-D). Developers
must also educate themselves about the types of code smells
that may occur in QPs and how to mitigate them. Or even
better, being conscious about code smells when programming
in the first place and avoiding them altogether.

VIII. THREATS TO VALIDITY

Our study, like any other empirical research, has its risks.
Based on the guidelines reported by Wohlin et al. [90], we have
taken all reasonable steps to mitigate the effect of potential
threats, which are described in detail in this section.

1) Threats to construct validity: There is a threat that
participants might have misunderstood the survey’s questions.
To mitigate it, we conducted pilot studies with developers with
different experience levels to assess if there were unclear or
leading questions and updated the questions based on their
feedback. As the responses are distributed across the provided
choices instead of one choice dominating all responses, we
believe our effort to minimize any confirmation bias was
successful.

Another threat is the detection of specific smells procedure
as identifying whether a smell occurs in a piece of code
relies on threshold values. For smells CG, ROC, NC, LC,
IM, and LPQ, we have identified a threshold value based
on our experience. Although this might sound biased, the
(median) results reported in Table V corroborate our choices.
The threshold value for smells IdQ and IQ were identified
using empirical analysis (described in Section VI-B). It is,
however, possible that these thresholds would be different for
a different set of programs.

Regarding the likelihood of false positives in our re-
sults, similar to code smells in classical programming, some
quantum-specific smells might be unavoidable in certain sit-
uations. However, as experienced practitioners have identified
these smells, we believe they capture and highlight problematic
patterns. We hope future research will investigate, e.g., the
relationship between quantum bugs and maintenance issues
with code smells in QPs, and address the false positive
concern.

2) Threats to internal validity: The manual analysis used to
map QC best practices to code smells could have introduced
unintentional bias. Three authors individually did the best
practices to code smells mapping to minimize this threat and
discussed it with the other two authors until a consensus was
reached. We then surveyed 35 quantum developers to validate
our mapping and the definition of code smells.

Although the quantum-specific smells were derived from
Cirq teams’ best practices, the smells are related to character-
istics of the quantum domain (i.e., IdQ, LM), and some smells
are related to the programming style (i.e., NC, LC). Thus, these
smells apply to the Qiskit framework and any other quan-
tum framework as almost all relevant quantum computation
platforms use circuit-based computation in their computational
platform model. Therefore, the smell’s specificity is transversal
to almost all (if not all) quantum programming platforms.

The QSMELL’s effectiveness was assessed by multiple
researchers independently using the standard approach in
literature (e.g., [81]). Two authors of the paper built an oracle
dataset and evaluated QSMELL’s output against the oracle.
Note that we could not use external annotators (classical
software developers or professional services (e.g., Amazon
Mechanical Turk) due to the nature of the topic. Nevertheless,
we took steps to minimize annotation bias. We followed
the usual literature procedure where annotators individually
completed the annotations, discussed the results, and then
reached an agreement. The annotators are authors of the paper
but not developers of QSMELL, so they were not aware of the

internals of the implementation nor the procedures employed
by the detector. Table IV reports the results, highlighting
the agreement between tool-identified and human-identified
smells. Furthermore, we randomly selected some of the smells
reported in Table V and verified whether they were correct. We
did not manually and exhaustively analyze all smells identified
by QSMELL, as we assume that since QSMELL performed
well on the validation dataset with high precision and recall,
it should at least do reasonably well on the larger dataset. That
is the usual assumption in the literature.

To address any other threat to the internal validity, QS-
MELL’s source code and R source code (developed to perform
the statistical analysis) were reviewed by two authors of the
paper.

3) Threats to external validity: We conducted our empirical
evaluation on 15 open-source QPs from GitHub. Although we
believe we selected the largest and most diverse set of open-
source QPs, our results might be different on other programs,
e.g., industrial quantum programs. Moreover, during empirical
evaluation, we could not compare QSMELL with any other tool
since there exists no other code smell detection tool for QPs.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the prevalence of code smells in
QPs. We first derived eight quantum-specific smells, primarily
inherited from the advocated QC programming practices, that
may negatively affect the maintainability and quality of QPs.
This is not an exhaustive list of quantum-specific smells for
QPs, but we hope that future research will identify additional
smells and enrich the catalog. We then developed QSMELL,
the first tool to detect smells in QPs.

Experiments on a set of 15 real-world QPs showed that
smells are prevalent in QC code: 11 programs (73.33%)
contain at least one code smell, and, on average, programs
have three code smells. Results also showed that LC is the
most prevalent code smell in 53.33% of the programs.

The results reported in this paper lay the foundation for
our future work. We plan to explore the evolution of the
quantum-specific code smells and their effect on QPs’ overall
quality. Furthermore, we plan to run a user study on the usage
of QSMELL and extend QSMELL to support other quantum
frameworks (e.g., Cirq).

DATA AVAILABILITY

All the research artifacts (i.e., tools, scripts, and data) cre-
ated for this study or generated by it are available in the repli-
cation package at https://doi.org/10.5281/zenodo.7625865.

ACKNOWLEDGMENTS

We thank the reviewers for their comments and sug-
gestions during the rebuttal phase. This work was sup-
ported by FCT through the LASIGE Research Unit,
ref. UIDB/00408/2020 and ref. UIDP/00408/2020, and by
the Instituto de Telecomunicações Research Unit, ref.
UIDB/50008/2020 and ref. UIDP/50008/2020.

https://doi.org/10.5281/zenodo.7625865

REFERENCES

[1] M. Benedetti, J. Realpe-Gómez, R. Biswas, and A. Perdomo-Ortiz.
“Estimation of effective temperatures in quantum annealers for sam-
pling applications: A case study with possible applications in deep
learning”. In: Physical Review A 94.2 (2016), p. 022308.

[2] C. Bennett and G. Brassard. “Quantum cryptography: Public key
distribution and coin tossing”. In: arXiv preprint arXiv:2003.06557
(2020).

[3] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T.
White, J. Mutus, A. Fowler, B. Campbell, et al. “Superconducting
quantum circuits at the surface code threshold for fault tolerance”. In:
Nature 508.7497 (2014), pp. 500–503.

[4] J. Zhao. “Quantum software engineering: Landscapes and horizons”.
In: arXiv preprint arXiv:2007.07047 (2020).

[5] R. Shaydulin, C. Thomas, and P. Rodeghero. “Making quantum com-
puting open: Lessons from open source projects”. In: Proc. of the
IEEE/ACM 42nd Int. Conference on Software Engineering Workshops.
2020, pp. 451–455.

[6] H. Ball, M. Biercuk, A. Carvalho, J. Chen, M. Hush, L. De Castro,
L. Li, P. Liebermann, H. Slatyer, C. Edmunds, et al. “Software tools for
quantum control: Improving quantum computer performance through
noise and error suppression”. In: Quantum Science and Technology 6.4
(2021), p. 044011.

[7] F. Leymann, J. Barzen, M. Falkenthal, D. Vietz, B. Weder, and
K. Wild. “Quantum in the cloud: application potentials and research
opportunities”. In: arXiv preprint arXiv:2003.06256 (2020).

[8] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie. “Projection-based
runtime assertions for testing and debugging quantum programs”. In:
Proc. of the ACM on Programming Languages 4.OOPSLA (2020),
pp. 1–29.

[9] J. Liu, G. T Byrd, and H. Zhou. “Quantum circuits for dynamic runtime
assertions in quantum computation”. In: Proc. of the Twenty-Fifth Int.
Conference on Architectural Support for Programming Languages and
Operating Systems. 2020, pp. 1017–1030.

[10] Y. Huang and M. Martonosi. “Statistical Assertions for Validating
Patterns and Finding Bugs in Quantum Programs”. In: Proc. of the
46th Int. Symposium on Computer Architecture. ISCA ’19. New York,
NY, USA: Association for Computing Machinery, 2019, 541–553. DOI:
10.1145/3307650.3322213.

[11] S. Honarvar, M. Mousavi, and R. Nagarajan. “Property-based testing
of quantum programs in Q#”. In: Proc. of the IEEE/ACM 42nd Int.
Conference on Software Engineering Workshops. 2020, pp. 430–435.

[12] S. Ali, P. Arcaini, X. Wang, and T. Yue. “Assessing the effectiveness
of input and output coverage criteria for testing quantum programs”.
In: 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST). IEEE. 2021, pp. 13–23.

[13] P. Zhao, J. Zhao, and L. Ma. “Identifying Bug Patterns in Quantum
Programs”. In: 2021 IEEE/ACM 2nd Int. Workshop on Quantum
Software Engineering (Q-SE). CA, USA: IEEE Computer Society,
2021, pp. 16–21. DOI: 10.1109/Q-SE52541.2021.00011.

[14] Y. Huang and M. Martonosi. “Statistical assertions for validating
patterns and finding bugs in quantum programs”. In: Proc. of the 46th
Int. Symposium on Computer Architecture. 2019, pp. 541–553.

[15] D. Fortunato, J. Campos, and R. Abreu. “Mutation Testing of Quantum
Programs: A Case Study With QISKit”. In: IEEE Transactions on
Quantum Engineering (2022), pp. 1–16. DOI: 10 . 1109 / TQE . 2022 .
3195061.

[16] J. Campos and A. Souto. “QBugs: A Collection of Reproducible Bugs
in Quantum Algorithms and a Supporting Infrastructure to Enable Con-
trolled Quantum Software Testing and Debugging Experiments”. In:
2021 IEEE/ACM 2nd Int. Workshop on Quantum Software Engineering
(Q-SE). 2021, pp. 28–32. DOI: 10.1109/Q-SE52541.2021.00013.

[17] I. Ahmed, C. Brindescu, U. Mannan, C. Jensen, and A. Sarma. “An
Empirical Examination of the Relationship between Code Smells and
Merge Conflicts”. In: Empirical Software Engineering and Measure-
ment (ESEM), 2017 ACM/IEEE Int. Symposium on. IEEE. 2017,
pp. 58–67.

[18] G. Sculley D.and Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J. Crespo, and D. Dennison. “Hidden
technical debt in machine learning systems”. In: Advances in neural
information processing systems 28 (2015), pp. 2503–2511.

[19] Martin Fowler. “Refactoring: Improving the design of existing code”.
In: 11th European Conference. Jyväskylä, Finland. 1997.

[20] H. Jebnoun, H. Braiek, M. Rahman, and F. Khomh. “The Scent of
Deep Learning Code: An Empirical Study”. In: Proc. of the 17th Int.
Conference on Mining Software Repositories. 2020, pp. 420–430.

[21] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De
Lucia, and D. Poshyvanyk. “When and why your code starts to smell
bad”. In: 2015 IEEE/ACM 37th IEEE Int. Conference on Software
Engineering. Vol. 1. IEEE. 2015, pp. 403–414.

[22] R. Arcoverde and E. Garcia A.and Figueiredo. “Understanding the
longevity of code smells: preliminary results of an explanatory survey”.
In: Proc. of the 4th Workshop on Refactoring Tools. 2011, pp. 33–36.

[23] A. Chatzigeorgiou and A. Manakos. “Investigating the evolution of
bad smells in object-oriented code”. In: 2010 Seventh Int. Conference
on the Quality of Information and Communications Technology. IEEE.
2010, pp. 106–115.

[24] A. Lozano, M. Wermelinger, and B. Nuseibeh. “Assessing the impact
of bad smells using historical information”. In: 2007, pp. 31–34.

[25] D. Rapu, S. Ducasse, T. Gı̂rba, and R. Marinescu. “Using history
information to improve design flaws detection”. In: Eighth European
Conference on Software Maintenance and Reengineering, 2004. CSMR
2004. Proc.. IEEE. 2004, pp. 223–232.

[26] M. Abbes, F. Khomh, Y. Gueheneuc, and G. Antoniol. “An empirical
study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension”. In: 2011 15Th european conference on
software maintenance and reengineering. IEEE. 2011, pp. 181–190.

[27] F. Khomh, M. Di Penta, and Y. Gueheneuc. “An exploratory study
of the impact of code smells on software change-proneness”. In: 16th
Working Conference on Reverse Engineering. IEEE. 2009, pp. 75–84.

[28] M. D’Ambros, A. Bacchelli, and M. Lanza. “On the impact of
design flaws on software defects”. In: 10th Int. Conference on Quality
Software. IEEE. 2010, pp. 23–31.

[29] D. Sjøberg, A. Yamashita, B. Anda, A. Mockus, and T. Dybå. “Quan-
tifying the effect of code smells on maintenance effort”. In: IEEE
Transactions on Software Engineering 39.8 (2012), pp. 1144–1156.

[30] A. Yamashita and L. Moonen. “Do code smells reflect important
maintainability aspects?” In: 2012 28th IEEE international conference
on software maintenance (ICSM). IEEE. 2012, pp. 306–315.

[31] A. Yamashita and Moonen L. “Exploring the impact of inter-smell
relations on software maintainability: An empirical study”. In: 2013
35th Int. Conference on Software Engineering (ICSE). IEEE. 2013,
pp. 682–691.

[32] M. Openja, Mo. Morovati, L. An, F. Khomh, and M. Abidi. “Technical
Debts and Faults in Open-source Quantum Software Systems: An
Empirical Study”. In: arXiv preprint arXiv:2206.00666 (2022).

[33] P. Yadav, P. Mateus, N. Paunković, and A. Souto. “Quantum Contract
Signing with Entangled Pairs”. In: Entropy 21.9 (2019). ISSN: 1099-
4300. DOI: 10.3390/e21090821. URL: https://www.mdpi.com/1099-
4300/21/9/821.

[34] C. Vlachou, W. Krawec, P. Mateus, N. Paunković, and A. Souto.
“Quantum key distribution with quantum walks”. In: Quantum In-
formation Processing 17.11 (2018), p. 288. ISSN: 1573-1332. DOI:
10.1007/s11128-018-2055-y. URL: https://doi.org/10.1007/s11128-
018-2055-y.

[35] H. Li, F. Khomh, L. Tidjon, et al. “Bug Characteristics in Quantum
Software Ecosystem”. In: arXiv preprint arXiv:2204.11965 (2022).

[36] Google inc. Google best practice. Accessed: 2022-07-13. 2022. URL:
https://quantumai.google/cirq/google/best practices.

[37] F. Khomh, M. Di Penta, Y. Guéhéneuc, and G. Antoniol. “An ex-
ploratory study of the impact of antipatterns on class change-and
fault-proneness”. In: Empirical Software Engineering 17.3 (2012),
pp. 243–275.

[38] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M.
Shepperd. “A controlled experiment investigation of an object-oriented
design heuristic for maintainability”. In: Journal of Systems and
Software 72.2 (2004), pp. 129–143.

[39] W. Li and R. Shatnawi. “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution”.
In: Journal of systems and software 80.7 (2007), pp. 1120–1128.

[40] A. Nikanjam and F. Khomh. “Design smells in Deep Learning pro-
grams: an empirical study”. In: IEEE Int. Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2021, pp. 332–342.

[41] B. Muse, M. Rahman, C. Nagy, A. Cleve, F. Khomh, and G. Antoniol.
“On the prevalence, impact, and evolution of SQL code smells in data-
intensive systems”. In: Proc. of the 17th international conference on
mining software repositories. 2020, pp. 327–338.

https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/Q-SE52541.2021.00013
https://doi.org/10.3390/e21090821
https://www.mdpi.com/1099-4300/21/9/821
https://www.mdpi.com/1099-4300/21/9/821
https://doi.org/10.1007/s11128-018-2055-y
https://doi.org/10.1007/s11128-018-2055-y
https://doi.org/10.1007/s11128-018-2055-y
https://quantumai.google/cirq/google/best_practices

[42] A. Rahman, C. Parnin, and L. Williams. “The seven sins: Security
smells in infrastructure as code scripts”. In: IEEE/ACM 41st Int.
Conference on Software Engineering (ICSE). IEEE. 2019, pp. 164–175.

[43] M. Lanza and R. Marinescu. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[44] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-
Francoise Le Meur. “Decor: A method for the specification and
detection of code and design smells”. In: IEEE Transactions on
Software Engineering 36.1 (2009), pp. 20–36.

[45] M. Munro. “Product metrics for automatic identification of” bad smell”
design problems in java source-code”. In: 11th IEEE Int. Software
Metrics Symposium (METRICS’05). IEEE. 2005, pp. 15–15.

[46] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb. “Code-smell
detection as a bilevel problem”. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 24.1 (2014), pp. 1–44.

[47] I. Deligiannis, M. Shepperd, M. Roumeliotis, and I. Stamelos. “An
empirical investigation of an object-oriented design heuristic for
maintainability”. In: Journal of Systems and Software 65.2 (2003),
pp. 127–139.

[48] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Collard. “Blending con-
ceptual and evolutionary couplings to support change impact analysis
in source code”. In: 17th Working Conference on Reverse Engineering.
IEEE. 2010, pp. 119–128.

[49] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D.
Poshyvanyk. “Detecting bad smells in source code using change history
information”. In: 2013 28th IEEE/ACM Int. Conference on Automated
Software Engineering (ASE). IEEE. 2013, pp. 268–278.

[50] S. Omari and G. Martinez. “Enabling Empirical Research: A Corpus
of Large-Scale Python Systems”. In: Proc. of the Future Technologies
Conference. Springer. 2019, pp. 661–669.

[51] N. Bafatakis N.and Boecker, W. Boon, M. Salazar, J. Krinke, G.
Oznacar, and R. White. “Python coding style compliance on stack
overflow”. In: IEEE/ACM 16th Int. Conference on Mining Software
Repositories (MSR). IEEE. 2019, pp. 210–214.

[52] Z. Chen, L. Chen, W. Ma, and B. Xu. “Detecting code smells in Python
programs”. In: 2016 Int. Conference on Software Analysis, Testing and
Evolution (SATE). IEEE. 2016, pp. 18–23.

[53] M. A. Nielsen and I. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. 10th. USA: Cambridge Uni-
versity Press, 2011. ISBN: 1107002176.

[54] P. Mateus, A. Sernadas, and A. Souto. “Universality of quantum
Turing machines with deterministic control”. In: Journal of Logic and
Computation 27.1 (2017), pp. 1–19. DOI: 10.1093/logcom/exv008.

[55] Qiskit. XGate. Accessed: 2022-08-05. 2022. URL: https://qiskit.org/
documentation/stubs/qiskit.circuit.library.XGate.html.

[56] Qiskit. HGate. Accessed: 2022-08-05. 2022. URL: https://qiskit.org/
documentation/stubs/qiskit.circuit.library.HGate.html.

[57] X. Wang, P. Arcaini, T. Yue, and S. Ali. “Generating Failing Test
Suites for Quantum Programs With Search”. In: Search-Based Software
Engineering. Ed. by Una-May O’Reilly and Xavier Devroey. Cham:
Springer International Publishing, 2021, pp. 9–25. ISBN: 978-3-030-
88106-1.

[58] X. Wang, P. Arcaini, T. Yue, and S. Ali. “Quito: a Coverage-Guided
Test Generator for Quantum Programs”. In: 2021 36th IEEE/ACM
Int. Conference on Automated Software Engineering (ASE). 2021,
pp. 1237–1241. DOI: 10.1109/ASE51524.2021.9678798.

[59] X. Wang, P. Arcaini, T. Yue, and S. Ali. “QuSBT: Search-Based Testing
of Quantum Programs”. In: arXiv preprint arXiv:2204.08561 (2022).

[60] X. Wang, T. Yu, P. Arcaini, T. Yue, and . Ali. “Mutation-Based Test
Generation for Quantum Programs with Multi-Objective Search”. In:
Proceedings of the Genetic and Evolutionary Computation Conference.
GECCO ’22. Boston, Massachusetts: ACM, 2022, 1345–1353. ISBN:
9781450392372. DOI: 10.1145/3512290.3528869.

[61] StackExchange. Is Qiskit more popular than cirq? Why? 2021. URL:
https : / / quantumcomputing . stackexchange . com/questions /20673 / is -
qiskit-more-popular-than-cirq-why (visited on 07/31/2021).

[62] Qiskit. qiskitCompilerTranspile. Accessed: 2022-08-05. 2022. URL:
https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html.

[63] Qiskit. UnitaryGate. Accessed: 2022-08-28. 2022. URL: https://qiskit.
org/documentation/stubs/qiskit .extensions.UnitaryGate .html#qiskit .
extensions.UnitaryGate.

[64] Qiskit. HamiltonianGate. Accessed: 2022-08-28. 2022. URL: https :
/ /qiskit .org/documentation/stubs/qiskit .extensions.HamiltonianGate.
html#qiskit.extensions.HamiltonianGate.

[65] Qiskit. SingleQubitUnitary. Accessed: 2022-08-28. 2022. URL: https:
//qiskit.org/documentation/stubs/qiskit.extensions.SingleQubitUnitary.
html.

[66] R. Acharya et al. Suppressing quantum errors by scaling a surface
code logical qubit. 2022. DOI: 10.48550/ARXIV.2207.06431.

[67] Qiskit. qiskit.circuit.QuantumCircuit.repeat. Accessed: 2022-08-05.
2022. URL: https : / / qiskit . org / documentation / stubs / qiskit . circuit .
QuantumCircuit.repeat.html.

[68] Qiskit. Reducing compilation cost. Accessed: 2022-08-05. 2022. URL:
https : / / qiskit . org / documentation / tutorials / circuits advanced /
01 advanced circuits.html#Reducing-compilation-cost.

[69] Qiskit. Parameterized circuits. Accessed: 2022-08-05. 2022. URL:
https : / / qiskit . org / documentation / tutorials / circuits advanced /
01 advanced circuits.html#Parameterized-circuits.

[70] Qiskit. qiskit.providers.ibmq.IBMQBackend.run. Accessed: 2022-08-
05. 2022. URL: https://qiskit.org/documentation/stubs/qiskit.providers.
ibmq.IBMQBackend.run.html.

[71] Qiskit. Source code for qiskit.execute. Accessed: 2021-05-25. 2021.
URL: https:/ /qiskit .org/documentation/stable/0.24/ modules/qiskit /
execute.html.

[72] Qiskit. Bind parameters. Accessed: 2022-08-28. 2022. URL: https://
qiskit . org /documentation / stubs /qiskit . circuit .QuantumCircuit .bind
parameters.html.

[73] S. Johnstun and J. Van Huele. “Understanding and compensating for
noise on IBM quantum computers”. In: American Journal of Physics
89.10 (Oct. 2021), pp. 935–942. DOI: 10.1119/10.0006204.

[74] Qiskit. ZGate. Accessed: 2022-08-05. 2022. URL: https://qiskit.org/
documentation/stubs/qiskit.circuit.library.ZGate.html.

[75] R. Boyer and J. Moore. “MJRTY—A Fast Majority Vote Algorithm”.
In: Automated Reasoning: Essays in Honor of Woody Bledsoe. Ed. by
Robert S. Boyer. Dordrecht: Springer Netherlands, 1991, pp. 105–117.
DOI: 10.1007/978-94-011-3488-0 5.

[76] Qiskit. U2Gate. Accessed: 2022-08-28. 2022. URL: https://qiskit.org/
documentation/stubs/qiskit.circuit.library.U2Gate.html.

[77] Qiskit. Transpiler. Accessed: 2022-08-05. 2022. URL: https:/ /qiskit .
org/documentation/apidoc/transpiler.html.

[78] T. Mombach and M. Valente. GitHub REST API vs GHTorrent vs
GitHub Archive: A comparative study. 2018.

[79] Qualtrics. Qualtrics XM - Experience Management Software. [Online;
accessed 2022-03-14]. 2015.

[80] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and M. Gerosa.
“What to Expect from Code Review Bots on GitHub? A Survey with
OSS Maintainers”. In: Proc. of the 34th Brazilian Symposium on
Software Engineering. SBES ’20. New York, NY, USA: Association
for Computing Machinery, 2020, 457–462. ISBN: 9781450387538.

[81] T. Wang, Y. Golubev, O. Smirnov, J. Li, T. Bryksin, and I. Ahmed.
“PyNose: A Test Smell Detector For Python”. In: 36th IEEE/ACM Int.
Conference on Automated Software Engineering (ASE). IEEE. 2021,
pp. 593–605.

[82] Python. ast — Abstract Syntax Trees. 2022. URL: https://docs.python.
org/3.7/library/ast.html (visited on 03/16/2022).

[83] David Wicks. “The coding manual for qualitative researchers”. In:
Qualitative research in organizations and management: an interna-
tional journal (2017).

[84] K. Gwet. “Computing inter-rater reliability and its variance in the
presence of high agreement”. In: British Journal of Mathematical and
Statistical Psychology 61.1 (2008), pp. 29–48.

[85] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German, and
D. Damian. “An in-depth study of the promises and perils of mining
GitHub”. In: Empirical Software Engineering 21.5 (2016), pp. 2035–
2071.

[86] Qiskit. Qiskit Tutorials. Accessed: 2022-08-05. 2022. URL: https : / /
github.com/Qiskit/qiskit-tutorials.

[87] Qiskit. Qiskit Experiments. Accessed: 2022-08-05. 2022. URL: https:
//github.com/Qiskit/qiskit-experiments.

[88] Qiskit. Qiskit IBM Experiments. Accessed: 2022-08-05. 2022. URL:
https://github.com/Qiskit/qiskit-ibm-experiments.

[89] N. Johnston E.and Harrigan and M. Gimeno-Segovia. Programming
Quantum Computers: Essential Algorithms and Code Samples. USA:
O’Reilly Media, Incorporated, 2019. ISBN: 9781492039686.

[90] C. Wohlin, P. Runeson, M. Hst, M. Ohlsson, B. Regnell, and A.
Wessln. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated, 2012. ISBN: 3642290434.

https://doi.org/10.1093/logcom/exv008
https://qiskit.org/documentation/stubs/qiskit.circuit.library.XGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.XGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.HGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.HGate.html
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1145/3512290.3528869
https://quantumcomputing.stackexchange.com/questions/20673/is-qiskit-more-popular-than-cirq-why
https://quantumcomputing.stackexchange.com/questions/20673/is-qiskit-more-popular-than-cirq-why
https://qiskit.org/documentation/stubs/qiskit.compiler.transpile.html
https://qiskit.org/documentation/stubs/qiskit.extensions.UnitaryGate.html#qiskit.extensions.UnitaryGate
https://qiskit.org/documentation/stubs/qiskit.extensions.UnitaryGate.html#qiskit.extensions.UnitaryGate
https://qiskit.org/documentation/stubs/qiskit.extensions.UnitaryGate.html#qiskit.extensions.UnitaryGate
https://qiskit.org/documentation/stubs/qiskit.extensions.HamiltonianGate.html#qiskit.extensions.HamiltonianGate
https://qiskit.org/documentation/stubs/qiskit.extensions.HamiltonianGate.html#qiskit.extensions.HamiltonianGate
https://qiskit.org/documentation/stubs/qiskit.extensions.HamiltonianGate.html#qiskit.extensions.HamiltonianGate
https://qiskit.org/documentation/stubs/qiskit.extensions.SingleQubitUnitary.html
https://qiskit.org/documentation/stubs/qiskit.extensions.SingleQubitUnitary.html
https://qiskit.org/documentation/stubs/qiskit.extensions.SingleQubitUnitary.html
https://doi.org/10.48550/ARXIV.2207.06431
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.repeat.html
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.repeat.html
https://qiskit.org/documentation/tutorials/circuits_advanced/01_advanced_circuits.html#Reducing-compilation-cost
https://qiskit.org/documentation/tutorials/circuits_advanced/01_advanced_circuits.html#Reducing-compilation-cost
https://qiskit.org/documentation/tutorials/circuits_advanced/01_advanced_circuits.html#Parameterized-circuits
https://qiskit.org/documentation/tutorials/circuits_advanced/01_advanced_circuits.html#Parameterized-circuits
https://qiskit.org/documentation/stubs/qiskit.providers.ibmq.IBMQBackend.run.html
https://qiskit.org/documentation/stubs/qiskit.providers.ibmq.IBMQBackend.run.html
https://qiskit.org/documentation/stable/0.24/_modules/qiskit/execute.html
https://qiskit.org/documentation/stable/0.24/_modules/qiskit/execute.html
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.bind_parameters.html
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.bind_parameters.html
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.bind_parameters.html
https://doi.org/10.1119/10.0006204
https://qiskit.org/documentation/stubs/qiskit.circuit.library.ZGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.ZGate.html
https://doi.org/10.1007/978-94-011-3488-0_5
https://qiskit.org/documentation/stubs/qiskit.circuit.library.U2Gate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.U2Gate.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://docs.python.org/3.7/library/ast.html
https://docs.python.org/3.7/library/ast.html
https://github.com/Qiskit/qiskit-tutorials
https://github.com/Qiskit/qiskit-tutorials
https://github.com/Qiskit/qiskit-experiments
https://github.com/Qiskit/qiskit-experiments
https://github.com/Qiskit/qiskit-ibm-experiments

	I Introduction
	II Related Work
	III Quantum Computing Background
	IV Quantum-specific Code Smells
	IV-A Mapping Best Practices to Code Smells
	IV-B Running a circuit in hardware
	IV-B1 Use of Customized Gates (CG)
	IV-B2 Repeated set of Operations on Circuit (ROC)

	IV-C Inefficient execution of a circuit
	IV-C1 Non-parameterized Circuit (NC)

	IV-D Erroneous circuits
	IV-D1 Long Circuit (LC)
	IV-D2 Intermediate Measurements (IM)
	IV-D3 Idle Qubits (IdQ)
	IV-D4 Initialization of Qubits (IQ)
	IV-D5 No-alignment between the Logical and Physical Qubits (LPQ)

	IV-E RQ1: How do practitioners perceive quantum-specific code smells?
	IV-E1 Subjects
	IV-E2 Survey
	IV-E3 Procedure
	IV-E4 Results

	V QSmell
	V-A Code Analysis
	V-A1 Dynamic Analysis
	V-A2 Static Analysis

	V-B Tool Evaluation
	V-B1 Rater A vs. Rater B
	V-B2 Rater A/B vs. QSmell

	VI Empirical Evaluation
	VI-A Experimental Subjects
	VI-B Experimental Procedure
	VI-C Results
	VI-C1 Occurring code smells
	VI-C2 Non-occurring code smells

	VII Implications
	VII-1 Further studies
	VII-2 Tools
	VII-3 Training

	VIII Threats to Validity
	VIII-1 Threats to construct validity
	VIII-2 Threats to internal validity
	VIII-3 Threats to external validity

	IX Conclusions and Future Work

