
Mutation Testing ofQuantum Programs Written in QISKit
Daniel Fortunato

daniel.b.fortunato@tecnico.ulisboa.pt
Faculty of Engineering of University of Porto &

INESC-ID, Portugal

José Campos
jcmc@fe.up.pt

Faculty of Engineering of University of Porto,
Portugal and LASIGE, Faculdade de Ciências,

Universidade de Lisboa, Portugal

Rui Abreu
rui@computer.org

Faculty of Engineering of University of Porto &
INESC-ID, Portugal

ABSTRACT
There is an inherent lack of knowledge and technology to test a
quantum program properly. In this paper, building on the definition
of syntactically equivalent quantum operations, we investigated a
novel set of mutation operators to generate mutants based on qubit
measurements and quantum gates. To ease the adoption of quantum
mutation testing, we further discuss QMutPy, an extension of the
well-known and fully automated open-source mutation tool MutPy.
To evaluate QMutPy’s performance we conducted a case study on 11
real quantum programswritten in the IBM’s QISKit library. QMutPy
has proven to be an effective quantum mutation tool, providing
insight on the current state of quantum tests.

KEYWORDS
Quantum computing, Quantum software engineering, Quantum
software testing, Quantum mutation testing
ACM Reference Format:
Daniel Fortunato, José Campos, and Rui Abreu. 2022. Mutation Testing of
Quantum Programs Written in QISKit. In 44th International Conference on
Software Engineering Companion (ICSE ’22 Companion), May 21–29, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3510454.3528649

1 INTRODUCTION
While the fast approaching universal access to quantum comput-
ers is bound to break several computation limitations that have
lasted for decades, it is also bound to pose significant challenges
in, e.g., software testing. Testing refers to the execution of the soft-
ware in vitro environments that replicate real scenarios to ascertain
their correct behavior [3]. Despite that, in the classical computing
realm, testing has been extensively investigated, and several ap-
proaches and tools have been proposed [1], Such approaches for
Quantum Programs (QPs) are still in their infancy [10]. It is worth
noting that (i) QPs are much harder to develop than classic pro-
grams and therefore programmers, mostly familiar with the classic
world, are more likely to make mistakes in the counter-intuitive
quantum programming one [6], and (ii) QPs are necessarily proba-
bilistic and impossible to examine without disrupting execution or
without compromising their results [7]. Thus, ensuring the correct
implementation of QPs is even more challenging in the quantum
computing realm [4].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9223-5/22/05.
https://doi.org/10.1145/3510454.3528649

Mutation testing [8] has been shown to be an effective technique
in improving testing practices, hence helping in guaranteeing pro-
gram correctness. Big tech companies, such as Facebook andGoogle,
have conducted several studies [9] advocating for mutation testing
and its benefits. The general principle underlying mutation test-
ing is that the bugs considered to create versions of the program
represent realistic mistakes that programmers often make. Such
bugs are deliberately seeded into the original program by simply
applying syntactic changes to the program to create a set of buggy
programs called mutants. To assess the effectiveness of a test suite,
these mutants are executed against the program’s test suite. If the
result of running a mutant is different from the result of running
the original program, the mutant is considered detected or killed.

In this paper, we investigate the application of mutation test-
ing on real QPs. We focus our investigation on the most popular
open-source full-stack library for quantum computing [2], IBM’s
Quantum Information Software Kit (QISKit)1. More specifically, in
this paper, we discuss: (1) A set of five novel mutation operators,
leveraging the notion of syntactically equivalent gates, tailored
for QPs; (2) A novel Python-based toolset named QMutPy2 that
automatically performs mutation testing for QPs written in the
QISKit’s full-stack library. (3) An empirical evaluation of QMutPy’s
effectiveness and efficiency on 11 real QPs. Our results suggest
that QMutPy can generate fault-revealing quantum mutants, and it
surfaced several issues in the test suites of real QPs.

2 MUTATION TESTING OF QPS
2.1 Quantum Mutation Operators
Similar to classic programs, a QP is fundamentally a circuit in which
quantum bits (qubits) are initialized and go through a series of
operations that change their state. These operations are commonly
known and referenced as quantum gates.

At the time of writing this paper, QISKit v0.29.0 provides support
to more than 50 quantum gates. This includes single-qubit gates
(e.g., h gate), multiple-qubit gates (e.g., cx gate) and composed
gates, or circuits (e.g., QFT circuit). Given their importance on the
execution and result of a QP, as a simple typo on the name of the
gate could cause bugs that developers may not be aware of, our set
of mutation operators to generate faulty versions of QPs is based on
single- and multi-qubit quantum gates, in particular, syntactically
equivalent gates. We argue that our quantum mutants match real
world bugs as (1) Liu et al. [5] described quantum mutation to be
useful to assess the correct behavior of QPs, and (2) 3 out of the 8
common bug patterns in QISKit programs described by Zhao et al.
[11] are related to quantum gates, as is the majority of our mutation
operators.

1QISKit homepage, https://qiskit.org, accessed March/2022.
2QMutPy source code, https://github.com/danielfobooss/mutpy, accessed March/2022.



ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Daniel Fortunato, José Campos, and Rui Abreu

Formally, a gate 𝑔 is considered syntactically equivalent to a gate
𝑗 if and only if the number and the type of arguments3 required
by both 𝑔 and 𝑗 are the same. At the time when we performed
our experiment, we had identified 40 gates that had syntactical
equivalents. Note that these gates do not perform or compute the
same operation; they are simply used in the same manner and
require the same number and type of arguments.We briefly describe
the five quantum mutation operators investigated in this paper:
— Quantum Gate Replacement (QGR): for each quantum gate func-
tion call (e.g., circuit.x()), replaces it with all syntactically equiv-
alent gates, e.g., circuit.h(), one at a time.
— Quantum Gate Deletion (QGD): deletes a call to a quantum gate.
—QuantumGate Insertion (QGI): for each quantum gate in the source
code, inserts a call to all syntactically equivalent gates one at a time.
—QuantumMeasurement Insertion (QMI): adds a call to the measure
function for each quantum gate call.
— Quantum Measurement Deletion (QMD): removes each measure-
ment from a QP, one at a time.

2.2 QMutPy
We built QMutPy on top of MutPy4, an already well adopted mu-
tation tool. Given a Python program 𝑃 , its test suite 𝑇 , and a set
of mutation operators𝑀 , QMutPy automatically performs the fol-
lowing workflow: (1) Loads 𝑃 ’s source code and its test suite; (2)
Executes 𝑇 on the original source code; (3) Applies 𝑀 and gener-
ates all mutant versions of 𝑃 ; (4) Executes 𝑇 on each mutant and
provides a summary of the results either as a yaml or html report.

3 PRELIMINAR EMPIRICAL STUDY
Our goal is to analyze the quality and resilience of test suites de-
signed to verify QPs. As mentioned before, the idiosyncrasies under-
lying QPs (e.g., superposition, entanglement) makes testing far from
trivial. We argue that QMutPy’s mutants can be used as benchmarks
to assess the quality of tests designed to verify QPs. We considered
11 QPs written in the IBM’s QISKit library that range from 80 to
443 lines of code (245 on average).

Our set of quantum mutation operators generated a total of 696
mutants for the 11 QPs, of which 325 (46.7%) were killed by the
programs’ test suites. QGI, the mutation operator that generated
more mutants (328), had a ratio of 102 killed mutants, followed by
QGR 170 killed mutants out of 300 generated, QMI 27 out of 28,
QGD 18 out of 28, and QMD 8 out of 12. QGD, QGR, QGI, and QMD
mutants are killed more often by test assertions than by crashes. We
also observed that QMI mutants, as expected, are killed by crashes
only. The reason is that QISKit does not have a fail-safe mechanism
for inserting measurements. When a measurement operation is in-
serted in a random position, the circuit may become unprocessable
and an unexpected exception is thrown. However, developing better
approaches to reduce the number of design errors of QMI mutants
remains as future work. The non-killed mutants either survived
to the test suites (307, 44.1%), were not even exercised by the test
suites (2 QMD mutants, 0.3%), or resulted in a timeout (62, 8.9%).

Regarding results at program level, on average, our set of muta-
tion operators mutated 4 lines of code (1.4% of all lines) and gen-
erated 14 mutants per mutated line. The mutation score achieved
3Optional arguments are not taken into consideration.
4MutPy source code, https://github.com/mutpy/mutpy, accessed March/2022.

by all programs’ test suites was, on average, 57.7%. In detail, vqc’s
and vqe’s test suite failed to kill any of the generated mutants. The
single mutant generated for vqe (QMD) timeout and one of the two
generated mutants generated for vqc is not exercised by the pro-
gram’s test suite. Recall that non-exercised mutants would never be
killed by any test as the mutated code is never executed. qsvm’s test
suite killed the single generated mutant (QMD), hhl’s 1 out of 2 (the
survived one is not exercised by the test suite), simon’s 32 out of 47,
grover_optimizer’s 2 out of 52 (50 timeout), bernstein_vazirani’s 74
out of 93, deutsch_jozsa’s 66 out of 93, grover’s 17 out of 93, iqpe’s
82 out of 105 (4 timeout), and shor’s 50 out of 207 (7 timeout).

To verify whether quantum mutants are not killed by chance
but due to tests tailored to verify specific quantum behaviors, we
conducted a small experiment on two QPs, i.e., shor and grover.
We first removed all test assertions from shor and grover’s test
suite, then re-ran our mutation analysis on each QP, and finally
re-computed mutation scores. The mutation scores achieved in this
experiment by each programs’ test suite dropped 42.6%. This shows
the intention of testing a specific quantum behavior is the main
reason tests kill most quantum mutants.

4 CONCLUSIONS
In this paper, we discussed a mutation-based technique to test
QPs, coined QMutPy, which is capable of mutating QPs written
QISKit. This is a first attempt to perform mutation testing on QPs
with a tool that is easy to use and works at scale. Furthermore,
QMutPy offers classic and more quantum mutation operators than
the approaches/tools proposed in the literature. To demonstrate the
effectiveness of QMutPy, we have carried out an empirical study
with 11 real QPs. We observed several issues that may lead to future
failures, e.g., non-optimal code coverage and low mutation scores.
As for future work, we plan to extend QMutPy with other mutation
operators, offer it to other quantum frameworks (e.g., Cirq and Q#),
and run our mutation analysis on real quantum computers.
ACKNOWLEDGMENTS This work was supported in part by FCT/MCTES
through projects ref. PTDC/CCI-COM/29300/2017 and CMU/TIC/0064/2019,
and the research units LASIGE (ref. UIDB/00408/2020 and UIDP/00408/2020)
and INESC-ID (ref. UIDB/50021/2020).

REFERENCES
[1] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Jundefined-

nis Benefelds. 2017. An Industrial Evaluation of Unit Test Generation: Finding
Real Faults in a Financial Application. In Proceedings of the 39th ICSE-SEIP.

[2] Mark Fingerhuth, Tomáš Babej, and Peter Wittek. 2018. Open source software in
quantum computing. PLOS ONE (2018).

[3] Gordon Fraser and José Miguel Rojas. 2019. Software Testing. Springer Interna-
tional Publishing, Cham, 123–192. https://doi.org/10.1007/978-3-030-00262-6_4

[4] Yipeng Huang and Margaret Martonosi. 2018. QDB: from quantum algorithms
towards correct quantum programs. arXiv preprint arXiv:1811.05447 (2018).

[5] P. Liu, S. Hu, M. Pistoia, C. R. Chen, and J. M. Gambetta. 2019. Stochastic
Optimization of Quantum Programs. Computer 52, 6 (2019), 58–67.

[6] Andriy V. Miranskyy and Lei Zhang. 2018. On Testing Quantum Programs. CoRR
abs/1812.09261 (2018). arXiv:1812.09261 http://arxiv.org/abs/1812.09261

[7] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University Press.

[8] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
Mutation Testing Improve Testing Practices?. In Proc. of the 43rd IEEE/ACM ICSE.

[9] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Practical
Mutation Testing at Scale: A view from Google. IEEE TSE (2021).

[10] Jianjun Zhao. 2020. Quantum Software Engineering: Landscapes and Horizons.
arXiv:2007.07047 [cs.SE]

[11] Pengzhan Zhao, Jianjun Zhao, and Lei Ma. 2021. Identifying Bug Patterns in
Quantum Programs. In Proc. of the 2nd Q-SE.


