
GZoltarAction: A Fault Localization Bot for
GitHub Repositories
Hugo Paiva1, José Campos1,2, Rui Abreu1,3

1Faculty of Engineering, University of Porto, Porto, Portugal
2LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

3INESC-ID Lisboa, Portugal
up202103394@edu.fe.up.pt, jcmc@fe.up.pt, rui@computer.org

Abstract—Despite the number of automatic fault localization
tools available for different languages, finding the code respon-
sible for a software failure is still performed manually. This
paper presents GZOLTARACTION, an automated fault localiza-
tion bot designed for GitHub repositories to assist developers
in identifying software faults within a Continuous Integration
(CI) environment. Leveraging Spectrum-based Fault Localiza-
tion (SBFL) via the GZOLTAR tool, GZOLTARACTION embeds
tailored fault localization reports directly into pull requests or
commits, enhancing developers’ ability to debug efficiently. Our
solution, available on the GitHub Marketplace, offers a practical
and accessible tool for the open-source community, hopefully
helping streamline automatic fault localization and reducing
manual fault-finding efforts.

Index Terms—Bots, Software debugging, Fault localization,
GitHub

I. INTRODUCTION

The continued use of traditional debugging (in particular,
fault localization) techniques has contributed to the high cost
of software failures [1]. To mitigate this, researchers have
proposed automatic techniques to help software developers
identify the location of faults in software programs and ul-
timately repair them [2].

The most successful technique to date is Spectrum-based
Fault Localization (SBFL) [3]. SBFL relies on the execution
behavior (“spectrum”) of the program’s test cases and their
outcome (i.e., pass or fail). Given a spectrum, SBFL uses
statistical methods [4, 5, 6] to compute the likelihood of each
code component (e.g., statement) of being the truly faulty
one. Components are then ranked by their likelihood, i.e.,
suspiciousness score, and the ones with this highest value are
more likely to bee the ones responsible for the software failure.

For Java, several tools and plug-ins that use SBFL have
been proposed, e.g., Vida [7], Falcon [8], GZOLTAR [9],
Jaguar [10], iFL4Eclipse [11], and recently FLACOCO [12].
These tools have been successfully used in several research
studies (e.g., [12, 13, 14, 15, 16]), and some have been
integrated into other tools, for example, both GZOLTAR and
FLACOCO have been integrated into the automatic program
repair tool ASTOR [17]. Despite their success, others have
pointed out [18, 19, 20] that there is a need for a tool
that could perform fault localization in a Continuous
Integration (CI) environment.

Thus, in this paper, we propose GZOLTARACTION, a fault
localization bot for GitHub repositories that runs on GitHub
CI. GZOLTARACTION leverages the most popular fault local-
ization tool, GZOLTAR, to create tailored and embedded fault
localization reports directly in commits and pull requests on
GitHub. In summary, GZOLTARACTION aims to reduce the
effort of debugging software.

GZOLTARACTION’s source code is available at

https://github.com/GZoltar/gzoltar-github-action

and it is also available in the GitHub Actions Marketplace at

https://github.com/marketplace/actions/gzoltar

for others to integrate with their GitHub repositories.

II. GZOLTARACTION

GitHub is the most widely used code hosting service, with
94 million users and 263 million automated jobs running on
GitHub Actions every month as of 2022. GitHub supports
Actions, which allows one to configure a workflow (e.g., one
that compiles the project, runs its test suite, and deploys it)
based on events such as a push or pull request. There are
more than 10,000 Actions on the GitHub Marketplace1 anyone
can use free of charge at the time of writing. GitHub offers
2,000 workflow minutes (per month) for any repository and it
does not require the acquisition or configuration of a server,
unlike other CI tools, e.g., Jenkins. That said, GitHub Actions
might be the most suitable environment to run and integrate
an approach that aims to automate the debugging process, just
like the one we propose in this paper.

A. Implementation

GZOLTARACTION was implemented using TypeScript, a
popular superset of JavaScript language that adds static typing
and improves code readability, and was built with Node.js v16.
It depends on:
• @actions/artifact (v1.1.1) to upload, as an artifact,

the data generated by GZOLTAR to GitHub.
• @actions/core (v1.10.0) to get GZOLTARACTION’s

inputs, set its outputs, and set its status on GitHub Actions.
• @actions/github (v5.1.1) to get the diff between com-

mits and create comments on commit or pull requests.
1https://github.com/marketplace?type=actions

https://github.com/GZoltar/gzoltar-github-action
https://github.com/marketplace/actions/gzoltar
https://github.com/marketplace?type=actions

B. Setup

GZOLTARACTION requires that the project under debug-
ging is configured to run GZOLTAR [9] either via the
project’s management tool, i.e., Apache Maven plug-in or
Apache Ant task, or via GZOLTAR’s command line interface.
GZOLTARACTION would fail and not report any result, if
it does not successfully run GZOLTAR on the project under
debugging.

As with any GitHub Action, GZOLTARACTION requires
a YAML configuration file that specifies its permissions and
steps. An example of a YAML file for GZOLTARACTION is
presented in Listing 1. In a nutshell, it defines the command to
compile the project under debugging (line 22), the command to
run the project’s test suite and to collect code coverage with
GZOLTAR (line 25), and the command to make GZOLTAR
generate the fault localization data. Lines 33 and above define
GZOLTARACTION’s parameters. The complete list of parame-
ters and their description can be found in GZOLTARACTION’s
documentation on GitHub. Note that, given that GZOLTAR
supports 16 different formulas [5] to compute the likelihood
of each line of code, one may define 16 formulas in Line 34.

1 name: Run GZoltarAction
2 on:
3 push:
4 branches:
5 - main
6 paths-ignore:
7 - "**.md"
8 jobs:
9 fault-localization:

10 permissions:
11 # GZoltarAction requires these two permissions
12 # to be able to create comments on commits and
13 # pull requests
14 contents: write
15 pull-requests: write
16 runs-on: ubuntu-latest
17 steps:
18 - uses: actions/checkout@v3
19 - uses: actions/setup-java@v2
20

21 - name: Compile project’s test suite
22 run: mvn clean test-compile
23

24 - name: Collect code coverage with GZoltar
25 run: mvn -P sufire gzoltar:prepare-agent test
26

27 - name: Generate fault localization data with GZoltar
28 run: mvn gzoltar:fl-report
29

30 - name: Run GZoltarAction
31 uses: GZoltar/gzoltar-github-action@v0.0.2
32 with:
33 build-path: "/target"
34 sfl-ranking: "[ochiai]"
35 sfl-threshold: "[0.5]"
36 sfl-ranking-order: "ochiai"
37 upload-artifacts: true

Listing 1: Example of a configuration file for GZOLTARACTION.

C. Modus operandi

Figure 1 shows GZOLTARACTION’s workflow and the fol-
lowing subsubsections describe each step of the workflow. It
all starts when a developer pushes a new commit(s) to GitHub,
which triggers the execution of any configured GitHub Action,
including our GZOLTARACTION.

push to

d
ev

el
op

er
s

trigger

action
Validate

YAML file

Parse
GZoltar’s

output

Add fault
localization report

as a comment

Upload
GZoltar’s

output

Run
GZoltar

GZOLTARACTION on GitHub CI

Figure 1: GZOLTARACTION workflow.

1) Validate YAML configuration file: GZOLTARACTION
starts by parsing and validating whether the YAML configu-
ration file is correct. It assesses whether GZOLTARACTION’s
parameters are correct and well instantiated, e.g., whether the
number of elements in the parameter sfl-ranking and
sfl-threshold are the same. GZOLTARACTION ends with
an error message if the file is not correct.

2) Run GZOLTAR: GZOLTARACTION takes the commands
(defined in the YAML file) to run the project’s test suite and
collect their code coverage with GZOLTAR, and execute them.
If any command fails, GZOLTARACTION ends with an error.

3) Parse GZOLTAR’s output: GZOLTARACTION loads and
parses three files generated by GZOLTAR:
• tests.csv: a CSV file with the set of test cases, one per

row, executed by GZOLTAR. Each row contains the name of
the test, the outcome of the test (i.e., pass or fail), execution
time in nanoseconds, and stack trace if the test failed.

• spectra.csv: a CSV file with the set of lines of code,
one per row, in the project under test and their corresponding
suspiciousness score. Each row contains the full name of a
line of code, i.e., class name, method name, and line number,
and its suspiciousness score. Note that while parsing this
file, GZOLTARACTION (a) discards suspicious scores lower
than the defined sfl-threshold and (b) finds the file of
any line of code in the spectra.csv so that it can later
be referenced directly on a comment on GitHub.

• matrix.txt: a text-based coverage matrix of the tests
executed by GZOLTAR. Rows represent test executions, and
columns represent lines of code.
4) Add fault localization report as a comment to commits or

pull requests on GitHub: GZOLTARACTION reports the fault
localization data generated by GZOLTAR for each formula [5]
defined in the YAML, in two different places on the GitHub
UI: (i) as an overall comment of a commit or pull request
and (ii) as a comment at the line or code block level in the
commit diff. Any comment produced by GZOLTARACTION is
written in markdown, the markup language used by GitHub.
(i) The overall comment of a commit or pull request (see
Figure 2) organizes the fault localization data in two different
ways:
• Line Suspiciousness by Algorithm, lists all lines of

code with a suspiciousness score higher than the defined
sfl-threshold. For each line of code, GZOLTARAC-
TION reports (1) the source code, (2) a link to the line
number in its java file on GitHub, (3) the set of test cases
that exercise it (including the test result and stack trace, if
any), and (4) its suspiciousness score. Lines of code are
sorted from the most suspicious to the least suspicious.

Tests that exercise the most
suspicious line of code, including
their result and stack trace of the
failing ones

Most suspicious line
of code

Likelihood of the
most suspicious line
of code

GZOLTARACTION report

Fault localization
formula

Figure 2: Overall comment of a commit.

• Lines Code Block Suspiciousness by Algorithm, also
lists all lines of code with a suspiciousness score higher
than the defined sfl-threshold, but groups the ones
in consecutive line numbers. Given that a group could be
composed of more than one line of code, the set of test
cases that exercise each line is not reported.

Note that if GZOLTAR does not report any failing test case in
step 2), no fault is detected by the project’s test suite. In such
cases, GZOLTARACTION generates an overall comment:

As there is no failing test, GZOLTAR has nothing to report.

(ii) The comment at the line or code block level in the
commit diff (or the most recent commit in the case of a pull
request, see Figure 3) is injected directly on the line of code
present in the diff, and it only reports the suspiciousness score.
When the diff-comments-code-block parameter is
defined, the comment is injected directly on the last line of
code of the block in the diff.

The colors associated with the suspiciousness score follow
the ColorADD2 system, allowing color-blind people to distin-
guish colors. reports suspiciousness scores lower than 0.50,

greater than 0.50, greater than 0.75, and greater than
0.90.

5) Upload GZOLTAR’s output: If the
upload-artifacts is enabled in the YAML file,
all files generated by GZOLTAR (e.g., serialized coverage file,
or HTML fault localization reports [21]) are copied to the
Action’s output artifact—a zip file containing all directories

2ColorADD - Color is for ALL!, https://www.coloradd.net.

Figure 3: Comment at line level in the commit diff.

and files generated during the execution of the Action. The
artifact is later available for download in the action menu on
GitHub for developers to consult or debug.

D. Limitations

We identified two limitations not inherent to the Action
itself during its development.

1) Comment string length: The comments added by
GZOLTARACTION to commits or pull requests can easily get
very long due to the stack trace of the fault-revealing test
cases. Given that GitHub has a limit of 65,536 characters per

https://www.coloradd.net

comment on a commit or pull request, the action would fail if
GZOLTARACTION’s comments exceed this limit. To minimize
this limitation, GZOLTARACTION truncates the stack trace of
each test to 300 characters and appends “...” when the limit is
exceeded. Nevertheless, the limit can still be exceeded if there
are too many failing tests.

2) Comment area size: GitHub assigns a maximum width
of 780px for the comments box. Although this may be
sufficient for most cases, when there are long lines of code, the
fault localization report generated by GZOLTARACTION could
look unformatted, making it difficult to read and understand
its content. To address this limitation, one could execute a
simple JavaScript script in the browser console to increase the
maximum width size. This script can be found in Listing 5.1
in [22] and its impact in Figure 5.4 in [22].

III. FIRST ATTEMPT OF RUNNING GZOLTARACTION IN
THE OPEN-SOURCE WORLD

The open-source world represents a collaborative and trans-
parent approach to software development, where the source
code is freely accessible and modifiable. This inclusive model
has had a transformative impact on technology and society.
At the forefront of this movement is GitHub, one of the most
trusted platforms to host open-source projects, providing an
ecosystem for developers to collaborate.

Thus, we integrated GZOLTARACTION in the Jedis project3,
one of the most popular Java projects in the curated list
of awesome frameworks, libraries, and software for the Java
programming language4 on GitHub. Jedis is the Java client
for Redis, a popular in-memory database with 11,872 stars
and 226 contributors. For this project, we (i) configured the
execution of GZOLTARACTION5, (ii) created a pull request6

with an introduction to the world of SBFL and GZOLTAR,
and (iii) executed the GZOLTARACTION in a commit with
failing tests7 as a demonstration example to show to Jedis’
developers.

Although the setup process and the execution of GZOLTAR
and GZOLTARACTION ran successfully, the integration of
GZOLTARACTION was not accepted. One of the Jedis main-
tainers mentioned8 that

“It’ll be fascinating to see this project as it progresses
- but for now I think it’s too early to include within this
library. For now, we’ll remain on the sidelines.”

His response shows that there is interest in a solution of this
type (as supported by the related literature [12]), but one might
need more evidence that it works (e.g., in smaller projects)
before it gets integrated into large-scale projects such as Jedis.

3https://github.com/redis/jedis
4https://github.com/akullpp/awesome-java
5https://github.com/hugofpaiva/jedis/blob/master/.github/workflows/
integration-gzoltar.yml

6https://github.com/redis/jedis/pull/3448
7https://github.com/hugofpaiva/jedis/commit/aadeeeb
8https://github.com/redis/jedis/pull/3448#issuecomment-1576735222

IV. RELATED WORK

Bots, automated software agents, can assist developers and
testers in various software engineering tasks (e.g., [23, 24, 25,
26, 27, 28, 29, 30, 31]), including fault localization. Thus, it is
natural that bots that use existing SBFL tools have emerged.
To the best of our knowledge, only one work has proposed a
bot for fault localization.

FLACOCOBOT is a bot that uses the FLACOCO [12] fault
localization tool for Java programs. Briefly, it all starts when a
developer creates or updates a pull request on a platform like
GitHub, which then triggers a job in a CI system (e.g., Travis
or Jenkins). When FLACOCOBOT detects a failing build (note
that it autonomously scans the status of the pipeline from a
list of projects), it clones the project, executes FLACOCO,
computes the top most suspicious lines of code in the pull
request’s diff, and posts a comment on the pull request with
the fault localization data (suspicious score per line of code,
and the set of tests that failed and covered each line).

Although the primary goals of FLACOCOBOT and
GZOLTARACTION are the same, and they share some features
(e.g., the ability to add comments to pull requests or to
individual lines of code), there are few notable differences.9 (1)
FLACOCOBOT (either source code or binary) is unavailable.
GZOLTARACTION, on the other hand, is an open-source
project and it is available in the GitHub Actions Marketplace.
(2) Regarding filtering out the results of the underlying fault
localization tool, FLACOCOBOT allows the selection of the
top-k most suspicious lines of code and GZOLTARACTION
allows the selection of the lines of code with a suspicious score
higher than a given threshold. (3) FLACOCOBOT reports fault
localization data at the line level, whereas GZOLTAR supports
at the line and code block level. (4) Finally, FLACOCOBOT
does not publish or make available the data generated by the
underlying fault localization tool, as opposed to GZOLTARAC-
TION, which uploads the data to the action’s artifact on
GitHub.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the first bot on automatic fault
localization that is fully integrated into the most popular
code hosting service, GitHub, through GitHub Actions. As for
future work, we aim to explore the creation and inline of the
new GitHub Annotations to replace our current way of adding
comments on pull requests or commit diffs. Annotations are
similar to comments but can be attached to multiple lines or
specific parts of a line of code. They can include a title, a
message, and details; and have multiple levels of severity.

ACKNOWLEDGMENTS

This work was supported by Fundação para a Ciência
e Tecnologia (FCT) through the LASIGE Research Unit,
ref. UID/000408/2025; and INESC-ID, ref. UIDB/50021/2020
(https://doi.org/10.54499/UIDB/50021/2020).

9Example of a comment generated by FLACOCOBOT [12], https://github.
com/INRIA/spoon/pull/4709#pullrequestreview-951192304.

https://github.com/redis/jedis
https://github.com/akullpp/awesome-java
https://github.com/hugofpaiva/jedis/blob/master/.github/workflows/integration-gzoltar.yml
https://github.com/hugofpaiva/jedis/blob/master/.github/workflows/integration-gzoltar.yml
https://github.com/redis/jedis/pull/3448
https://github.com/hugofpaiva/jedis/commit/aadeeeb
https://github.com/redis/jedis/pull/3448#issuecomment-1576735222
https://doi.org/10.54499/UIDB/50021/2020
https://github.com/INRIA/spoon/pull/4709#pullrequestreview-951192304
https://github.com/INRIA/spoon/pull/4709#pullrequestreview-951192304

REFERENCES

[1] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of
Software Testing. 3rd. Wiley Publishing, 2011. ISBN: 1118031962,
9781118031964.

[2] Martin Monperrus. The Living Review on Automated Program Repair.
Tech. rep. hal-01956501. HAL/archives-ouvertes.fr, 2018.

[3] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
“A Survey on Software Fault Localization”. In: IEEE Transactions on
Software Engineering 42.8 (2016), pp. 707–740. DOI: 10.1109/TSE.
2016.2521368.

[4] James A. Jones, Mary Jean Harrold, and John Stasko. “Visualization of
test information to assist fault localization”. In: Proceedings of the 24th
International Conference on Software Engineering. ICSE ’02. Orlando,
Florida: Association for Computing Machinery, 2002, 467–477. ISBN:
158113472X. DOI: 10.1145/581339.581397.

[5] Rui Abreu, Peter Zoeteweij, and Arjan J.c. Van Gemund. “An Eval-
uation of Similarity Coefficients for Software Fault Localization”.
In: 2006 12th Pacific Rim International Symposium on Dependable
Computing (PRDC’06). 2006, pp. 39–46. DOI: 10.1109/PRDC.2006.
18.

[6] Rui Abreu, and Arjan J.C. van Gemund. “A Low-Cost Approximate
Minimal Hitting Set Algorithm and its Application to Model-Based
Diagnosis”. In: Proceedings of the 8th Symposium Abstraction, Refor-
mulation, Approximation (SARA). Lake Arrowhead, CA, USA, 2009,
1–8.

[7] Dan Hao, Lingming Zhang, Lu Zhang, Jiasu Sun, and Hong Mei.
“VIDA: Visual interactive debugging”. In: 2009 IEEE 31st Interna-
tional Conference on Software Engineering. 2009, pp. 583–586. DOI:
10.1109/ICSE.2009.5070561.

[8] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. “Falcon:
fault localization in concurrent programs”. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering
- Volume 1. ICSE ’10. Cape Town, South Africa: Association for
Computing Machinery, 2010, 245–254. ISBN: 9781605587196. DOI:
10.1145/1806799.1806838.

[9] José Campos, André Riboira, Alexandre Perez, and Rui Abreu.
“GZoltar: an eclipse plug-in for testing and debugging”. In: Proceed-
ings of the 27th IEEE/ACM International Conference on Automated
Software Engineering. ASE ’12. Essen, Germany: Association for
Computing Machinery, 2012, 378–381. ISBN: 9781450312042. DOI:
10.1145/2351676.2351752.

[10] Henrique L. Ribeiro, Roberto P. A. de Araujo, Marcos L. Chaim,
Higor A. de Souza, and Fabio Kon. “Jaguar: A Spectrum-Based
Fault Localization Tool for Real-World Software”. In: 2018 IEEE
11th International Conference on Software Testing, Verification and
Validation (ICST). 2018, pp. 404–409. DOI: 10.1109/ICST.2018.00048.

[11] Gergo Balogh, Ferenc Horváth, and Árpád Beszédes. “Poster: Aiding
Java Developers with Interactive Fault Localization in Eclipse IDE”.
In: 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST). 2019, pp. 371–374. DOI: 10 . 1109 / ICST. 2019 .
00045.

[12] André Silva, Matias Martinez, Benjamin Danglot, Davide Ginelli, and
Martin Monperrus. FLACOCO: Fault Localization for Java based on
Industry-grade Coverage. 2023. arXiv: 2111.12513 [cs.SE].

[13] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,
Michael D. Ernst, Deric Pang, and Benjamin Keller. “Evaluating and
Improving Fault Localization”. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). 2017, pp. 609–620. DOI:
10.1109/ICSE.2017.62.

[14] David Paterson, Jose Campos, Rui Abreu, Gregory M. Kapfhammer,
Gordon Fraser, and Phil McMinn. “An Empirical Study on the Use
of Defect Prediction for Test Case Prioritization”. In: 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST).
2019, pp. 346–357. DOI: 10.1109/ICST.2019.00041.

[15] Prantik Chatterjee, Abhijit Chatterjee, José Campos, Rui Abreu, and
Subhajit Roy. “Diagnosing software faults using multiverse analysis”.
In: Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence. IJCAI’20. Yokohama, Yokohama, Japan, 2021.
ISBN: 9780999241165.

[16] Prantik Chatterjee, José Campos, Rui Abreu, and Subhajit Roy.
“Augmenting automated spectrum based fault localization for multi-
ple faults”. In: Proceedings of the Thirty-Second International Joint

Conference on Artificial Intelligence. IJCAI ’23. Macao, P.R.China,
2023. ISBN: 978-1-956792-03-4. DOI: 10.24963/ijcai.2023/350.

[17] Matias Martinez and Martin Monperrus. “ASTOR: a program repair
library for Java (demo)”. In: Proceedings of the 25th International Sym-
posium on Software Testing and Analysis. ISSTA 2016. Saarbrücken,
Germany: Association for Computing Machinery, 2016, 441–444.
ISBN: 9781450343909. DOI: 10.1145/2931037.2948705.

[18] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. “Practi-
tioners’ expectations on automated fault localization”. In: Proceedings
of the 25th International Symposium on Software Testing and Analy-
sis. ISSTA 2016. Saarbrücken, Germany: Association for Computing
Machinery, 2016, 165–176. ISBN: 9781450343909. DOI: 10 . 1145 /
2931037.2931051.

[19] Aaron Ang, Alexandre Perez, Arie Van Deursen, and Rui Abreu.
“Revisiting the Practical Use of Automated Software Fault Localization
Techniques”. In: 2017 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). 2017, pp. 175–182. DOI:
10.1109/ISSREW.2017.68.

[20] Archana and Ashutosh Agarwal. “Evaluation of spectrum based fault
localization tools”. In: Proceedings of the 15th Innovations in Software
Engineering Conference. ISEC ’22. Gandhinagar, India: Association
for Computing Machinery, 2022. ISBN: 9781450396189. DOI: 10.1145/
3511430.3511470.

[21] Carlos Gouveia, José Campos, and Rui Abreu. “Using HTML5 visu-
alizations in software fault localization”. In: 2013 First IEEE Working
Conference on Software Visualization (VISSOFT). 2013, pp. 1–10. DOI:
10.1109/VISSOFT.2013.6650539.

[22] Hugo Paiva. “Integration of Fault Localization into your GitHub
Repository”. MA thesis. Porto, Portugal: Faculty of Engineering of
the University of Porto, 2023.

[23] Zhendong Wang, Yi Wang, and David Redmiles. “Optimizing Work-
flow for Elite Developers: Perspectives on Leveraging SE Bots”. In:
2023 IEEE/ACM 5th International Workshop on Bots in Software
Engineering (BotSE). 2023, pp. 23–27. DOI: 10 .1109/BotSE59190.
2023.00013.

[24] Théo Zimmermann, Julien Coolen, Jason Gross, Pierre-Marie Pédrot,
and Gaëtan Gilbert. “The Advantages of Maintaining a Multitask,
Project-Specific Bot: An Experience Report”. In: IEEE Software 39.5
(2022), pp. 32–37. DOI: 10.1109/MS.2022.3179773.

[25] Florian Markusse, Alexander Serebrenik, and Philipp Leitner. “To-
wards Continuous Performance Assessment of Java Applications With
PerfBot”. In: 2023 IEEE/ACM 5th International Workshop on Bots
in Software Engineering (BotSE). 2023, pp. 6–8. DOI: 10 . 1109 /
BotSE59190.2023.00009.

[26] Florian Markusse, Philipp Leitner, and Alexander Serebrenik. “Using
Benchmarking Bots for Continuous Performance Assessment”. In:
IEEE Software 39.5 (2022), pp. 50–55. DOI: 10 . 1109 / MS . 2022 .
3184430.

[27] Doje Park, Heetae Cho, and Seonah Lee. “Classifying issues into
custom labels in GitBot”. In: Proceedings of the Fourth International
Workshop on Bots in Software Engineering. BotSE ’22. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022, 28–32.
ISBN: 9781450393331. DOI: 10.1145/3528228.3528404.

[28] Hamid Mohayeji, Felipe Ebert, Eric Arts, Eleni Constantinou, and
Alexander Serebrenik. “On the adoption of a TODO bot on GitHub:
a preliminary study”. In: Proceedings of the Fourth International
Workshop on Bots in Software Engineering. BotSE ’22. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022, 23–27.
ISBN: 9781450393331. DOI: 10.1145/3528228.3528408.

[29] Arkadip Basu and Kunal Banerjee. “Designing a Bot for Efficient Dis-
tribution of Service Requests”. In: 2021 IEEE/ACM Third International
Workshop on Bots in Software Engineering (BotSE). 2021, pp. 16–20.
DOI: 10.1109/BotSE52550.2021.00011.

[30] Ilham Qasse, Shailesh Mishra, and Mohammad Hamdaqa. “iCon-
tractBot: A Chatbot for Smart Contracts’ Specification and Code
Generation”. In: 2021 IEEE/ACM Third International Workshop on
Bots in Software Engineering (BotSE). 2021, pp. 35–38. DOI: 10.1109/
BotSE52550.2021.00015.

[31] Dragos Serban, Bart Golsteijn, Ralph Holdorp, and Alexander Sere-
brenik. “SAW-BOT: Proposing Fixes for Static Analysis Warnings
with GitHub Suggestions”. In: 2021 IEEE/ACM Third International
Workshop on Bots in Software Engineering (BotSE). 2021, pp. 26–30.
DOI: 10.1109/BotSE52550.2021.00013.

https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/581339.581397
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/ICSE.2009.5070561
https://doi.org/10.1145/1806799.1806838
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1109/ICST.2018.00048
https://doi.org/10.1109/ICST.2019.00045
https://doi.org/10.1109/ICST.2019.00045
https://arxiv.org/abs/2111.12513
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.24963/ijcai.2023/350
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1109/ISSREW.2017.68
https://doi.org/10.1145/3511430.3511470
https://doi.org/10.1145/3511430.3511470
https://doi.org/10.1109/VISSOFT.2013.6650539
https://doi.org/10.1109/BotSE59190.2023.00013
https://doi.org/10.1109/BotSE59190.2023.00013
https://doi.org/10.1109/MS.2022.3179773
https://doi.org/10.1109/BotSE59190.2023.00009
https://doi.org/10.1109/BotSE59190.2023.00009
https://doi.org/10.1109/MS.2022.3184430
https://doi.org/10.1109/MS.2022.3184430
https://doi.org/10.1145/3528228.3528404
https://doi.org/10.1145/3528228.3528408
https://doi.org/10.1109/BotSE52550.2021.00011
https://doi.org/10.1109/BotSE52550.2021.00015
https://doi.org/10.1109/BotSE52550.2021.00015
https://doi.org/10.1109/BotSE52550.2021.00013

	I Introduction
	II GZoltarAction
	II-A Implementation
	II-B Setup
	II-C Modus operandi
	II-C1 Validate YAML configuration file
	II-C2 Run GZoltar
	II-C3 Parse GZoltar's output
	II-C4 Add fault localization report as a comment to commits or pull requests on GitHub
	II-C5 Upload GZoltar's output

	II-D Limitations
	II-D1 Comment string length
	II-D2 Comment area size

	III First attempt of running GZoltarAction in the open-source world
	IV Related work
	V Conclusion and Future work

