
Continuous Test Generation: Enhancing Continuous
Integration with Automated Test Generation

José Campos1 Andrea Arcuri2 Gordon Fraser1 Rui Abreu3

1Department of 2Certus Software V&V Center 3Faculty of Engineering,
Computer Science, Simula Research Laboratory, University of Porto

University of Sheffield, UK P.O. Box 134, 1325 Lysaker, Norway Porto, Portugal

ABSTRACT
In object oriented software development, automated unit test gen-
eration tools typically target one class at a time. A class, however,
is usually part of a software project consisting of more than one
class, and these are subject to changes over time. This context of a
class offers significant potential to improve test generation for indi-
vidual classes. In this paper, we introduce Continuous Test Gener-
ation (CTG), which includes automated unit test generation during
continuous integration (i.e., infrastructure that regularly builds and
tests software projects). CTG offers several benefits: First, it an-
swers the question of how much time to spend on each class in a
project. Second, it helps to decide in which order to test them. Fi-
nally, it answers the question of which classes should be subjected
to test generation in the first place. We have implemented CTG us-
ing the EVOSUITE unit test generation tool, and performed exper-
iments using eight of the most popular open source projects avail-
able on GitHub, ten randomly selected projects from the SF100
corpus, and five industrial projects. Our experiments demonstrate
improvements of up to +58% for branch coverage and up to +69%
for thrown undeclared exceptions, while reducing the time spent on
test generation by up to +83%.

Categories and Subject Descriptors. D.2.5 [Software Engineer-
ing]: Testing and Debugging – Testing Tools;

General Terms. Algorithms, Experimentation, Reliability

Keywords. Unit testing, automated test generation, continuous
testing, continuous integration

1. INTRODUCTION
Research in software testing has resulted in advanced unit test

generation tools such as EVOSUITE [7] or Pex [33]. Even though
these tools make it feasible for developers to apply automated test
generation on an individual class during development, testing an
entire project consisting of many classes in an interactive develop-
ment environment is still problematic: Systematic unit test genera-
tion is usually too computationally expensive to be used by devel-
opers on entire projects. Thus, most unit test generation tools are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Västerås, Sweden
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.

based on the scenario that each class in a project is considered a
unit and tested independently.

In practice, unit test generation may not always be performed
on an individual basis. For instance, in industry there are often
requirements on the minimum level of code coverage that needs
to be achieved in a software project, meaning that test generation
may need to be applied to all classes. As the software project
evolves, involving code changes in multiple sites, test generation
may be repeated to maintain and improve the degree of unit test-
ing. Yet another scenario is that an automated test case generation
tool might be applied to all classes when introduced for the first
time in a legacy project. If the tool does not work convincingly
well in such a case, then likely the tool will not be adopted.

By considering a software project and its evolution as a whole,
rather than each class independently, there is the potential to use
the context information for improving unit test generation:
• When generating test cases for a set of classes, it would be

sub-optimal to use the same amount of computational re-
sources for all of them, especially when there are at the same
time both trivial classes (e.g., only having get and set meth-
ods) and complex classes full of non-linear predicates.
• Test suites generated for one class could be used to help the

test data generation for other classes, for example using dif-
ferent types of seeding strategies [9].
• Finally, test suites generated for one revision of a project can

be helpful in producing new test cases for a new revision.
An attractive way to exploit this potential lies in using continu-

ous integration [6]: In continuous integration, a software project is
hosted on a controlled version repository (e.g., SVN or Git) and, at
each commit, the project is built and the regression test suites are
run to verify that the new added code does not break anything in
the application. Continuous integration is typically run on powerful
servers, and can often resort to build farms or cloud-based infras-
tructure to speed up the build process for large projects. This opens
doors for automated test generation tools, in order to enhance the
typically manually generated regression test suites with automati-
cally generated test cases, and it allows the test generation tools to
exploit the advantages offered when testing a project as a whole.

In this paper, we introduce Continuous Test Generation (CTG),
which enhances continuous integration with automated test gener-
ation. This integration raises many questions on how to test the
classes in a software project: For instance, in which order should
they be tested, how much time to spend on each class, and which
information can be carried over from the tests of one class to an-
other? To provide first answers to some of these questions, we have
implemented CTG as an extension to the EVOSUITE test generation
tool and performed experiments on a range of different software
projects. In detail, the contributions of this paper are as follows:

• We introduce the problem of generating unit tests for whole
projects, and discuss in details many of its aspects.
• We describe different strategies of scheduling the order in

which classes are tested to improve the performance.
• We propose a technique to incrementally test the units in

a software project, leading to overall higher code coverage
while reducing the time spent on test generation.
• We present a rigorous empirical study on 10 open source

projects from the SF100 corpus, eight of the most popular
projects on GitHub, and five industrial projects supporting
the viability and usefulness of our presented techniques.
• All the presented techniques have been implemented as an

extension of the EVOSUITE test generation tool, which is
freely available for researchers and practitioners at:
www.evosuite.org.

Our experiments demonstrate that, by intelligently using the in-
formation provided when viewing a software project as a whole,
the techniques presented in this paper can lead to improvements
of up to +58% for branch coverage and up to +69% for thrown
undeclared exceptions. At the same time, applying this test genera-
tion incrementally not only improves the test effectiveness, but also
saves time — by up to +83%. However, our experiments also point
out important areas of future research on CTG: There is potential
to further improve budget allocation techniques, and although we
provide evidence that seeding can be beneficial, we also observe
cases where this is not the case, thus calling for more intelligent
techniques to apply seeding.

2. BACKGROUND
This section provides a brief overview of the key concepts that

are relevant to this paper.

2.1 Continuous Integration and Testing
The roots of continuous integration [6] can be traced back to the

Extreme Programming methodology. One of the main objectives
of continuous integration is to reduce the problems of “integration
hell”, i.e., different engineers working on the same code base at
the same time, such that their changes have to be merged together.
One approach to deal with such problems is to use controlled ver-
sion repositories (e.g., SVN or Git) and to commit changes on a
daily basis, instead of waiting days or weeks. At each new code
commit, a remote server system can build the application automat-
ically to see if there are any code conflicts. Furthermore, at each
new build, the available regression test suites can be run to see if
any new features or bug fixes break existing functionality; develop-
ers responsible for new failures can be automatically notified.

Continuous integration is widely adopted in industry, and several
different systems are available for practitioners. The most popu-
lar ones include the open source projects Jenkins1, CruiseControl2,
Apache Continuum3, Oracle’s Hudson4 and Bamboo from Atlas-
sian5. The functionalities of those continuous integration systems
can typically be extended with plugins. For example, at the time
of writing this paper, Jenkins had more than 600 plugins, including
plugins that measure and visualise code coverage of tests.

Besides running regression test suites on dedicated continuous
integration servers, these suites could also be automatically run
in the background on the development machines by the IDE (e.g.,

1http://jenkins-ci.org, accessed 03/2014.
2http://cruisecontrol.sourceforge.net, accessed 03/2014.
3http://continuum.apache.org, accessed 03/2014.
4http://hudson-ci.org, accessed 03/2014.
5http://atlassian.com/software/bamboo, accessed 03/2014.

Eclipse). The idea would be to provide feedback to the developers
as soon as possible, while they are still editing code. Some authors
call this approach continuous testing [27, 28].

In principle, continuous testing does not need to be restricted
to regression test suites. If automated oracles are available (e.g.,
formal post-conditions and class invariants), then a test case gen-
eration tool can be run continuously 24/7, and can report to the
developers as soon as a specification condition is violated. One
such form of “continuous” testing is for example discussed in [22].

2.2 Automated Unit Test Generation
Unit test suites are commonly used by developers to check the

correctness and completeness of the code they wrote, and to guard
it against future regression faults. Such test suites are commonly
hand-written, often even before the classes they are testing are im-
plemented (the so called “Test Driven Development”). To support
developers in this task, researchers have devised methods to auto-
matically generate unit tests. Some approaches assume the exis-
tence of a formal model of the class (e.g., UML [23]), and many
other popular approaches require only source code.

To generate unit tests from source code, the simplest approach is
to do so randomly [2]. This approach can produce large numbers
of tests in a short time, and the main intended usage is to exercise
generic object contracts [5, 25] or code contracts [20]. Approaches
based on symbolic execution have been popularized by Dynamic
Symbolic Execution (DSE) [18], which efficiently explores paths
from a given entry function. For example, a popular variant to ap-
ply DSE is to manually write a parameterized unit test as an entry
function, and then to explore the paths through a program by de-
riving values for the parameters of the test [33]. Generating unit
tests that resemble manually written tests (i.e., few short test cases
with high coverage) is commonly done using Search-based Soft-
ware Testing (SBST). When applying SBST for unit test genera-
tion, efficient meta-heuristic search algorithms such as genetic al-
gorithms are used to evolve sequences of method calls with respect
to code coverage and other criteria [34].

Automatically generated test cases could be added to existing
regression suites and be run within continuous integration. For this
purpose there are also commercial tools like AgitarOne6 that can be
integrated into build environments (e.g., Maven), such that new test
suites are generated with each new build of a system. Such tools
will face the same problem we are addressing in this paper.

Continuous test generation is closely related to test suite aug-
mentation: Test suite augmentation is an approach to test genera-
tion that considers code changes and their effects on past test suites.
Some test suite augmentation techniques aim to restore code cov-
erage in test suites after changes by producing new tests for new
behaviour (e.g. [37]), while other approaches explicitly try to ex-
ercise changed code to reveal differences induced by the changes
(e.g., [24,29,31]); we are also working on extending EVOSUITE in
this direction [30]. Although test suite augmentation is an obvious
application of CTG, there are differences: First, CTG answers the
question of how to implement test suite augmentation (e.g., how to
allocate the computational budget to individual classes). Second,
while CTG can benefit from information about changes, it can also
be applied without any software changes. Third, CTG is not tied
to an individual coverage criterion; for example, one could apply
CTG such that once coverage of one criterion is saturated, test gen-
eration can target a different, more rigorous criterion. Finally, the
implementation as part of continuous integration makes it possible
to automatically notify developers of any faults found by automated
6http://www.agitar.com/pdf/
AgitarOneJUnitGeneratorDatasheet.pdf, accessed 03/2014.

www.evosuite.org
http://jenkins-ci.org
http://cruisecontrol.sourceforge.net
http://continuum.apache.org
http://hudson-ci.org
http://atlassian.com/software/bamboo
http://www.agitar.com/pdf/AgitarOneJUnitGeneratorDatasheet.pdf
http://www.agitar.com/pdf/AgitarOneJUnitGeneratorDatasheet.pdf

oracles such as assertions or code contracts. Some of the potential
benefits of performing test suite augmentation continuously have
also been identified in the context of software product-lines [35].

2.3 The EvoSuite Unit Test Generation Tool
In this paper, we use the EVOSUITE [7] tool for automatic unit

test suite generation for Java programs. EVOSUITE works at Java
bytecode level (so it can also be used on third-party systems with no
available source code), and it is fully automated: it does not require
manually written test drivers or parameterized unit tests. For ex-
ample, when EVOSUITE is used from its Eclipse plugin, a user just
needs to select a class, and tests are generated with a mouse-click.

EVOSUITE implements a hybrid approach that combines the best
of SBST and DSE [16] to generate unit test suites for individual
Java classes. It uses a genetic algorithm in which it evolves whole
test suites, which has been shown to be more efficient at achiev-
ing code coverage than generating tests individually [13, 14]. De-
pending on the search properties, DSE is adaptively used to satisfy
coverage goals that are difficult for SBST.

Once unit tests with high code coverage are generated, EVO-
SUITE applies various post-processing steps to improve readability
(e.g., minimizing) and adds test assertions that capture the current
behaviour of the tested classes. To select the most effective as-
sertions, EVOSUITE uses mutation analysis [15]. EVOSUITE can
generate test suites covering different kinds of coverage criteria,
like for example weak and strong mutation testing [14], and it can
also aim at triggering undeclared exceptions [10]. EVOSUITE can
be integrated into a programmer’s development environment with
its Eclipse plugin, or it can be used on the command line.

The whole test suite generation [13, 14] approach implemented
by EVOSUITE removes the need to select an order in which to tar-
get individual coverage goals, and it avoids the need to distribute
the search-budget among the individual coverage goals. The prob-
lem of choosing an order and distributing the test generation bud-
get between coverage goals is similar to the problem of scheduling
and distributing test generation budget between classes of a project.
However, there are subtle differences that prevent an easy, direct
application of the whole test suite approach at project level.

On one hand, when a test case is executed on a Class Under
Test (CUT), we can easily collect information on all the branching
predicates it executes. On the other hand, when generating tests for
a specific CUT A, most of the other CUTs will not be executed.
Even if a class B is called by A, test cases generated for A would
not be directly useful as unit tests for B (e.g., all methods called
would belong toA) unless post-processing is applied. Furthermore,
there might be scalability issues when keeping in memory whole
test suites for all CUTs in a project, all at the same time.

3. TESTING WHOLE PROJECTS
Test generation is a complex problem, therefore the longer an au-

tomated test generation tool is allowed to run on an individual class,
the better the results. For example, given more time, a search-based
approach will be able to run for more iterations, and a tool based on
DSE can explore more paths. However, the available time budget
is usually limited and needs to be distributed among all individual
classes of a given software project. The problem addressed in this
section can thus be summarized at high level as follows:

Given a project X , consisting of n units, and a time budget b,
how to best use an automated unit test generation tool to

maximize code coverage and failure detection on X within the
time limit b?

The values for n and b will be specific to the projects on which

test generation is applied. In our experiments, the values for n
range from 1 to 412, with an average of 90. Estimating what b
will look like is more challenging, and at the moment we can only
rely on the feedback of how our industrial partners think they will
use EVOSUITE on whole projects. However, it is clear that already
on a project of a few hundred classes, running EVOSUITE with a
minimum of just a few minutes per CUT might take hours. There-
fore, what constitutes a reasonable value for b will depend on the
particular industrial scenario.

If EVOSUITE is run on developer machines, then running EVO-
SUITE on a whole project at each code commit might not be a fea-
sible option. However, it could be run after the last code commit
of the day until the day after. For example, on a week day, assum-
ing a work schedule from 9 a.m. to 5 p.m., it could mean running
EVOSUITE for 16 hours, and 64 hours on weekends. Given a mod-
ern multicore PC, EVOSUITE could even be run on a whole project
during the day, in a similar way as done with regression suites in
continuous testing [27,28]; but that could have side effects of slow-
ing down the PC during coding and possible noise issues that might
be caused by the CPU working at 100%. An alternative scenario
would be a remote continuous integration system serving several
applications/departments within a company. Here, the available
budget b would depend on the build schedule and on the number of
projects for which the continuous integration server is used. Some
companies also use larger build-farms or cloud-infrastructure for
continuous integration, which would allow for larger values of b, or
more frequent runs of EVOSUITE.

The simplest, naïve approach to target a whole project is to di-
vide the budget b equally among the n classes, and then apply a tool
like EVOSUITE independently on each for b/n minutes (assuming
no parallel runs on different CPUs/cores). In this paper, we call this
simple strategy, and it is the strategy we have used in past empirical
studies of EVOSUITE (e.g., [8]). However, this simple strategy may
not yield optimal results. In the rest of this section, we describe dif-
ferent aspects of targeting whole projects that can be addressed to
improve upon the simple strategy. Note that in principle test gener-
ation for a class can be finished before the allocated budget is used
up (i.e., once 100% coverage is achieved). In this case, the time
saved on such a class could be distributed on the remaining classes;
that is, the schedule could be adapted dynamically during runtime.
For our initial experiments we optimised for coverage and excep-
tions [10], where no test generation run would end prematurely.
However, we will consider such optimisations as future work.

3.1 Budget Allocation
In the simple approach, each n CUT gets an equal share of the

time budget b. If there are k CPUs/cores that can be used in parallel
(or a distributed network of computers), then the actual amount of
available computational resources is k× b. For example, assuming
a four core PC and a 10 minute budget, then a tool like EVOSUITE
could run on 40 CUTs for one minute per CUT. However, such a
resource allocation would not distinguish between trivial and com-
plex classes requiring more resources to be fully covered. This
budget allocation can be modeled as an optimization problem.

Assume n CUTs, each taking a share of the total k × b budget,
with b expressed as number of minutes. Assume a testing tool that,
when applied on a CUT c for z minutes, obtains performance re-
sponse t(c, z) = y, which could be calculated as the obtained code
coverage and/or number of triggered failures in the CUT c. If the
tool is randomized (e.g., a typical case in search-based and dynamic
symbolic execution tools like EVOSUITE), then y is a random vari-
able. Let |Z| = n be the vector of allocated budgets for each CUT,
and |YZ | = n the vector of performance responses t(c, z) calcu-

lated once Z is chosen and the automated testing tool is run on each
of the n CUTs for the given time budgets in Z. Assume a perfor-
mance measure f on the entire project that should be maximized (or
minimized). For example, if y represents code coverage, one could
be interested in the average f(Z) =

∑
y∈YZ
n

of all of the CUTs.
Under these conditions, maximizing f(Z) could be represented as
a search problem in which the solution space is represented by the
vector Z, under two constraints: first, their total budget should not
exceed the total, i.e.,

∑
zi∈Z zi ≤ k × b, and, second, it should be

feasible to find a “schedule” in which those n “jobs” can be run on
k CPUs/cores within b minutes. A trivial consequence of this latter
constraint is that no value in Z can be higher than b.

Given this optimization problem definition, any optimiza-
tion/search algorithm (e.g., genetic algorithms) could be used to
address it. However, there are several open challenges with this
approach, like for example:
• The optimization process has to be quick, as any time spent

on it would be taken from the budget k×b for test generation.
• The budget allocation optimization has to be done be-

fore generating any test case for any CUT, but the values
t(c, z) = y are only obtained after executing the testing tool
and the test cases are run. There is hence the need to obtain
an estimate function t′, as t cannot be used. This t′ could be
for example obtained with machine learning algorithms [21],
trained and released as part of the testing tool. A further ap-
proach could also be to execute some few test cases, and use
the gathered experience to predict the complexity of the CUT
for future test case generation efforts.
• Even if it is possible to obtain a near perfect estimate func-

tion t′ ' t, one major challenge is that its output should not
represent a single, concrete value y, but rather the probability
distribution of such a random variable. For example, if the
response is measured as code coverage, a possibility could
be that the output of t′(c, z) is represented by a |R| = 101
vector, where each element represents the probability P of y
obtaining such a code coverage value (with 1% interval pre-
cision), i.e. R[i] = P (y == i%), where

∑
r ∈ R = 1.

Based on how R is defined (could even be a single value
representing a statistics of the random variable, like mean
and median), there can be different ways to define the per-
formance measure f(Z) on the entire project.

After having described the budget allocation problem in general,
in this paper we present a first attempt to address it. We start our
investigation of addressing whole projects with a simple to imple-
ment technique. First, each CUT will have a minimum amount of
the time budget, e.g., z ≥ 1 (i.e., one minute). Then the remaining
budget (k × b) − (n × 1) can be distributed among the n CUTs
proportionally to their number of branches (but still under the con-
straint z ≤ b). In other words, we can estimate the difficulty of
a CUT by counting its number of branches. This is an easy way
to distinguish a trivial from a complex CUT. Although counting
the number of branches is a coarse measure, it can already pro-
vide good results (as we will show in the empirical study in this
paper). It is conceivable that more sophisticated metrics such as,
for example, cyclomatic complexity, may lead to improved budget
distribution, and we will investigate this in future research.

Having a minimum amount of time per CUT (e.g., z ≥ 1) is
independent of whether a smart budget allocation is used. For ex-
ample, if we only have one core and budget b = 5 minutes, it
would make no sense to run EVOSUITE on a project with thou-
sands of CUTs, as only a few milliseconds would be available on
average per CUT. In such cases, it would be more practical to just
run EVOSUITE on a subset of the classes (e.g., five) such that there

is enough time (e.g., one minute) for each of those CUTs to get
some usable result. Ensuring that all classes are tested would then
require allocating the budget to different classes in successive runs
of EVOSUITE in the following days (Section 4.1 will present some
more ideas on how to use historical data).

3.2 Seeding Strategies
After allocating the time budget Z for each of the n CUTs, the

test data generation (e.g., using EVOSUITE) on each of those n
CUTs will be done in a certain order (e.g., alphabetically or ran-
domly), assuming n > k (i.e., more CUTs than possible parallel
runs). This means that when we start to generate test cases for a
CUT c, we will usually have already finished generating test suites
for some other CUTs in that project, and these test suites can be
useful in generating tests for c. Furthermore, there might be infor-
mation available from past EVOSUITE runs on the same project.
This information can be exploited for seeding.

In general, with seeding we mean any technique that exploits
previous knowledge to help solve a testing problem at hand. For
example, in SBST existing test cases can be used when generating
the initial population of a genetic algorithm [38], or can be included
when instantiating objects [9]. Seeding is also useful in a DSE
context, in particular to overcome the problem of creating complex
objects [32], and the use of seeding in test suite augmentation is es-
tablished for SBST and DSE-based augmentation approaches [37].

In order to make it possible to exploit information from different
CUTs within a run of EVOSUITE on a whole project, one needs to
sort the execution of the n CUTs in a way that, when a class c can
use test cases from another class c′, then c′ should be executed (i.e.,
generated test for) before c (and if test execution for c′ is currently
running, then postpone the one of c till c′ is finished, but only if
meanwhile another class c′′ can be generated tests for). For exam-
ple, if a CUT A takes as input an object of type B, then to cover A
we might need B set in a specific way. For example:

public class A {
public void foo(B b) {

if (b.isProperlyConfigured()) {
... // target

} } }

Using the test cases generated for B can give us a pool of in-
teresting instances of B. To cover the target branch in A.foo, one
could just rely on traditional SBST approaches to generate an ap-
propriate instance of B. But, if in CTG we first generate test suites
for B, then we can exploit those tests for seeding in A. For exam-
ple, each time we need to generate an input for A.foo, with a cer-
tain probability (e.g., 50%) we can rather use a randomly selected
instance from the seeded pool, which could speed up the search.

4. Continuous Test Generation (CTG)
So far, we have discussed generating unit tests for all classes in

a project. However, projects evolve over time: classes are added,
deleted, and changed, and automated test generation can be invoked
regularly during continuous integration, by extending it to CTG.
CTG can exploit all the historical data from the previous runs to
improve the effectiveness of the test generation.

There are two main ways in which CTG can exploit such his-
torical data: First, we can improve the budget allocation, as newly
introduced classes should be prioritized over old classes that have
been extensively tested by CTG in previous runs. Second, the test
cases generated in the previous runs can be directly used for seed-
ing instead of regenerating tests for each class from scratch at every
CTG run on a new software version.

4.1 Budget Allocation with Historical Data
The Budget allocation described in Section 3.1 only takes into

account the complexity of a CUT. However, there are several fac-
tors that influence the need to do automated test generation when
it is invoked repeatedly. Usually, a commit of a set of changes
only adds/modifies a few classes of a project. If a class has been
changed, more time should be spent on testing it. First, modi-
fied source code is more prone to be faulty than unchanged source
code [19]. Second, the modifications are likely to invalidate old
tests that need to be replaced, or add new behaviour for which new
tests are required [26]. If a class has not been changed, invoking
automated test generation can still be useful if it can help to aug-
ment the existing test suite. However, once the test generator has
reached a maximum level of coverage and cannot further improve
it for a given class, invoking it again will simply waste resources.

For example, suppose a project X has two classes: a “simple”
one S, and a “difficult” one D. Assume that, by applying the Bud-
get allocation (Section 3.1), the budget allocated for D is twice as
much than for S, i.e. zD = 2× zS . Now, further suppose that only
S has been changed since the last commit; in this case, we would
like to increase the time spent on testing S, even though it is a sim-
ple one. For this, we first use an underlying basic budget assign-
ment (e.g., Budget or Budget & Seeding), and then multiple by a
factor h > 1, such that the budget for S becomes zS = h× 1

2
×zD .

Thus, if h = 2 (which is the value we use in the experiments re-
ported in this paper), then the modified simple class S will receive
the same amount of time as the unchanged difficult class D.

Given an overall maximum budget (see Section 3.1), the to-
tal budget should not exceed this maximum, even in the face of
changed classes. That is,

∑
zi∈Z zi ≤ k × b; however, it will hap-

pen that adding a multiplication factor h for new/modified classes
results in the total budget exceeding this maximum. As test gen-
eration will be invoked regularly in this scenario, it is not imper-
ative that all classes are tested, especially the ones that have not
been modified. So, one can apply a strategy to skip the testing
of some unchanged classes in the current CTG execution. To do
that, we rank classes according to their complexity and the fact of
whether they were modified, and then select the maximum number
of classes such that the total budget k × b is not exceeded.

For classes that have not been changed, at some point we may
decide to stop invoking the test generator on them. A possible way
to do this is to monitor the progress achieved by the test generator:
If 100% coverage has been achieved, then generating more tests for
the same criterion will not be possible. If less than 100% coverage
has been achieved, then we can invoke test generation again. How-
ever, if after several invokations the test generator does not succeed
in increasing the coverage, we can assume that all coverage goals
that the test generator can feasibly cover have been reached. In the
context of this paper, we look at the last three runs of the test gen-
erator, and if there has been no improvement for the last three runs,
then we stop testing a class until it is changed again.

4.2 Seeding Previous Test Suites
When repeatedly applying test generation to the same classes,

the results of the previous test generation run can be used as a start-
ing point for the new run. This is another instance of seeding, as
described in Section 3.2. There are different ways how a previous
result can be integrated into a new run of a genetic algorithm. For
example, in previous work [9] where the goal was to improve upon
manually written tests, we re-used the existing test cases by modi-
fying the search operators of EVOSUITE such that whenever a new
test case was generated, it was based on an existing test case with
a certain probability. Xu et al. considered the reuse of test cases

during test suite augmentation for DSE [37] or search-based and
hybrid techniques [36], by using the old tests as starting population
of the next test generation run; in this approach the success of the
augmentation depends strongly on the previous tests.

The approach we took in the context of CTG is to first check
which of the previous tests still compile against the new version of
a CUT. For example, if from version pn to pn+1 a signature (i.e.,
name or parameters) of a method, or a class name is modified, test
cases may no longer compile and therefore are not candidates to be
included in the next test suite. One the other hand, tests that still
compile on the new version of the CUT can be used for seeding.
We insert such a suite as one individual into the initial population
of the new genetic algorithm, thus essentially applying a form of
elitism between different invocations of the genetic algorithm.

5. EMPIRICAL STUDY
We have implemented the techniques described in this paper as

an extension of the EVOSUITE unit test generation tool. This sec-
tion contains an empirical evaluation of the different strategies. In
particular, we aim at answering the following research questions:

RQ1: What are the effects of smart Budget allocation?
RQ2: What are the effects of Seeding strategies?
RQ3: How does combining Seeding strategies with smart Bud-

get allocation fare?
RQ4: What are the effects of using CTG for test generation?
RQ5: What are the effects of History-based selection and Bud-

get allocation on the total time of test generation?

5.1 Experimental Setup
To answer the research questions, we performed two different

types of experiments: The first one aims to identify the effects of
optimizations based on testing whole projects; the second experi-
ment considers the scenario of testing projects over time.

5.1.1 Subject Selection
We used three different sources for case study projects: First, as

an unbiased sample, we randomly selected ten projects from the
SF100 corpus of classes [8] (which consists of 100 projects ran-
domly selected from SourceForge); this results in a total of 279
classes. Second, we used five industrial software projects (1307
classes in total) provided by one of our industrial collaborators.
Due to confidentiality restrictions, we can only provide limited in-
formation on the industrial software.

To simulate evolution with CTG over several versions, we re-
quired projects with version history. Because it is complicated to
obtain a full version history of compiled software versions for each
project in the two previous sets (due to different repository systems
and compilation methods), we additionally considered the top 15
most popular projects on GitHub. We had to discard some of these
projects: 1) For some (e.g., JUnit, JNA) there were problems
with EVOSUITE (e.g., EVOSUITE uses JUnit and thus cannot be
applied to the JUnit source code without modifications). 2) Some
projects (Jedis, MongoDB Java Driver) require a server to
run, which is not supported by EVOSUITE yet. 3) We were unable
to compile the version of RxJava last cloned (10 March, 2014).
4) Class files of the Rootbeer GPU Compiler project belong
to the “org.trifort.rootbeer” package, however they are
incorrectly compiled as “edu.syr.pcpratts” package. 5) Fi-
nally, we removed Twitter4J, the largest project of the 15 most
popular projects, as our experimental setup would not have allowed
to finish the experiments in time. This leaves eight projects (475
classes in total) with version history for experimentation.

5.1.2 Experiment Procedure
For each open source project of the SF100 corpus and indus-

trial project, we ran EVOSUITE with four different strategies: Sim-
ple, smart Budget allocation (Section 3.1), Seeding strategy (Sec-
tion 3.2), and a combination of the latter two (i.e, smart Budget and
Seeding strategy at the same time, Budget & Seeding). For the open
source projects from GitHub we ran EVOSUITE with the same four
strategies, but also with another strategy, a History strategy (Sec-
tion 4.1) which used seeding of previous test suites (Section 4.2).

When running EVOSUITE on a whole project, there is the ques-
tion of how long to run it. This depends on the available computa-
tional resources and how EVOSUITE will be used in practice (e.g.,
during the day while coding, or over the weekend). In this paper,
due to the high cost of running the experiments, we could not con-
sider all these different scenarios. So, we decided for one setting
per case study that could resemble a reasonable scenario. In partic-
ular, for all the case studies we allowed an amount of time propor-
tional to the number of classes in each project, i.e., three minutes
per CUT. For the smart Budget allocation, we allowed a minimum
amount of time z ≥ 1 minute (see Section 3.1).

Unlike the other strategies, the History strategy requires different
versions of the same project. As considering the full history would
not be feasible, we limited the experiments to the last 100 commits
of each project, i.e., we considered the latest 100 consecutive com-
mits of each project. Note, one of the eight projects only has 65
commits in its entire history.

For the experiments, we configured History to use the Budget
allocation as baseline because the average branch coverage on the
first set of experiments (10 projects randomly selected from SF100
corpus) achieved an highest relative improvement on that approach.
The maximum time for test generation was calculated for History
for each commit in the same way as for other strategies proportional
to the number of CUTs in the project (three minutes per CUT).

On the open source projects from SF100, each experiment was
repeated 50 times with different random seeds to take into account
the randomness of the algorithms. As we applied History with a
time window of 100 commits to the GitHub projects, we only ran
EVOSUITE five times on these eight projects. On the industrial
systems we were only able to do a single run.

Running experiments on real industrial case studies presents
many challenges, and that is one of the reasons why they are less
common in the software engineering literature. Even if it was not
possible to run those experiments as rigorously as in case of the
open source software, they do provide extra valuable information
to support the validity of our results.

5.1.3 Measurements
As primary measurement of success of test generation we use

branch coverage. However, branch coverage is only one possible
measure to quantify the usefulness of an automatically generated
test suite [4,17]. In the presence of automated oracles (e.g., formal
specifications like pre/post-conditions), one would also want to see
if any fault has been found. Unfortunately, automated oracles are
usually unavailable. One could look at program crashes, but that
is usually not feasible for unit testing. However, at unit level it is
possible to see if any exception has been thrown in a method of the
CUT, and then check whether that exception is declared as part of
the method signature (i.e., using the Java keyword throws).

As a second measurement we used undeclared exceptions. If an
exception is declared as part of a method signature, then throwing
such an exception during execution would be part of normal, ex-
pected behaviour. On the other hand, finding an undeclared excep-
tion would point to a unit level bug. Such a bug might not be crit-

ical (e.g., impossible to throw by the user through the application
interfaces like a GUI), and could even simply point to “implicit”
preconditions. For example, some exceptions might be considered
as normal if a method gets the wrong inputs (e.g., a null object) but,
then, the developers might simply fail to write a proper method sig-
nature. This is the case when an exception is explicitly thrown with
the keyword throw, but then it is missing from the signature.

Whether a thrown exception represents a real fault is an import
question for automated unit testing. In particular, it is important
to develop techniques to filter out “uninteresting” exceptions that
likely are just due to violated implicit preconditions. However, re-
gardless of how many of these exceptions are caused by real bugs, a
technique that finds more of these exceptions would be better. For
this reason, tools like EVOSUITE not only try to maximize code
coverage, but also the number of unique, undeclared thrown excep-
tions for each method in the CUTs, and experiments have shown
that this can reveal reals faults [10].

For the first set of experiments the overall time per project was
fixed. In the second set of experiments on CTG we also look at the
time spent on test generation.

5.1.4 Analysis Procedure
The experiments carried out in this paper are very different than

previous uses of EVOSUITE. In previous empirical studies, each
CUT was targeted independently from the other CUTs in the same
project. That was to represent scenarios in which EVOSUITE is
used by practitioners on the classes they are currently developing.
On the other hand, here when targeting whole projects there are
dependencies: e.g., in the smart Budget allocation, the amount of
time given to each CUT depends also on the number of branches
of the other CUTs. When there are dependencies, analyzing the
results of each CUT separately might be misleading. For example,
how to define what is the branch coverage on a whole project?

Assume a project P composed of |P | = n CUTs, where the
project can be represented as a vector P = {c1, c2, . . . , cn}.
Assume that each CUT c has a number of testing targets γ(c), of
which k(c) are actually covered by applying the analyzed testing
tool. Because tools like EVOSUITE are randomized, the scalar k(c)
value will be represented by a statistics (e.g., the mean) on a sample
of runs (e.g., 50) with different random seeds. For example, if the
tool was run r times, in which each time we obtained a number of
covered targets ki(c), then k(c) =

∑i=r
i=1 ki(c)

r
. If we want to know

what is the coverage for a CUT c, then we can use cov(c) = k(c)
γ(c)

,
i.e., number of covered targets divided by the number of targets,
which is what usually done in the literature. But what would be the
coverage on P ? A typical approach is to calculate the average of
those coverage values averaged over all the r runs:

avg(P) =
1

n

∑
c∈P

k(c)

γ(c)
.

However, in this case, all the CUTs have the same weight. The
coverage on a trivially small CUT would be as important as the
coverage of a large, complex CUT. An alternative approach would
be to consider the absolute coverage on the project per run:

µ(Pi) =

∑
c∈P ki(c)∑
c∈P γ(c)

,

and, with that, consider the average on all the r runs:

µ(P) =
1

r

i=r∑
i=1

µ(Pi) .

Table 1: Branch coverage results for the 10 open source projects randomly selected from SF100 corpus.
For each project we report the branch coverage of the Simple strategy. For each of the other strategies, we report their branch coverage and the effect sizes (Â12 and relative

average improvement) compared to the Simple strategy. Effect sizes Â12 that are statistically significant are reported in bold. Results on the open source case study are based on 50
runs per configuration.

Project Classes Simple Budget Seeding Budget & Seeding
Coverage Coverage Â12 Rel. Impr. Coverage Â12 Rel. Impr. Coverage Â12 Rel. Impr.

tullibee 18 39.1% 43.5% 0.89 +11.3% 39.6% 0.56 +1.1% 43.9% 0.92 +12.1%
a4j 45 62.5% 64.4% 0.86 +3.0% 55.3% 0.00 -11.5% 55.2% 0.00 -11.7%
gaj 10 66.5% 65.6% 0.46 -1.4% 67.5% 0.54 +1.5% 67.2% 0.53 +1.0%
rif 13 25.3% 25.0% 0.48 -1.4% 25.7% 0.58 +1.4% 24.8% 0.45 -2.0%
templateit 19 20.1% 24.6% 0.97 +22.4% 20.3% 0.53 +0.8% 24.9% 0.97 +23.7%
jnfe 51 38.7% 51.7% 0.96 +33.5% 43.9% 0.64 +13.4% 51.6% 0.96 +33.3%
sfmis 19 35.8% 46.7% 1.00 +30.6% 36.2% 0.55 +1.1% 46.3% 0.99 +29.3%
gfarcegestionfa 48 25.2% 33.4% 0.96 +32.5% 23.8% 0.43 -5.4% 33.1% 0.95 +31.5%
falselight 8 6.1% 6.2% 0.51 +2.0% 6.1% 0.50 0.0% 6.1% 0.50 0.0%
water-simulator 48 3.1% 3.8% 0.75 +19.1% 3.2% 0.53 +1.4% 4.0% 0.78 +27.2%

Table 2: Thrown exception results for the 10 open source projects randomly selected from SF100 corpus.
For each project we report the total number (i.e., sum of the averages over 50 runs for each CUT) of undeclared thrown exceptions of the Simple strategy. For each of the other

strategies, we report their undeclared thrown exceptions and the effect sizes (Â12 and relative ratio difference) compared to the Simple strategy. Effect sizes Â12 that are
statistically significant are reported in bold. Results on the open source case study are based on 50 runs per configuration.

Project Classes Simple Budget Seeding Budget & Seeding
Exceptions Exceptions Â12 Rel. Impr. Exceptions Â12 Rel. Impr. Exceptions Â12 Rel. Impr.

tullibee 18 23.46 29.36 0.88 +25.1% 23.46 0.49 0.0% 29.06 0.92 +23.8%
a4j 45 88.96 93.58 0.77 +5.1% 87.20 0.41 -2.0% 88.22 0.47 -0.9%
gaj 10 30.28 29.74 0.40 -1.8% 31.26 0.64 +3.2% 30.32 0.50 +0.1%
rif 13 10.66 9.60 0.28 -10.0% 11.10 0.59 +4.1% 9.44 0.25 -11.5%
templateit 19 18.48 31.14 0.97 +68.5% 19.05 0.56 +3.1% 30.66 0.98 +65.9%
jnfe 51 89.84 94.46 0.90 +5.1% 92.88 0.64 +3.3% 94.34 0.89 +5.0%
sfmis 19 30.58 35.02 0.93 +14.5% 31.24 0.59 +2.1% 35.08 0.89 +14.7%
gfarcegestionfa 48 53.70 51.10 0.33 -4.9% 51.66 0.41 -3.8% 50.60 0.29 -5.8%
falselight 8 1.52 1.42 0.45 -6.6% 1.58 0.53 +3.9% 1.42 0.45 -6.6%
water-simulator 48 45.74 43.10 0.21 -5.8% 45.88 0.52 +0.3% 43.46 0.23 -5.0%

With µ(P), we are actually calculating the average ratio of how
many targets in total have been covered over the number of all pos-
sible targets. The statistics avg(P) and µ(P) can lead to pretty
different results. Considering the type of problem addressed in this
paper, we argue that µ(P) is a more appropriate measure to analyze
the data of our empirical analyses.

All the data from these empirical experiments have been statis-
tically analysed following the guidelines in [1]. In particular, we
used the Wilcoxon-Mann-Whitney U-test and the Vargha-Delaney
Â12 effect size. The Wilcoxon-Mann-Whitney U-test is used when
algorithms (e.g., result data sets X and Y) are compared (in R this
is done with wilcox.test(X,Y)). In our case, what is compared
is the distribution of the values µ(Pi) for each project P . For the
statistical tests, we consider a 95% confidence level.

Given a performance measure W (e.g., branch coverage), Âxy
measures the probability that running algorithm x yields higher W
values than running algorithm y. If the two algorithms are equiv-
alent, then Âxy = 0.5. This effect size is independent of the raw
values of W , and it becomes a necessity when analyzing the data
of large case studies involving artifacts with different difficulty and
different orders of magnitude for W . E.g., Âxy = 0.7 entails one
would obtain better results 70% of the time with x.

Beside the standarized Vargha-Delaney Â12 statistics, to provide
more information we also considered the relative improvement ρ.
Given two data sets X and Y , the relative average improvement
will be defined as:

ρ(X,Y) =
mean(X)−mean(Y)

mean(Y)
.

5.2 Testing Whole Projects
The first set of experiments considers the effects of generating

unit tests for whole projects. Table 1 shows the results of the ex-

periments on the 10 open source projects randomly selected from
SF100 corpus. The results in Table 1 are based on branch cover-
age. The Simple strategy is used as point of reference: the results on
the other strategies (smart Budget, Seeding and their combination,
Budget & Seeding) are presented relatively to the Simple strategy,
on a per project basis. For each strategy compared to Simple, we
report the Â12 effect size, and also the relative improvement ρ.

Table 2 presents the results on the number of unique pairs excep-
tion/method for each CUT, grouped by project. For each run, we
calculated the sum of all unique pairs on all CUTs in a project, and
averaged these results over the 50 runs. In other words, Table 2 is
structured in the same way as Table 1, with the only difference that
the results are for found exceptions instead of branch coverage.

The results on the industrial experiments were analysed in the
same way as the open source software results. Table 3 shows the
results for branch coverage. However, due to confidentiality restric-
tions, no results on the thrown exceptions are reported.

The results in Table 1 clearly show that a smart Budget alloca-
tion significantly improves branch coverage. For example, for the
project sfmis the branch coverage goes from 35.8% to 46.7% (a
relative improvement of +30.6%). The Â12 = 1 means that, in all
the 50 runs with smart Budget allocation the coverage was higher
than in all the 50 runs with Simple strategy. However, there are
two projects in which it seems it provides slightly worse results; in
those cases, however, the results are not statistically significant.

The results in Table 2 are slightly different. Although the smart
Budget allocation still provides significantly better results on a
higher number of projects (statistically better in five out of 10; and
equivalent results in two subjects), there are three cases in which
results are statistically worse. In two of those latter cases, the
branch coverage was statistically higher (Table 1), and our con-
jecture is that the way exceptions are included in EVOSUITE’s fit-

Table 3: Branch coverage results for the industrial case study.
For each project we report the branch coverage of the Simple strategy. For each of the other strategies, we report their branch coverage and the effect sizes (Â12 and relative

average improvement) compared to the Simple strategy. Results on the industrial case study are based on one single run.

Project Classes Simple Budget Seeding Budget & Seeding
Coverage Coverage Â12 Rel. Impr. Coverage Â12 Rel. Impr. Coverage Â12 Rel. Impr.

projectA 245 23.6% 28.3% 1.00 +19.8% 24.2% 1.00 +2.4% 28.8% 1.00 +21.9%
projectB 122 13.0% 21.9% 1.00 +67.6% 15.6% 1.00 +19.7% 21.2% 1.00 +62.2%
projectC 412 30.4% 41.3% 1.00 +35.8% 30.3% 0.00 -0.2% 41.5% 1.00 +36.4%
projectD 211 72.5% 87.9% 1.00 +21.2% 72.7% 1.00 +0.2% 86.0% 1.00 +18.5%
projectE 317 23.9% 28.5% 1.00 +19.0% 24.1% 1.00 +0.8% 28.8% 1.00 +20.1%

ness function (cf. [10]) means that test suites with higher coverage
(as achieved by the Budget allocation) would be preferred over test
suites with more exceptions. In this case, improving EVOSUITE’s
optimization strategy (e.g., by using multi-objective optimization)
may lead to better results with respect to both measurements. For
the rif project (a framework for remote method invocation) the
decrease in exceptions is not significant, but also the coverage is
decreased insignificantly. In this case, it seems that the use of
the number of branches is not a good proxy measurement of the
test complexity. This suggests that further research on measure-
ments other than branches as proxy for complexity would be im-
portant. On the other hand, we would like to highlight that for the
templateit project the relative improvement was +68.5%.

RQ1: Smart Budget allocation improves performance
significantly in most of the cases.

Regarding input Seeding, in Table 1 there is one case in which
it gives statistically better results, but also one in which it gives
statistically worse results. Regarding the number of thrown ex-
ceptions, there are two projects in which it gives statistically bet-
ter results (Table 2). Unlike the Budget allocation, the usefulness
of seeding will be highly dependent on the specific project under
test. If there are many dependencies between classes and many
branches depend on specific states of parameter objects, then Seed-
ing is likely to achieve better results. If this is not the case, then
the use of Seeding may adversely affect the search, e.g., by reduc-
ing the diversity, thus exhibiting lower overall coverage in some of
the projects. However, note that the actual Seeding implemented in
EVOSUITE for these experiments is simplistic. Thus, a main con-
clusion from this result is that further research is necessary on how
to best exploit this additional information during the search.

RQ2: Input Seeding may improve performance, but there is a
need for better seeding strategies to avoid negative effects.

Finally, we analyse what happens when input Seeding is used
together with the smart Budget allocation. For most projects, ei-
ther performance improves by a little (compared to just using smart
Budget allocation), or decreases by a little. Overall, when com-
bined together, results are slightly worse than when just using the
Budget allocation. This is in line with the conjecture that Seed-
ing used naively can adversely affect results: Suppose that seed-
ing on a particular class is bad (for example as is the case in the
a4j project), then assigning significantly more time to such a class
means that, compared to Budget, significantly more time will be
wasted on misguided seeding attempts, and thus the relative perfor-
mance will be worse. Note also that the overall result is strongly
influenced by one particular project that is problematic for input
Seeding (i.e., a4j with Â12 = 0 in Table 1). This further supports
the need for smarter seeding strategies.

RQ3: Seeding with Budget allocation improves performance,
but Seeding strategies may negatively affect improvements

achieved by Budget allocation.

5.3 Continuous Test Generation
The second set of experiments considers the effects of CTG over

time. Figure 1 plots the overall branch coverage achieved over the
course of 100 commits. We denote the strategy that uses Seeding
from previous test suites and allocation based on History. In most
of the projects the higher coverage of the History strategy achieves
clearly higher coverage, and this coverage gradually increases with
each commit. The coverage increase is also confirmed when look-
ing at the results throughout history; to this extent, Table 4 summa-
rizes the results similarly to the previous experiment, and compares
against the baseline strategies Simple, Budget, and Budget & Seed-
ing. In all projects, the coverage was higher than using the Sim-
ple strategy (only on SpringSide is this result not significant).
Compared to Budget, there is an increase in all projects (signifi-
cant for four) but for Scribe, coverage is essentially the same.
Compared to Budget & Seeding, there is a significant increase in
five projects, and an insignificant increase in two projects. Interest-
ingly, for the Scribe project History leads to significantly lower
coverage (-2%) than Budget & Seeding. This shows that seeding
of input values is very beneficial on Scribe (where 69% of the
classes have dependencies on other classes in the project), and in-
deed on average the benefit of input Seeding is higher than the ben-
efit of the History strategy. However, in principle History can also
be combined with Budget & Seeding.

RQ4: CTG achieves higher coverage than testing each project
version individually, and coverage increases further over time.

Figure 2 shows the time spent on test generation. Note that the
strategies (Simple, Seeding, Budget, Budget & Seeding) were al-
ways configured to run with the same fixed amount of time. During
the first call of CTG, the same amount of time was consumed for
the History strategy, but during successive commits this time re-
duces gradually as fewer classes need further testing.

RQ5: CTG reduces the time needed to maximise the code
coverage of unit test suites for entire projects.

Let us now look at some of the examples in more detail.
Async-HTTP-Client exhibits two interesting events during
its history (see Figure 1a): From the first commit until com-
mit number 63 all strategies have a constant coverage value. At
commit 64, 20 classes were changed and three new classes were
added. Although this affected the coverage of History and also
other strategies, History only increase its time for test generation
briefly from 18 minutes at commit 63, to 30 minutes on commit
64, on average (compared to 219 minutes for a full test genera-
tion run). Figure 2a further shows a large increase of the test gen-
eration time at commit 93, although the coverage does not visi-
bly change. In this commit, several classes were changed at that
time, but only cosmetic changes happen to the source code (com-
mit message “Format with 140 chars lines”). As EVOSUITE ap-
parently had already reached its maximum possible coverage on
these classes, no further increase was achieved. We can observe

Commits

C
o
ve

ra
g

e

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

● BUDGET

BUDGET AND SEEDING

HISTORY

SEEDING

SIMPLE

●●●
●●

●
●●●

●●●
●

●
●●●

●
●

●
●

●●●
●●●●

●●
●

●

●●●●
●●●

●
●●

●●
●●●

●●
●

(a) Async-HTTP-Client.
Commits

C
o
ve

ra
g

e

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
● BUDGET

BUDGET AND SEEDING

HISTORY

SEEDING

SIMPLE

●
●●

●
●●

●
●●

●
●

●●

●●
●●●●

●●
●●

●
●

●

●
●●

●
●●

●●
●

●●●
●

●●●●
●

●
●

●●●

●

(b) HTTP-Request.
Commits

C
o
ve

ra
g

e

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

● BUDGET

BUDGET AND SEEDING

HISTORY

SEEDING

SIMPLE

●
●

●
●

●
●●●

●●●
●

●
●●●●

●
●

●
●●●●

●
●●

●●●
●

●
●

●
●

●●●
●●●

●●●●
●●●●●

(c) Joda Time.
Commits

C
o
ve

ra
g

e

0 10 20 30 40 50 60

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

● BUDGET

BUDGET AND SEEDING

HISTORY

SEEDING

SIMPLE

●

●

●

● ●
● ● ●

●

●
● ● ● ●

●
● ● ●

● ●

●

● ● ●

●
●

●
●

● ● ●

●

●

(d) JSON.

Commits

C
o
ve

ra
g

e

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
● BUDGET

BUDGET AND SEEDING

HISTORY

SEEDING

SIMPLE

●●
●

●

●

●●●
●●●●

●

●
●

●
●

●

●●●

●
●●●

●
●●●●●●●

●

●●●●●●
●

●●●●
●●●●

●

(e) JSoup.
Commits

C
o
ve

ra
g

e

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

● BUDGET

BUDGET AND SEEDING

HISTORY

SEEDING

SIMPLE

●●●
●●●

●●●●●
●●●●●

●●
●●●

●●●
●

●●●
●●●●●●●●●●●

●●●●●●
●●●●

●

(f) Scribe.
Commits

C
o
ve

ra
g

e

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
● BUDGET

BUDGET AND SEEDING

HISTORY

SEEDING

SIMPLE

●●

●

●●●
●●

●
●●●●

●●

●●
●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●

(g) Spark.
Commits

C
o
ve

ra
g

e

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
● BUDGET

BUDGET AND SEEDING

HISTORY

SEEDING

SIMPLE

●●●●●●

●
●●●●●

●●
●●●●●●●●●●●●●

●
●●●●●●●

●
●●●●

●●●●
●●●

●
●●

(h) SpringSide.

Figure 1: Branch coverage results over the course of 100 commits for the GitHub open source case study.

Table 4: Coverage over time.
For each project we report the “time coverage”: the average branch coverage over all classes in a project version, averaged over all 100 commits. These time coverages are averaged
out of the five repeated experiments. We compare the “History” strategy with the “Simple”, “Budget”, and “Budget & Seeding” ones, and report the effect sizes (Â12 over the five

runs and relative average improvement). Effect sizes Â12 that are statistically significant are reported in bold. The number of classes is not a constant, as it can change at each
revision. We hence report the total number of unique classes throughout the 100 commits, and, in brackets, the number of classes at the first and last commits.

Project Classes Simple Budget Budget & Seeding History
Coverage Coverage Coverage Coverage Âs Rel. Impr. Âb Rel. Impr. Âb&s Rel. Impr.

HTTP-Request 1 [1:1] 0.25 0.24 0.25 0.39 1.00 +57.97% 1.00 +58.69% 1.00 +56.77%
JodaTime 135 [133:132] 0.55 0.62 0.61 0.65 1.00 +17.82% 0.80 +4.85% 0.92 +6.06%
JSon 37 [16:25] 0.58 0.64 0.65 0.86 1.00 +49.19% 1.00 +33.72% 1.00 +32.02%
JSoup 45 [41:45] 0.37 0.43 0.42 0.56 1.00 +51.18% 1.00 +31.74% 1.00 +33.73%
Scribe 79 [65:78] 0.83 0.85 0.87 0.85 1.00 +1.76% 0.48 +0.02% 0.00 -2.41%
Spark 34 [21:30] 0.38 0.40 0.40 0.50 1.00 +31.38% 1.00 +25.39% 1.00 +24.32%
Async-HTTP-Client 81 [71:75] 0.55 0.64 0.65 0.65 1.00 +18.90% 0.80 +1.32% 0.80 +0.14%
SpringSide 63 [23:60] 0.47 0.47 0.47 0.50 0.60 +5.90% 0.60 +5.62% 0.60 +6.13%

similar behaviour in the plots of JSoup (Figure 1e), where a ma-
jor change occurred at commit 50 with the introduction of a new
class (org.jsoup.parser.TokeniserState), which adds
774 new branches to the 2,594 previously existing branches.

The HTTP-Request subject reveals a nice increase over time,
although the time plot (Figure 2b) shows only small improvement
(13% less time in total). This is because this project consists only
of a single class. Consequently, most commits will change that
particular class, leading to it being tested more. In the commits
where the class was not tested, no source code changes were per-
formed (e.g., only test classes or other project files were changed,
not source code). Thus, HTTP-Request is a good example to
illustrate how using previous test suites for seeding gradually im-
proves test suites over time, independently of the time spent on the
class. Because this project has only one class, the Seeding strategy
has similar results (on average) to the Simple strategy. A similar
behaviour can also be observed for JSON (see Figure 1d), where
History leads to a good increase in coverage over time. There is a
slight bump in the coverage plot at commit 61 (Figure 2d), where
13 new classes were added to the project.
JodaTime, Scribe, and SpringSide are examples of

projects with only a small increase in coverage (Figures 1c, 1f

and 1h, respectively). Although these projects differ in size, it
seems that their classes are all relatively easy for EVOSUITE, such
that additional time or the seeding has no further beneficial effect.
For example, 72% of the classes in SpringSide have less than
17 branches. However, in all three cases the reduction in test gen-
eration time is very large (Figures 2c, 2f and 2h respectively).

Finally, Spark shows interesting behaviour where all ap-
proaches lead to increased coverage over the course of time (Fig-
ure 1g). This is because during the observed time window of
100 commits the project was heavily refactored. For example,
some complex classes were converted into several simpler classes,
increasing the time spent for non-History based strategies (Fig-
ure 2g), up to a maximum of 84 minutes on the last commit.
This project also illustrates nicely why applying seeding blindly
does not automatically lead to better results: For example, at
commit 30 there are only 9 out of 25 classes that actually have
dependencies, and many of the dependencies are on the class
ResponseWrapper — which EVOSUITE struggles to cover. As
a consequence, there is no improvement when using seeding. This
suggests that there is not a single optimal seeding strategy, but that
seeding needs to take external factors such as dependencies and
achieved coverage into account.

Commits

ti
m

e
 (

m
in

)

0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

●

HISTORY

OTHERS

●●●●●
●●

●
●
●●●

●
●
●
●●●

●
●
●●

●●
●
●●●●

●
●●●●●●●●●●●●●●●

●
●●●

●●
●
●●

●●●●●●
●
●●●

●●●●●●●●●●●●
●
●●

●●
●●●●●●●●

●●
●●

●
●
●
●●●

●

(a) Async-HTTP-Client.
Commits

ti
m

e
 (

m
in

)

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

●

HISTORY

OTHERS

●●

(b) HTTP-Request.
Commits

ti
m

e
 (

m
in

)

0 10 20 30 40 50 60 70 80 90

0

100

200

300

●

HISTORY

OTHERS

●●●
●
●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

(c) Joda Time.
Commits

ti
m

e
 (

m
in

)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

●

HISTORY

OTHERS

●●●●●

●●●●●●●●●●●●

●●●●●●

●●

●●●

●●●●

●

●●

●●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●

●

●

●

●

●●●

(d) JSON.

Commits

ti
m

e
 (

m
in

)

0 10 20 30 40 50 60 70 80 90

0

20

40

60

80

100

120

●

HISTORY

OTHERS

●
●

●●●●
●
●●●

●●
●●●●

●
●
●●●●

●●●●●●
●●●

●●●●●●●
●
●
●
●●●

●
●
●●

●
●

●●●
●●●

●
●●●●

●
●
●
●●●

●
●●

●●●
●
●●

●
●●●●

●●
●
●
●●

●●
●●●●

●
●●●

●
●
●

(e) JSoup.
Commits

ti
m

e
 (

m
in

)

0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

●

HISTORY

OTHERS

●●●●●
●
●●

●●●
●

●

●

●

●●●●●

●
●

●●

●●

●●●●●●
●●

●
●●●

●●●●
●

●●●
●●●●

●●●●
●●●●●

●●●●●

●
●

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●

(f) Scribe.
Commits

ti
m

e
 (

m
in

)

0 10 20 30 40 50 60 70 80 90

0

20

40

60

80

●

HISTORY

OTHERS

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●

●

●

●

●

●

●●●

●

●●

●●●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●●●●

●●

●●●

●●

●●●

●

●●

●

●

●●

●●

●●

●

●

●

(g) Spark.
Commits

ti
m

e
 (

m
in

)

0 10 20 30 40 50 60 70 80 90

0

50

100

150
●

HISTORY

OTHERS

●●●●
●

●
●
●

●●
●●

●
●●

●
●●●●

●●●●●●●
●●

●●
●
●●●●●●

●
●●●

●
●
●●

●
●
●●●

●
●●●

●●
●●

●
●●●●●

●
●●●●

●●●●
●●●●●●

●

●●●●●●●
●
●●●●●●

●●●●

●

(h) SpringSide.

Figure 2: Time spent on test generation for the GitHub open source case study over the course of 100 commits.

5.4 Threats to Validity
Threats to internal validity might come from how the empirical

study was carried out. To reduce the probability of having faults in
our testing framework, it has been carefully tested. Furthermore,
randomized algorithms are affected by chance. To cope with this
problem, we repeated each experiment (50 times for the SF100 ex-
periments and five times for the GitHub experiments) and followed
rigorous statistical procedures to evaluate their results.

To cope with possible threats to external validity, the SF100 cor-
pus was employed as case study, which is a collection of 100 Java
projects randomly selected from SourceForge [8]. From SF100, 10
projects were randomly chosen. Although the use of SF100 pro-
vides high confidence in the possibility to generalize our results to
other open source software as well, we also included on our exper-
iments some of the most popular Java projects from GitHub.

Because open source software represents only one face of soft-
ware development, in this paper we also used five industrial sys-
tems. However, the selection of those systems was constrained by
the industrial partners we collaborate with. Results on these sys-
tems might not generalize to other industrial systems.

The techniques presented in this paper have been implemented in
a prototype that is based on the EVOSUITE tool, but any other tool
that can automatically handle the subjects of our empirical study
could be used. We chose EVOSUITE because it is a fully automated
tool, and recent competitions for JUnit generation tools [3, 11, 12]
suggest that it represents the state of the art.

To allow reproducibility of the results (apart from the industrial
case study), all 18 subjects and EVOSUITE are freely available from
our webpage at www.evosuite.org.

6. CONCLUSIONS
In this paper, the scope of unit test generation tools like EVO-

SUITE is extended: Rather than testing classes in isolation, we con-
sider whole projects in the context of continuous integration. This
permits many possible optimizations, and our EVOSUITE-based
prototype provides CTG strategies targeted at exploiting complex-

ity and/or dependencies among the classes in the same project. To
validate these strategies, we carried out a rigorous evaluation on
a range of different open source and industrial projects, totalling
2061 classes. The experiments overall confirm significant improve-
ments on the test data generation: up to +58% for branch coverage
and up to +69% for thrown undeclared exceptions, while reducing
the time spent on test generation by up to +83%.

Our prototype at this point is only a proof of concept, and there
remains much potential for further improvements:
• Seeding could be improved by making it more adaptive to

the problem at hand, for example by using the abundant in-
formation made available through CTG.
• Historical data offers potential for optimizations, for exam-

ple by using fault prediction models.
• Different coverage criteria could be used, for example start-

ing with simpler criteria such as statement coverage, and
slowly building up to more thorough criteria such as muta-
tion testing or entropy [4].
• Differential testing generation could lead to better regres-

sion tests than using standard code coverage criteria.
• Different testing scenarios such as integration testing could

benefit from CTG as well.
Although our immediate objective in our current experiments

lies in improving the quality of generated test suites, we believe
that the use of CTG could also have more far reaching implications.
For example, regular runs of CTG will reveal testability problems
in code, and may thus lead to improved code and design. The use of
CTG offers great incentive to include assertions or code contracts,
which would be automatically and regularly exercised.

Acknowledgements
This work is supported by a Google Focused Research Award
on “Test Amplification”, the EPSRC project “EXOGEN”
(EP/K030353/1), the Norwegian Research Council, and the FCT
project PTDC/EIA-CCO/116796/2010.

www.evosuite.org

7. REFERENCES
[1] A. Arcuri and L. Briand. A Hitchhiker’s Guide to Statistical

Tests for Assessing Randomized Algorithms in Software
Engineering. Software Testing, Verification and Reliability
(STVR), 24(3):219–250, 2014.

[2] A. Arcuri, M. Z. Iqbal, and L. Briand. Random Testing:
Theoretical Results and Practical Implications. IEEE
Transactions on Software Engineering (TSE),
38(2):258–277, Mar. 2012.

[3] S. Bauersfeld, T. Vos, K. Lakhotia, S. Poulding, and
N. Condori. Unit testing tool competition. In International
Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 414–420, March 2013.

[4] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim.
Entropy-Based Test Generation for Improved Fault
Localization. In IEEE/ACM International Conference on
Automated Software Engineering (ASE), ASE 2013, pages
257–267, New York, NY, USA, 2013. ACM.

[5] C. Csallner and Y. Smaragdakis. JCrasher: An Automatic
Robustness Tester for Java. Software Practice & Experience,
34(11):1025–1050, Sept. 2004.

[6] M. Fowler and M. Foemmel. Continuous Integration.
(Thought-Works) http://www.thoughtworks.com/
ContinuousIntegration.pdf, 2006.

[7] G. Fraser and A. Arcuri. EvoSuite: Automatic Test Suite
Generation for Object-oriented Software. In ACM SIGSOFT
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), ESEC/FSE ’11, pages 416–419,
New York, NY, USA, 2011. ACM.

[8] G. Fraser and A. Arcuri. Sound Empirical Evidence in
Software Testing. In ACM/IEEE International Conference on
Software Engineering (ICSE), ICSE ’12, pages 178–188,
Piscataway, NJ, USA, 2012. IEEE Press.

[9] G. Fraser and A. Arcuri. The Seed is Strong: Seeding
Strategies in Search-Based Software Testing. In IEEE
International Conference on Software Testing, Verification
and Validation (ICST), ICST ’12, pages 121–130,
Washington, DC, USA, 2012. IEEE Computer Society.

[10] G. Fraser and A. Arcuri. 1600 Faults in 100 Projects:
Automatically Finding Faults While Achieving High
Coverage with EvoSuite. Empirical Software Engineering
(EMSE), pages 1–29, 2013.

[11] G. Fraser and A. Arcuri. EvoSuite at the SBST 2013 Tool
Competition. In International Conference on Software
Testing, Verification and Validation Workshops (ICSTW),
ICSTW ’13, pages 406–409, Washington, DC, USA, 2013.
IEEE Computer Society.

[12] G. Fraser and A. Arcuri. EvoSuite at the Second Unit Testing
Tool Competition. In Fittest Workshop, 2013.

[13] G. Fraser and A. Arcuri. Whole Test Suite Generation. IEEE
Transactions on Software Engineering (TSE),
39(2):276–291, Feb. 2013.

[14] G. Fraser and A. Arcuri. Achieving Scalable Mutation-based
Generation of Whole Test Suites. Empirical Software
Engineering (EMSE), pages 1–30, 2014.

[15] G. Fraser and A. Zeller. Mutation-driven Generation of Unit
Tests and Oracles. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), ISSTA
’10, pages 147–158, New York, NY, USA, 2010. ACM.

[16] J. Galeotti, G. Fraser, and A. Arcuri. Improving Search-based
Test Suite Generation with Dynamic Symbolic Execution. In

IEEE International Symposium on Software Reliability
Engineering (ISSRE), ISSRE ’13, pages 360–369, Nov 2013.

[17] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour,
and D. Marinov. Comparing Non-adequate Test Suites Using
Coverage Criteria. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), ISSTA
2013, pages 302–313, New York, NY, USA, 2013. ACM.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), PLDI ’05, pages 213–223, New York, NY, USA,
2005. ACM.

[19] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
Fault Incidence Using Software Change History. IEEE
Transactions on Software Engineering (TSE),
26(7):653–661, July 2000.

[20] B. Meyer, I. Ciupa, A. Leitner, and L. L. Liu. Automatic
Testing of Object-Oriented Software. In Conference on
Current Trends in Theory and Practice of Computer Science,
SOFSEM ’07, pages 114–129, Berlin, Heidelberg, 2007.
Springer-Verlag.

[21] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New
York, NY, USA, 1 edition, 1997.

[22] C. D. Nguyen, A. Perini, P. Tonella, and F. B. Kessler.
Automated Continuous Testing of MultiAgent Systems. In
Fifth European Workshop on Multi-Agent Systems (EUMAS),
2007.

[23] J. Offutt and A. Abdurazik. Generating Tests from UML
Specifications. In International Conference on The Unified
Modeling Language: Beyond the Standard, UML’99, pages
416–429, Berlin, Heidelberg, 1999. Springer-Verlag.

[24] A. Orso and T. Xie. BERT: BEhavioral Regression Testing.
In ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), WODA ’08, pages 36–42,
New York, NY, USA, 2008. ACM.

[25] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-Directed Random Test Generation. In ACM/IEEE
International Conference on Software Engineering (ICSE),
ICSE ’07, pages 75–84, Washington, DC, USA, 2007. IEEE
Computer Society.

[26] L. S. Pinto, S. Sinha, and A. Orso. Understanding Myths and
Realities of Test-suite Evolution. In ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE), FSE ’12, pages 33:1–33:11, New York, NY, USA,
2012. ACM.

[27] D. Saff and M. D. Ernst. Reducing Wasted Development
Time via Continuous Testing. In IEEE International
Symposium on Software Reliability Engineering (ISSRE),
ISSRE ’03, pages 281–, Washington, DC, USA, 2003. IEEE
Computer Society.

[28] D. Saff and M. D. Ernst. An Experimental Evaluation of
Continuous Testing During Development. In ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA), ISSTA ’04, pages 76–85, New York, NY, USA,
2004. ACM.

[29] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,
and M. J. Harrold. Test-Suite Augmentation for Evolving
Software. In IEEE/ACM International Conference on
Automated Software Engineering (ASE), ASE ’08, pages
218–227, Washington, DC, USA, 2008. IEEE Computer
Society.

[30] S. Shamshiri, G. Fraser, P. Mcminn, and A. Orso.

http://www.thoughtworks.com/ContinuousIntegration.pdf
http://www.thoughtworks.com/ContinuousIntegration.pdf

Search-Based Propagation of Regression Faults in
Automated Regression Testing. In International Conference
on Software Testing, Verification and Validation Workshops
(ICSTW), ICSTW ’13, pages 396–399, Washington, DC,
USA, 2013. IEEE Computer Society.

[31] K. Taneja and T. Xie. DiffGen: Automated Regression
Unit-Test Generation. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), ASE
’08, pages 407–410, Washington, DC, USA, 2008. IEEE
Computer Society.

[32] S. Thummalapenta, J. de Halleux, N. Tillmann, and
S. Wadsworth. DyGen: Automatic Generation of
High-coverage Tests via Mining Gigabytes of Dynamic
Traces. In International Conference on Tests and Proofs,
TAP ’10, pages 77–93, Berlin, Heidelberg, 2010.
Springer-Verlag.

[33] N. Tillmann and J. De Halleux. Pex: White Box Test
Generation for .NET. In Proceedings of the 2Nd
International Conference on Tests and Proofs, TAP’08,
pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[34] P. Tonella. Evolutionary Testing of Classes. In ACM

SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), ISSTA ’04, pages 119–128, New York,
NY, USA, 2004. ACM.

[35] Z. Xu, M. B. Cohen, W. Motycka, and G. Rothermel.
Continuous Test Suite Augmentation in Software Product
Lines. In International Software Product Line Conference,
SPLC ’13, pages 52–61, New York, NY, USA, 2013. ACM.

[36] Z. Xu, Y. Kim, M. Kim, and G. Rothermel. A Hybrid
Directed Test Suite Augmentation Technique. In IEEE
International Symposium on Software Reliability
Engineering (ISSRE), ISSRE ’11, pages 150–159,
Washington, DC, USA, 2011. IEEE Computer Society.

[37] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen.
Directed Test Suite Augmentation: Techniques and
Tradeoffs. In ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), FSE ’10, pages 257–266,
New York, NY, USA, 2010. ACM.

[38] S. Yoo and M. Harman. Test Data Regeneration: Generating
New Test Data from Existing Test Data. Software Testing,
Verification and Reliability (STVR), 22(3):171–201, May
2012.

	1 Introduction
	2 Background
	2.1 Continuous Integration and Testing
	2.2 Automated Unit Test Generation
	2.3 The EvoSuite Unit Test Generation Tool

	3 Testing Whole Projects
	3.1 Budget Allocation
	3.2 Seeding Strategies

	4 Continuous Test Generation (CTG)
	4.1 Budget Allocation with Historical Data
	4.2 Seeding Previous Test Suites

	5 Empirical Study
	5.1 Experimental Setup
	5.1.1 Subject Selection
	5.1.2 Experiment Procedure
	5.1.3 Measurements
	5.1.4 Analysis Procedure

	5.2 Testing Whole Projects
	5.3 Continuous Test Generation
	5.4 Threats to Validity

	6 Conclusions
	7 References

