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A B S T R A C T

Search-based software testing has been successfully applied to gen-
erate unit test cases for object-oriented software. Typically, in search-
based test generation approaches, evolutionary search algorithms are
guided by code coverage criteria such as branch coverage to generate
tests for individual coverage objectives.

Although it has been shown that this approach can be effective,
there remain fundamental open questions. In particular, which crite-
ria should test generation use in order to produce the best test suites?
Which evolutionary algorithms are more effective at generating test
cases with high coverage? How to scale up search-based unit test
generation to software projects consisting of large numbers of compo-
nents, evolving and changing frequently over time? As a result, the
applicability of search-based test generation techniques in practice is
still fundamentally limited.

In order to answer these fundamental questions, we investigate the
following improvements to search-based testing. First, we propose
the simultaneous optimisation of several coverage criteria at the same
time using an evolutionary algorithm, rather than optimising for indi-
vidual criteria. We then perform an empirical evaluation of different
evolutionary algorithms to understand the influence of each one on
the test optimisation problem. We then extend a coverage-based test
generation with a non-functional criterion to increase the likelihood
of detecting faults as well as helping developers to identify the loca-
tions of the faults. Finally, we propose several strategies and tools to
efficiently apply search-based test generation techniques in large and
evolving software projects.

Our results show that, overall, the optimisation of several cover-
age criteria is efficient, there is indeed an evolutionary algorithm that
clearly works better for test generation problem than others, the ex-
tended coverage-based test generation is effective at revealing and lo-
calising faults, and our proposed strategies, specifically designed to
test entire software projects in a continuous way, improve efficiency
and lead to higher code coverage. Consequently, the techniques and
toolset presented in this thesis — which provides support to all con-
tributions here described — brings search-based software testing one
step closer to practical usage, by equipping software engineers with
the state of the art in automated test generation.
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1
I N T R O D U C T I O N

“The majority of catastrophic software
failures can easily be prevented by

performing simple testing.”

— Yuan et al., 2014 [1]

T he idea of a having a mechanical machine executing a list of
instructions, i.e., an algorithm, was first outlined by Ada Love-

lance in the 19th century for the Analytical Engine initially invented by
Charles Babbage. Around 100 years later, but before the invention of
digital computers, Alan Turing [2] first proposed the theory of a com-
puter program. However, a computer program as we currently know
it — a collection of programmed instructions stored in the memory of
a digital computer — was first written by Williams [3] in 1948 to cal-
culate the highest factor of the integer 218. Before that, the very first
electronic devices were rewired in order to be “reprogrammed”. Ten
years later, the word software was first introduced by John Tukey [4]
in 1958 to describe a computer program.

Since then, software has helped humankind at achieving goals that
would not have been possible without it. For instance, the software
in the Lunar Module of Apollo 11 mission helped Neil Armstrong
to land on the Moon; while, Curiosity, a car-sized robotic rover, has
been exploring the planet Mars since 2012. Software also allows us
to automate some of our daily activities, such as bank transactions,
or to communicate with anyone anywhere. However, as the develop-
ment of software still remains a manual activity, errors (that could
lead to extremely dangerous situations for people) are involuntarily
made. In 2017, Equifax, one of the largest credit reporting agencies
in the US, reported that the records of 143 million users, i.e., names,
social security numbers, credit card numbers, were stolen due to a
vulnerable version of an external software they were using. Recently,
the Health and Safety Executive ministry of the United Kingdom re-
ported that, due to a software bug, thousands of medical scans such
as X-Rays and ultrasounds might be incorrect and could have led to
misdiagnoses, and therefore to a wrong type of treatment. Last year,
the autopilot installed in a Tesla car may have caused the death of
a human driver because “it was unable to recognise the white side
of the tractor trailer, that had driven across the car’s path, against a
brightly lit sky”.

How can we, as software developers, ensure
the correctness of our own software?



2 introduction

Good practices on software engineering suggested a process named
software testing to validate and verify the correctness of the soft-
ware [5]. Validation aims to determine whether developers have built
the correct software according to the user requirements — does the
software do what it is supposed to do? On the other hand, verifi-
cation aims to determine whether developers have built the software
correctly — does the software correctly do what it has been specified?
However, as famously stated by Dijkstra [6], “testing can be used to
show the presence of bugs, but never to show their absence!”. The
reason behind his claim is that exhaustively testing a software is not
feasible as the different number of inputs or configurations to execute
a software could be extremely large or even infinite. Thus, to increase
the confidence in the correctness of software (however not to prove
it), testing aims to detect as many errors as possible (ideally, as soon
as possible).

The increasing number of incidents due to software bugs over the
years has raised software testing to become one of the most important
aspects of the software development process. This however comes at
a significant cost, making testing also one of the most expensive parts
of the development lifecycle. It has been estimated that 50% of the to-
tal cost and time to develop software is fully dedicated to software
testing [5]. Mostly, because (i) assessing whether a piece of software
performs correctly could be extremely complex, and (ii) software test-
ing is traditionally a manual process which is subject to incomplete-
ness and further errors.

1.1 motivational example

One of the most popular open-source Java libraries on GitHub is
Google Guava1. It provides additional features to Java programs such
as new collection types like multimap, APIs for concurrency, string
processing, etc. In version 20, a new package called graph was added
to Guava. The graph package provides graph-structured data which
could be used to model, for example, airports and the routes between
them. A common graph is composed by nodes, and edges. Each edge
connects nodes to each other. By default, three types of graphs can be
created: the common Graph (in which each edge is an anonymous con-
nection between two nodes), ValueGraph (each edge is represented by
a value), and Network (each edge is an unique object).

On August 23rd of 2017 an issue related to class ValueGraph of
the graph package was reported [7] (Figure 1.1 illustrates the life
cycle of the issue reported). The method reported as likely faulty
was edgeValueOrDefault of ConfigurableValueGraph class (which is
a sub class of ValueGraph). According to its documentation, “If there

1 At the time of writing this thesis, Google Guava project on GitHub https://

github.com/google/guava had more than 20,000 stars.

https://github.com/google/guava
https://github.com/google/guava
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is an edge connecting nodeU to nodeV, method edgeValueOrDefault

returns the non-null value associated with that edge; otherwise,
it returns a defaultValue.“. For instance, assuming there are two
nodes “A” and “B” connected by an edge (“A” to “B”) with a value
of 5, edgeValueOrDefault(A, B, 10) returns 5. On the other hand,
edgeValueOrDefault(B, A, 10) returns the defaultValue (i.e., the
third parameter, 10) because, however, there is one edge connecting
both nodes, its direction is from “A” to “B” and not “B” to “A”. When
performing a code refactoring on the July 13th 2017 a bug was intro-
duced. After the refactoring, edgeValueOrDefault(B, A, 10) started
to return null rather than the value 10. However, Guava’s developers
only realised that 41 days later. On October 5th of 2017, 85 days after
the bug was introduced and 44 days after being reported, the issue
was fixed by the patch in Listing 1.1 [8]. It is worth noting that al-
though the manually-written test cases fully exercise the code before
and after the refactoring, the bug was not detected when introduced.

Listing 1.1: Fix for Guava issue #2924.

--- guava/src/com/google/common/graph/ConfigurableValueGraph.java

@@ 11d3683..a8f4ebc @@

public V edgeValueOrDefault(N nodeU, N nodeV, @Nullable V

defaultValue) {

checkNotNull(nodeU);

checkNotNull(nodeV);

GraphConnections<N, V> connectionsU = nodeConnections.get(nodeU);

- return connectionsU == null

- ? defaultValue

- : connectionsU.value(nodeV);

+ V value = (connectionsU == null) ? null : connectionsU.value(nodeV);

+ return value == null ? defaultValue : value;

}

First version of
graph package

28th Oct
2016

5th Oct
2017

23rd Aug
2017

13th Jul
2017

Bug
introduced

Bug
reported

Bug
fixed

44 days259 days 41 days

85 days

Figure 1.1: Life cycle of Guava issue #2924.

Could Guava’s developers have fixed it earlier?

When the package graph was first introduced on Guava (on Oc-
tober 28th of 2016) it was accompanied with a set of test cases to
verify the new functionalities and also to guard the code against po-
tential future bugs. However, despite the fact that the accompanied
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manually-written set of test cases fully exercise the package graph

when first introduced, they did not exercise it with the right inputs,
i.e., they were not able to detect the bug #2924.

Automating the creation of test cases offers several benefits over
manually writing the test cases. It is computationally cheap to auto-
matically generate test cases, and they are often more complete as
they are generated in systematically way. Automatic test generation
is a two step process: 1) generation of test data, i.e., inputs to exer-
cise the software, and 2) generation of test oracles (also known as
assertions) to verify whether the execution of the test data reveals
any fault. Several techniques for test data generation have been pro-
posed in the literature, including random testing, in which a software
is executed with randomly generated inputs, symbolic-execution which
explores control/data-paths of the software, and search-based testing
in which efficient meta-heuristic search algorithms are used to gen-
erate test cases that resemble manually written tests (i.e., few short
tests that exercise most of the code under test) are the most popular
ones. The generation of test oracles is by far a much more challenging
task, as without a formal specification of the software, it is not possi-
ble to automatically determine its correct behaviour. For this reason,
automatic test generation is typically used in a regression scenario.
That is, test data is generated to exercise the current version of the
program, and test oracles are generated according to its current be-
haviour. These tests can then be used after performing modifications
to the software, for example, to check whether a change lead to some
undesired side-effects, i.e., to the introduction of a bug. Hence, would
automatically generated tests have been able to detect Guava’s issue?

EvoSuite [9], the state of the art tool on automatic test generation,
is a search-based tool that uses a search-based algorithm to automat-
ically generate test suites which aim at maximising code coverage of
Java classes. If EvoSuite had been applied to Guava project right af-
ter the first version of class ConfigurableValueGraph, it would have
automatically generated 39 test cases, one of which is reported in List-
ing 1.2.

Listing 1.2: Automatically generated test case that reveals Guava issue
#2924.

@Test(timeout = 4000)

public void test34() throws Throwable {

NetworkBuilder<Object, Object> network0 = NetworkBuilder.directed();

ConfigurableMutableValueGraph<Presence, Object> graph0 = new

ConfigurableMutableValueGraph<Presence, Object>(network0);

Presence presence0 = Presence.EDGE_EXISTS;

graph0.addNode(presence0);

Object obj0 = new Object();

Object obj1 = graph0.edgeValueOrDefault(presence0, presence0, obj0);

assertSame(obj0, obj1);

}
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This test case creates a graph with a single node and then evaluates
the outcome of function edgeValueOrDefault. As by default there is
an edge connecting any existing node to itself with a null value, the
method edgeValueOrDefault returns obj0 (as it is supposed to ac-
cording to its documentation). However, when bug #2924 was intro-
duced, this test case would have failed because, rather than return-
ing obj0, method edgeValueOrDefault would have returned null. At
this point, a developer would have had to inspect test case “test34”

(which is only 7 lines long) in order to understand whether the test
is revealing a bug or it is obsolete (e.g., if the specification of a re-
quirement has changed). In this case, the test case would have not
been considered obsolete and it would have indeed revealed the bug
introduced. Therefore, the answer to the question “Could Guava’s de-
velopers have fixed it earlier?” is yes. If they had used a tool such as
EvoSuite to automatically generate test cases for the package graph,
they would have been able to detect the bug right when it was intro-
duced without having to manually write any test case.

1.2 problem statement

Test cases for object-oriented programs (e.g., Guava library described
in the previous section) are programs themselves. Each test is a se-
quence of program invocations which create and manipulate objects
to exercise and test the correctness of a particular behaviour of the
program under test (e.g., test case in Listing 1.2). Despite the number
of test generation techniques proposed in the literature, search-based
testing has been the most successful technique at generating tests for
object-oriented programs. However, there are a number of open prob-
lems that need to be addressed in order to improve the effectiveness
and efficiency of search-based test generation (in particular, when
applied on programs that are, typically, developed continuously). In
summary, the main issues addressed by this thesis are:

– As software testing can only show the presence of bugs but
not their absence, ideally, automated test generation techniques
should explore different properties of the software under test
as much as possible in order to find those bugs. However, auto-
mated test generation techniques in the literature are mostly
guided by a single coverage criterion, i.e., branch coverage.
Which other coverage criteria can be explored? How can a
search-based algorithm efficiently optimise several coverage cri-
teria simultaneously?

– Genetic algorithms are the most common search-algorithm used
in search-based software testing. However, there is a large num-
ber of other search-based algorithms that are also suitable for
automatic test generation. Which search-based algorithm works
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best at generating unit tests for object-oriented software pro-
grams?

– Although a bug can only be detected by a test case if and only if
it exercises the faulty code, only optimising test cases for code
coverage might not be enough, as the faulty code needs to be
covered with the right input in order to trigger the faulty be-
haviour. Which non-coverage criteria can be optimised to im-
prove the ability of automatically generated test cases at detect-
ing and findings faults? How can a search-based algorithm be
extended to optimise coverage and non-coverage criteria at the
same time?

– The current literature on automatic test generation makes the
assumption that each component of a software program (e.g., a
class in Java) is tested independently and in isolation. However,
a software is usually composed by thousands of components,
each depending on another and evolving over time. Consider-
ing a software program and its evolution as a whole, which
components should be subjected to test generation? In which
order are components tested? How much time can be allocated
to test each component?

– Although several automated test generation tools have been pro-
posed in the literature, there is still a lack of adoption from
practitioners. Which development environments are worth to
integrate automated test generation techniques? Which chal-
lenges are faced when integrating automated test generation
techniques into developers’ processes?

1.3 contributions

In this section we outline the five main contributions of this the-
sis. The first three contributions correspond to the application of
search-based test generation on a single version of a software pro-
gram, and the last two contributions are based on the integration of
automatic test generation techniques in a continuous testing scenario.

Multiple Coverage Criteria. Our first contribution is mainly moti-
vated by the fact that most literature on automated test generation
is guided by a single coverage criterion, i.e., branch coverage. As the
optimisation of a single criterion may not exhibit other properties of
the software under test, we define five coverage criteria, and extend
search-based test generation to optimise the combination of those
five in addition to the ones commonly used in the literature (i.e.,
statement and branch coverage, and weak mutation).
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Evolutionary Algorithms for Test Suite Generation. Despite the fact
that a simple genetic algorithm can achieve good results on average,
many other evolutionary algorithms are suitable for test generation.
We perform an empirical evaluation of six evolutionary algorithms
and two random approaches at optimising a single criterion (i.e.,
branch coverage) and at optimising several criteria (i.e., the criteria
defined in the previous contribution).

Diagnostic Ability of Automatically Generated Unit Tests. As
stated by our first contribution, other properties (and not just branch
coverage, or not even just coverage criteria but also non-functional
criteria) of the software program may be explored in order to exhibit
properties developers would desire, e.g., ability to automatically
find faults. We propose a non-functional criterion to improve the
effectiveness of coverage-based unit tests at detecting and localising
faults. We integrate it on the most effective evolutionary algorithm
found by our second contribution.

Continuous Test Generation. A typical automated unit test genera-
tion technique targets one component of a software program (e.g., a
class in Java) at a time. A class, however, is usually part of a software
project consisting of many more classes which are subject to changes
over time. We introduce Continuous Test Generation (CTG), which
includes automated unit test generation during continuous inte-
gration. CTG offers several benefits over traditional test generation
approaches: first, it answers the question of how much time to spend
on each class; second, it helps to decide in which order to test them.
Finally, it answers the question on which classes test generation
should be applied.

The EvoSuite Toolset. In order to improve the integration of the Evo-
Suite test generation tool into the development process of software
engineers, we present a set of new plugins for Maven, IntelliJ IDEA,
and Jenkins; and we also report the challenges arisen when develop-
ing those plugins.

1.4 thesis outline

This thesis is structured as follows. First, the state of the art on soft-
ware testing and on automatic test generation is reviewed in Chap-
ter 2. Then, the five contributions described in the previous section
are presented in detail in five chapters. The research topic(s) that each
chapter contributes to is shown in Figure 1.2.

The first three chapters focus on automatic test generation for a sin-
gle version of a software under test. Chapter 3 proposes the optimi-
sation of several coverage criteria for test generation. Chapter 4 eval-
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uates which evolutionary algorithm works best for test generation.
Chapter 5 presents a non-functional criterion which aims to improve
the diagnostic ability of a coverage based test generation approach.

Chapters 6 and 7 are devoted to the application of automatic test
generation on software that evolves over time. Chapter 6 introduces
the concept of continuous test generation and describes several ap-
proaches to efficiently apply automatic test generation on every itera-
tion of software that is, typically, developed continuously. Chapter 7

describes the development of three new plugins for the state of the art
tool on automatic test generation, i.e., EvoSuite, which aim to reduce
the gap between what tools are proposed by researchers and what
is actually used by practitioners in industry. It also discusses lessons
learnt when developing and evaluating these plugins in practice.

Finally, Chapter 8 presents our final conclusions and discusses po-
tential directions for future work.

Continuous Test
Generation

Ch. 6, and 7
v1 v2 v3

Fitness
Functions

Search-based
Unit Test

Generation

Evolutionary
Algorithms

Ch. 7

Ch. 3, and 5 Ch. 4

Figure 1.2: Thesis outline.

1.5 origin of the chapters

Besides Chapters 1, 2 and 8, each chapter of this thesis is based on
at least one paper published in a peer review symposium or interna-
tional conference. The following list summarises these publications
per chapter.

Chapter 3 is based on a paper published in the proceedings of the
7th International Symposium on Search-Based Software Engineering
(SSBSE), 2015 [10].

Chapter 4 is based on a paper published in the proceedings of the
9th International Symposium on Search-Based Software Engineering
(SSBSE), 2017 [11].
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Chapter 5 is based on material published in the proceedings of the
28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2013 [12].

Chapter 6 is based on a paper published in the proceedings of the
29th ACM/IEEE International Conference on Automated Software
Engineering (ASE), 2014 [13]; and it is also based on a paper pub-
lished in the proceedings of the 7th International Symposium on
Search-Based Software Engineering (SSBSE), 2015 [14].

Chapter 7 is based on a paper published in the proceedings of the
IEEE International Conference on Software Testing, Verification and
Validation (ICST), 2016 [15]; and and it is also based on a paper
published in the proceedings of the 10th International Workshop on
Search-Based Software Testing (SBST), 2017 [16].
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2.1 software testing

“Software testing is the process of operating a system or
component under specified conditions, observing and

recording the results, and making an evaluation.”

— IEEE Std. 610.12-1990 [17]

Despite the variety of different software development processes such
as the waterfall model or agile, there is one activity that is shared by
all of them, software testing. Software testing is conducted by develop-
ers to check the correctness and completeness of the code they wrote,
and to guard it against future regression faults. However, as the soft-
ware cannot be exhaustively tested in general, it can never show the
absence of faults (as claimed by Dijkstra [6] in 1972). Thus, the main
goal of software testing is to find as many faults in the software as
possible.

Software testing has become such an important piece of software
development process, that it is commonly estimated that half of the
total cost/time to develop a software program is dedicated to testing
& debugging [5]. The reason is that, although it is very common to use
automated tools to execute test cases, such test cases are commonly
hand-written which is a tedious and error prone task. Automating the
creation of such test cases offers several benefits, however it also raises
some issues that would have to be addressed in order to be useful to
use those tests. On one hand, automation could reduce the cost/time
of the testing process, and it could also create a much more complete
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set of test cases (as they would be systematically generated). On the
other hand, there are two main issues that need to be considered
when generating test cases automatically: 1) test data (which inputs
should be used to exercise the software under test?), and 2) test oracle
(does the execution of the test reveal any fault?).

In the following sections, we describe the concepts and definitions
in software testing, and how to measure the quality of a test suite.
Then, we survey the state of the art techniques on automated test
generation.

2.1.1 Concepts & Definitions

A test suite is a collection of test cases for a target software under test
which comprises a set of methods or functions, each of which consists
of a list of statements. Each statement can be a conditional statement
(e.g., if), a method call or a regular statement. A conditional statement
results in two branches depending on the evaluation of its predicate.
A test case is an executable function which sets up a test scenario,
calls some methods/functions in the software under test, and checks
that the observed behaviour matches the expected one — typically by
using test oracles also known as assertions. For simplicity, a test case
can be regarded as a sequence of calls to methods of the software
under test. Executing a test case yields an execution trace, i.e., a se-
quence of executed statements which can either end normally with
a regular statement, or with an uncaught exception. If the execution
of a test case does not match the expected behaviour it can indicate
a defect in the software under test. A defect is a flaw, or imperfection
in the software under test, such as an incorrect design, algorithm, or
implementation. It is also known as a fault or bug and it is typically
identified when a test case throws an error or a failure. An error is a dis-
crepancy between the intended behaviour of a system and its actual
behaviour inside the system boundary. A failure is an instance in time
when a system displays behaviour that is contrary to its specification.

Throughout this thesis we may use the terms test suite and suite
interchangeably, in which case we normally intend the former. More-
over, we may use the terms test and test case interchangeably, in
which case we normally intend the latter. Furthermore, we may use
the terms fault and bug to refer to a defect, and failure to refer to both
cases of errors and failures.

2.1.2 Evaluating the Effectiveness of Testing

Due to the large number of parameters or configurations to test a
software program, it is infeasible (in practice) to test all possible com-
binations. So, when should we stop testing? Which parameters or
configurations are more adequate, e.g., more likely to reveal faults?



2.1 software testing 13

In order to answer these questions, several techniques to measure the
quality of test cases have been proposed [18]. The two most common
techniques are coverage analysis and mutation analysis.

2.1.2.1 Coverage Analysis

Coverage analysis is a deterministic technique which uses coverage
criteria to evaluate whether there is at least one test case exercis-
ing each pre-defined coverage target. Each target is commonly rep-
resented by a single statement, branch, or condition in the software.
For instance, the statement coverage criterion requires all statements
in the software to be executed by at least one test. Branch coverage cri-
terion requires all branches in the software to be satisfied at least once
during testing. For example, the software under test in Listing 2.1 is
fully covered at branch level if, one of the sub-conditions on line 2 is
evaluated as true, and if both sub-conditions on line 2 are evaluated
as false by at least one test case. However, for this particular software
under test, just exercising one of the conditions to satisfy the branch
may not be enough to cover the faulty code (i.e., a < c). Conditional
coverage criterion, on the other hand, requires all sub-conditions in a
conditional statement to be satisfied at least once during testing. For
example, to fully satisfy conditional statement on line 2, both sides
of each sub-condition have to be satisfied by at least one test case
— a total of four test cases, assuming one test case per side of each
sub-condition.

Listing 2.1: Motivational example for the evaluation of the effectiveness of
software testing. On line 2 there is a fault, instead of a < c it should be read
b < c.

1 public boolean foo(int a, int b, int c) {

2 if (a > b || a < c) { /* FAULT */

3 return true;

4 }

5 return false;

6 }

2.1.2.2 Mutation Analysis

The purpose of software testing is to find faults in the software. How-
ever, as the location of those faults is usually unknown (otherwise
they would have been fixed), the effectiveness of test cases at detect-
ing potential faults is, typically, measured on artificial faults. These
faults (also known as mutants) are small syntactic variations created
by applying mutation operators to the original code. Typically, muta-
tion operators only replace relational operations, modify conditional
statements, or delete statements [19]. For example, supposing the
original program described in Listing 2.1, a single mutant could be
created by changing a > b to a < b on line 2. A mutant is killed if
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there is at least one test case that reveals the changed behaviour, i.e.,
its outcome is different when executed on the mutated and original
program. Otherwise, the mutant is considered alive. The effectiveness
of a test suite is measured by the ratio (also known as mutation score)
of the number of mutants which are killed by the test suite / total
number of mutants.

Although mutation analysis has been used in several testing sce-
narios such as test generation [20], regression testing [21, 22], fault
localisation [23], etc., several limitations are still a barrier for muta-
tion testing techniques being adopted in practice. For instance, the
efficiency of mutation testing. Mutants can be automatically and sys-
tematically created [24, 25], however, each mutant requires the exe-
cution of all test cases. That is, given a large software program for
which thousands of mutants can be created, executing all test cases
against each mutant would be extremely expensive. A recent study
conducted by Pearson et al. [23] on the effectiveness of coverage-
based and mutation-based fault localisation techniques, reported that,
experiments with mutation-based techniques took more than 100,000

CPU hours to complete. To alleviate this limitation several approaches
have been proposed to reduce the number of mutants, for example,
by identifying redundant mutants [26] — semantically equivalent vari-
ations of the original software. However, the identification of redun-
dant mutants is an undecidable problem [27].

As mutants have been using as a proxy to real faults, one might
ask whether test suites that are effective at detecting mutants are also
effective at detecting real faults [28]. A recent study conducted by Just
et al. [29] compared the effectiveness of manually written and auto-
matically generated test cases at detecting real faults and mutants.
They found that for the majority of faults there is a correlation be-
tween detecting real faults and mutants. For a large sample of those
faults for which such correlation did not exist, stronger or new muta-
tion operators are required.

2.1.3 Automated Test Generation

Software testing is still the most effective approach at ensuring a soft-
ware program does what it was designed for. However, manually
writing test cases is an error prone and time consuming task. To re-
duce this cost, researchers have devised approaches to automate the
generation of test cases.

Some of the proposed approaches assume the existence of a formal
model of the software (e.g., UML [30]), and many other popular ap-
proaches require only source code. To generate test cases from source
code, the simplest approach is to do so randomly [31]. This approach
can produce large numbers of tests in a short time, and the main in-
tended usage is to exercise generic object contracts [32, 33] or code
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contracts [34]. Approaches based on symbolic execution have been
popularized by Dynamic Symbolic Execution (DSE) [35], which system-
atically explore paths from a given entry point of the program under
test. Generating tests that resemble manually written tests (i.e., few
short test cases with high coverage) is commonly done using Search-
Based Software Testing (SBST). When applying SBST for test generation,
efficient meta-heuristic search algorithms such as genetic algorithms
are used to evolve sequences of method calls with respect to a certain
set of criteria, e.g., coverage [36].

2.2 random testing

The most naïve test generation technique is Random Testing (RT).
In RT, the software under test is exercised with randomly [31] gen-
erated inputs from the whole input domain of the software, and its
observed output. Due to its simplistic nature, RT can be applied in
practice with litter overhead and it has been widely used to, for ex-
ample, exercise generic object contracts [32, 33], code contracts [34],
unexpected security problems [37], and to reveal failures in several
software systems [35, 38]. However, there are some disagreements be-
tween researchers and practitioners on the coverage and effectiveness
achieved by RT techniques on test generation [5, 39, 40]. The main
point of criticism among researchers is the lack of a strategy to gener-
ate inputs, as RT techniques do not take into account any information
about the software under test [5], i.e., in theory, every test input in the
input domain has the same probability of being selected. For example,
consider the code under test in Listing 2.2. The probability of the con-
ditional statement if (x == 10) being satisfied is 1 in 232 (assuming
x is a 32-bits value), which illustrates the limitation of RT approaches.

Listing 2.2: Motivational random testing example adapted from Godefroid
et al. [37].

public String returnTen(int x) {

if (x == 10) {

return "Six"; /* FAULT */

} else {

return "Other number";

}

}

The technique proposed by Pacheco et al. [33] (and the accompa-
nied tool named Randoop [41]) is slightly different from the pure
random technique described above. Randoop is a feedback-oriented
technique which explores the execution of tests as they are created to
avoid generating invalid inputs. First, it generates a sequence of meth-
ods calls (each one selected at random), and methods arguments from
previously created sequences. Then, it executes a sequence in order
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to provide feedback to the test generator, e.g., to avoid generation of
tests that lead to runtime exceptions or to generate assertions that
could trigger future changes. It has been shown [33] that Randoop
is able to generate tests that are able to detect previously-unknown
errors (not found by pure random techniques) in widely used Java
libraries. However, the large number of test cases generated by ran-
dom testing techniques (including Randoop) may limit their adoption
in practice. As executing, evaluating, and maintaining such tests can
become impractical over time.

2.2.1 Adaptive Random Testing

Based on the assumption that inputs that could trigger a failure are lo-
calised on continuous regions [42–45] of the input domain, Adaptive
Random Testing (ART) was first proposed by Chen et al. [46] as an
enhanced alternative to RT. The idea behind ART is that if any pre-
viously generated input have not revealed the failure, new inputs
should be widely spread across the input domain to increase the like-
lihood of covering likely faulty areas.

Several approaches have been proposed on ART. For instance, the
approach proposed by Chen et al. [47] starts by generating a single
random test input and adds it to a pool of test inputs. Then for each
test input in the test pool, it generates a set of k (recommended value
is k = 10) random test inputs. The ki input with the highest euclidean
distance to all previously selected test inputs (i.e., the ones in the
test pool) is selected and added to the pool of test inputs. The main
disadvantages of this approach are: 1) the size of the pool of test
inputs could grow out of hands, and 2) the euclidean distance could
be very expensive to calculate for a large pool of test input.

Chen et al. [48] described the input domain as an m-dimensional
hyper-cube and generated inputs that are evenly-spaced as mathe-
matical possible across the input domain. Due to the limited number
of inputs their approach generates on each iteration [48], it can only
be applied on problems with a finite number of dimensions [49]. Al-
though previous studies [48, 50] showed that their approach could
produce better test inputs than RT, there is little evidence that it could
perform better than any other ART approach [51].

Restricted Random Testing (RRT) proposed by Chan et al. [52] is an
ART approach that excludes areas of the input domain. RRT starts by
randomly generating a test input from the entire input domain (for
example, test input t1 in the left side of Figure 2.1) and creating an
exclusion region around t1. Then, new test candidates are generated,
for example, c1 and c2. However, as they are in an exclusion region,
both are discarded. If a test candidate is successfully generated out
of an exclusion region (e.g., c3), it becomes a valid test input (e.g.,
t2) and a new exclusion region around it is created. If an exclusion
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region is to small, similar test inputs could be generated. On the other
hand, if an exclusion region is too large, similar inputs would never
be generated and the total number of inputs that could be explored
would be limited. It is worth noting that outside of exclusion regions
candidates are selected with the same probability.

c3

• t1

c2

• t1• t1

• t2
c1

c1

c2

Figure 2.1: RRT example adapted from Liu et al. [53].

In order to verify whether a new candidate is inside/outside of
an exclusion region, RRT approach measures the euclidean distance
between the new candidate and all test inputs previously selected,
which could be very time consuming for a large number of test in-
puts. To reduce this computational overhead, approaches such as mir-
roring [54] and forgetting [55] have been proposed. In the mirroring
approach, ART is just applied to a sub-domain and then test inputs
are mirrored to other sub-domains. In the forgetting approach, only a
constant number of previously generated test inputs (and not all of
them) are considered when evaluating new ones.

Similar to the idea of partitioning the input space, Chen et al. [56]
proposed two other approaches: Adaptive Random Testing by Bysec-
tion (ART-B) and Adaptive Random Testing by Random Partition-
ing (ART-RP). As in a typical ART approach, ART-B and ART-RP first
generate a random test input from the entire input domain (accord-
ing to a uniform distribution). Then, the ART-B approach bisects the
input domain into two (in the case of two-dimensional input domain)
equal-sized partitions (see Figure 2.2). Any following test candidate
can only be selected as a valid test input, if it is in the empty partition
(which does not contain any previously generated test input) rather
than from the whole input domain. On the other hand, the ART-RP
approach partitions the input domain at the selected test input and
the following test candidates can only be selected if they are from the
empty partition (see Figure 2.3). The generation of test inputs stops
when a termination condition is met, e.g., there are no more partitions
to explore.

The issue shared by both ART-B and ART-RP approaches is that
all test inputs from an empty partition have the same probability of
being selected. Therefore, test inputs that are close to previously gen-
erated inputs could be selected, which could decrease the effective-
ness of the tests [57]. To address this issue several approaches based
on localisation of previously selected test cases have been proposed.
For instance, Adaptive Random Testing by Bysection with Restric-
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• t1
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• t2• t3
c1

• t2

Figure 2.2: ART-B example adapted from Liu et al. [53].

• t1

c2

• t1• t1

• t2• t3
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• t2

Figure 2.3: ART-RP example adapted from Liu et al. [53].

tion (ART-BR) [58] approach introduces a restriction which prevents
test candidates that are near in the input domain to a previously se-
lected partition or test input, of being selected (similar to the RRT
approach proposed by Chan et al. [52]).

Opposite to previous approaches, Tappenden et al. [49] applied an
evolutionary search algorithm to find a new test input that maximises
the minimum distance from all previously generated test inputs. The
evolution is guided by a distance-based fitness function, e.g., the eu-
clidean distance.

Ciupa et al. [59] applied ART on object-oriented programs instead
of numeric ones and proposed an approach named Adaptive Random
Testing for Object-Oriented (ARTOO) software. In their approach the
distance between objects is the combination of elementary distance
(the distance value for primitive/reference types, e.g., levenshtein dis-
tance for string attributes), type distance (the path length to any sim-
ilar ancestor, and the number of their attributes/methods), and field
distance (the distance value to other objects). ARTOO uses the av-
erage distance between objects rather than the maximum minimum
distance as typically used by ART techniques. Although it has been
shown that ARTOO does not generate as many test inputs as RT, it
requires more time to detect failures than RT [59]. Lin et al. [60] also
proposed an approach to generate test inputs for object-oriented pro-
grams named ARTGen. ARTGen creates a pool of objects and bound-
ary values of the input space, and then uses ART to select objects from
the pool.

2.2.2 Effectiveness of Random Testing

Although random testing approaches have been studied in detail,
there are different conclusions in the literature about the effective-
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ness of it. Thayer et al. [39] argued that RT should be recommended
as a fundamental step of the testing process, however Myers et al. [5]
stated that RT is the poorest test input methodology.

Mak [61] compared RT and ART in terms of number of test in-
puts required to detect the first failure, and concluded that ART is
able to detect the first failure with 30% (occasionally 50%) less test
inputs. Although ART may be quicker or require less test inputs to
detect the first failure than RT, ART requires more computational
time and memory because the additional task of generating test in-
puts evenly spread across the input domain [49, 56, 62, 63]. An empir-
ically study conducted by Mayer et al. [64] confirmed that although
Distance-based Adaptive Random Testing (D-ART) and RRT are the
most effective ART approaches, their runtime may become extremely
long. More recently, Arcuri et al. [65] reported that although ART
could perform better than RT, the chance of finding faults with ART
is less than 1%.

In the next section we survey another testing technique which
rather than generating random inputs to explore a program under
test, it generates specific inputs to exercise a given path of the pro-
gram.

2.3 symbolic execution for software test-
ing

Symbolic Execution (SE) is a program analysis approach that executes
a software program with symbolic values instead of concrete inputs
(as the approaches discussed in Sections 2.2 and 2.4), and represents
the values of program variables as symbolic expressions [66]. SE ap-
proaches proposed in the literature have been successful at finding
subtle bugs in several NASA’s projects [67], at testing newly-modified
source code [68, 69], at automated debugging [70], and in many other
areas [71, 72].

To better understand how SE works, consider the following snippet
of code:

1 public void foo(int x) {

2 int y = x * 3;

3 if (y == 42) {

4 System.out.println("GOOD");

5 } else {

6 System.out.println("BAD");

7 }

8 }

In an execution with concrete inputs, foo would be called with a con-
crete value (e.g., 7). Then, y would get the result of multiplying 7

by 3, i.e., 21. As 21 is not equal to 42, the condition on line 3 would
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be evaluated as false, and therefore the execution would print the
word “BAD”. In a symbolic execution, foo would be called with a
symbolic value (e.g., β). The execution then proceed with the multi-
plication and assigns β × 3 to y. Therefore, the condition to be evalu-
ated on line 3 is no longer if (y == 42) but if (β × 3 == 42). At
this point in the execution, β could take any value. To solve the con-
straint β × 3 == 42, i.e., to generate two values such that each one
could satisfy each outcome of the expression (i.e., true and false),
constraint solvers such as Z3 [73] are usually used. For this particu-
lar example, the value 14 would make the condition to be evaluated
as true, and any other value would make the condition to be evalu-
ated as false. Therefore, SE has explored all feasible paths of this toy
example. However, the number of paths in a program can grow expo-
nentially with respect to the size of the program — a problem known
as path explosion — or with the presence of loops (where the num-
ber of possible iterations could make the number of paths infinite).
Therefore, applying traditional SE approaches to real and large soft-
ware programs can become impractical [71, 72]. Nevertheless, several
approaches have been proposed to address this issue and we explore
them in the following.

Boonstoppel et al. [74] proposed an approach called Read-Write set
(RWset) which discards paths that will produce the same result (i.e.,
paths that cover the same basic blocks) as any previously explored
path. RWset tracks all reads and writes of all variables in order to be
able to detect that the suffix of a path, i.e., the remainder steps of a
path can be determined and are equivalent to a suffix of a previously
explored path. In such case, the execution is considered redundant
and the path is pruned.

Majumdar et al. [75] argued that generating test cases for one in-
dependent variable at a time could eliminate the test combination of
every single input, and therefore, reduce the number of paths needed
to explore the program under test. To achieve this, their approach
computes the control and data dependencies between variables. Paths
with the same trace are considered redundant and pruned.

Santelices et al. [76] presented an approach named Symbolic Pro-
gram Decomposition (SPD), in which symbolic execution is just per-
formed in a group of paths (known as path families), i.e., paths that
have the same control and data dependencies. Similarly, Qi et al. [77]
proposed an approach to group program paths based on the pro-
gram output. In their approach, paths are considered equivalent if
the output is affected when: 1) statements of control dependencies
are executed, and 2) statements of potential dependencies are not ex-
ecuted. The main difference between Santelices et al. [76] and Qi et
al. [77] approach is the precision of each one. The approach proposed
by Santelices et al. [76] uses a static analysis which over-approximates
(i.e., precision is sacrificed) the exploration of path families. On the
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other hand, the approach proposed by Qi et al. [77] uses a dynamic
analysis which under-approximate the exploration of relevant slices.

Ma et al. [78] proposed an approach to automatically find a pro-
gram execution (i.e., path) that is able to reach a particular target goal
(e.g., statement). They proposed two strategies: Shortest-Distance
Symbolic Execution (SDSE), and Call-Chain-Backward Symbolic Ex-
ecution (CCBSE). SDSE can be described as a top-bottom strategy.
It executes the program symbolically, and uses a distance metric to
guide the symbolic exploration through the control-graph to a partic-
ular target. This means that during the symbolic execution, the path
with the shortest distance to the target goal is always selected. On
the other hand, CCBSE can be described as a bottom-top strategy. It
starts at the target goal and goes backwards until it finds a feasible
path from the start of the program.

2.3.1 Dynamic Symbolic Execution

Approaches based on symbolic execution heavily rely on the pre-
cision of the underlying constraint solver to generate concrete in-
puts. However, symbolic values related to native code, third-party
libraries, or just too complex symbolic constraints may not be han-
dled by the underlying constraint solver, which can lead to an in-
complete execution of a path as the effect of that code would be
completely ignored [79]. To address this issue, Dynamic Symbolic
Execution (DSE) [35] (also referred as concolic execution [80]) has
been proposed. In DSE, the program under test is simultaneously ex-
ecuted with concrete and symbolic values, and when symbolic values
can not be handled by any underlying constraint solver (e.g., Z3 [73]),
they are replaced with concrete values.

A popular variant to apply DSE is to manually write a parame-
terised unit test as an entry function, and then to explore the paths
through a program by deriving values for the parameters of the
parameterised test [81]. Or use randomly generated test inputs to
explore as many paths as possible, and then apply DSE to cover
the paths that were not covered by any randomly generated test in-
put [82].

Godefroid et al. [37] presented an approach which applies SE on
fuzz testing context. Their approach executes the program with an ini-
tial input and it creates the initial path constraint. Then, instead of just
expanding one path constraint using depth-first search (to expand the
first constraint) or breadth-first search (to expand the last constraint)
as usually done by SE techniques, their approach attempts to expand
all constraints at once. Hence, maximising the number of inputs gen-
erated in each symbolic execution.

Babić et al. [83] proposed an approach to automatically prioritise
in which order paths should be explored. Their approach can be de-
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scribed in three main steps. First, a static and dynamic analysis is
performed by executing a set of existing tests to identify indirect
jumps in binary files. Second, it creates a control-flow graph of the
program under test and identifies possible vulnerabilities based on
loop pattern heuristics and out-of-bound accesses. Third, it executes
the program under test with symbolic values and generates concrete
values that are able to trigger the vulnerabilities identified in the pre-
viously steps. The effectiveness of their approach highly depends on
the initial set of tests.

Anand et al. [79] proposed a technique called type-dependence
analysis which performs static analysis to identify areas of the pro-
gram under test that could not be executed symbolically. A report
of those problematic parts (accomplished with some context infor-
mation) is then provided to the developer, so that he or she can im-
prove the program under test by performing the suggested changes.
Similarly, Anand et al. [84] proposed an approach called heap cloning
which identifies the areas of the code that introduce imprecision in a
symbolic execution, e.g., when executing native code. Their approach
creates two heaps (“concrete heap” and “symbolic heap”) for the
same program, each with a copy of all program’s objects. During
the execution of the program, objects in the “concrete heap” are up-
dated when native code is execute, objects in “symbolic heap” are
updated when code of the program under test is executed. Thus, the
side-effects of native code that introduced imprecision could be auto-
matically identified by simply comparing both heaps.

To reduce the number of paths explored by a DSE techniques due
to loops in the program under test, Godefroid et al. [85] proposed an
approach to summarise a loop body during a symbolic execution. For
instance, to cover statement abort1 in Listing 2.3 (line 9), x has to be
greater than zero and c equal to 50. To cover statement abort2 (on
line 16), x should be zero, and c equal to xi (where xi is the iterated
value of x). Then, and based on this information, Godefroid et al.
[85]’s approach summarises the variables that are modified within
loop by a constant value, by creating the precondition (x > 0) and
the postcondition ((x = 0) ∧ (c = xi)). Assuming the underlying
constraint solver can handle these pre/postconditions, the number of
paths to test would be reduced.

Listing 2.3: Motivational symbolic execution example adapted from Gode-
froid et al. [85].

1 public void foo(int x) {

2 int c = 0;

3 int p = 0;

4 while (true) {

5 if (x <= 0) {

6 break;

7 }

8 if (c == 50) {
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9 abort1(); /* FAULT 1 */

10 }

11 c++;

12 p = p + c;

13 x--;

14 }

15 if (c == 30) {

16 abort2(); /* FAULT 2 */

17 }

18 }

Saxena et al. [86] also proposed an approach to reduce the overhead
of loops on DSE techniques. In their approach, for each program loop
an extra symbolic variable is used to count the number of times a loop
is executed. Then, static analysis is performed to analyse the relations
between that symbolic variable and the values of the variables of the
program under test. The main difference between both works is that,
the one proposed by Godefroid et al. [85] analyses loop’s structure
on the fly without using any other tools, as opposed to the approach
proposed by Saxena et al. [86] which detects the loop’s structure using
static analysis.

Although, overall, SE/DSE approaches can effectively generate
high-coverage tests, they may not scale to complex programs (i.e.,
programs with a large number of paths) or object-oriented programs
(for which a sequence of statements is require to invoke and interact
with the program, rather than just optimising input values to cover
specific paths). In the following section we survey search-based soft-
ware testing approaches which have been successfully applied to the
test generation problem [87, 88].

2.4 search-based software testing

Although the term Search-Based Software Engineering (SBSE) was
first introduced by Harman and Jones in 2001 [89] as the application
of meta-heuristic search algorithms to address software engineering
problems [90–93], the first application of optimisation techniques is
commonly attributed to the work proposed by Miller et al. [94] in
1976. Miller et al. [94] used numerical optimisation techniques to gen-
erate floating point test data to cover paths of a software program.
Since then, the application of meta-heuristic search algorithms to soft-
ware testing — known as Search-Based Software Testing (SBST) [95]
— has become the most successful and popular area of SBSE [88]. In
SBST, test cases (or only test inputs) represent the search space of
a meta-heuristic search algorithm and they are typically optimised
for structural criteria [36, 87, 96–100]. However, other criteria such as
functional and non-functional requirements [101, 102], mutation [20,
103], and exceptions [104–106] have been also explored [88].
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Earlier works on structural testing aimed to automatically gener-
ate test data (i.e., numeric inputs) for procedural code [87, 88]. For
instance, in the work proposed by Korel [97] the software under test
is instrumented and first executed with random inputs. If, by chance,
the chosen path (previous selected by a software tester) is fully cov-
ered, the test inputs are saved. Otherwise, branch distance is com-
puted at the point where the execution diverges from the desired
path, and a local search algorithm is applied to find alternative inputs
that could satisfy that particular branch while at the same time pre-
serving the coverage until that point. Xanthakis et al. [96] proposed
a similar approach. In their work the selected path is first explored
by a random search approach and all branch predicates are extracted.
Then, a search algorithm is applied in order to satisfy all branch pred-
icates at the same time.

To alleviate the effort of manually selecting program paths (which
could be very time consuming, in particular for complex programs),
Korel [107] proposed a goal-oriented technique. Instead of selecting
a program path, the developer only has to select a target goal, for
example, a statement. Then, their technique uses the program’s con-
trol flow to filter out non-relevant branches (the ones that the search
does not need to satisfy to reach the target goal). Finally, they apply a
search algorithm to generate inputs that satisfy all relevant branches.
Pargas et al. [99] proposed a control oriented technique which aims
to cover specific structural points (e.g., a statement) by maximising
the number of executed control dependent nodes (i.e., the nodes a
structural point depends on). A test input that executes more control
dependent nodes of a structural point, should be closer to reach it.
However, no guidance is provided to the search on how close a test
input is to cover a node.

Later works on structural testing have aimed to automatically gen-
erate test cases (i.e., sequences of method calls) for Object Oriented
(OO) software [87]. Note that, due to the nature of OO paradigm
(e.g., inheritance and polymorphism, object parameters may have to
be in a particular state in order to be able to cover the target goal, etc),
testing OO software could be more complex than testing procedural
programs [108, 109]. In such scenario, a test case is no longer a simple
set of values but rather a much more complex sequence of method
calls and their respective parameters.

The first attempt to test OO software with meta-heuristic search al-
gorithms was proposed by Tonella [36]. Their approach uses a genetic
algorithm to generate targeted test cases for each individual target
goal (e.g., branch). Custom evolutionary operators (i.e., crossover and
mutation) are applied to evolve individuals. At the end, all generated
test cases are combined into a single test suite. Although effective,
their approach may not scale for software with a large number of
target goals, as the number of test cases may grow with the increase
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on the number of target goals. As opposed to their work, Wappler
et al. [110] used standard evolutionary operators to evolve individ-
uals, which could generate infeasible ones and therefore negatively
influence the fitness function. To address that issue, a follow up work
by Wappler et al. [111] proposed the use of genetic programming to
enforce the generation of feasible individuals.

In contrast to the work proposed by Tonella [36], Fraser et al. [112,
113] proposed an approach named Whole Test Suite (WTS), which
evolves test suites (i.e., the individuals of a population are sets of test
cases, and each test case is a sequence of calls) targeting all testing
goals at the same time. Thus, removing the need to select an order in
which to target individual coverage goals. WTS has been shown to be
more effective than iteratively generating individual test cases [113].

Although a common approach in SBST is to use genetic algorithms,
numerous other algorithms (including random-search) have been pro-
posed in the domain of nature-inspired algorithms, as no algorithm
can be best on all domains [114]. In the following sections, we review
several meta-heuristic search algorithms and enhancements proposed
in the literature. Moreover, in Chapter 4 we perform an empirical com-
parison of the most adequate algorithms for the unit test generation
problem.

2.4.1 Representation

Evolutionary Algorithms (EAs) are inspired by natural evolution, and
have been successfully used to address many kinds of optimisation
problems [92, 93]. In the context of EAs, a solution is encoded “ge-
netically” as an individual (“chromosome”), and a set of individu-
als is called a population. For test suite generation, the individu-
als of a population are sets of test cases (test suites); each test case
is a sequence of calls. The population is gradually optimised using
genetic-inspired operations such as crossover, which merges genetic
material from at least two individuals to yield new offspring, and
mutation, which independently changes the elements of an individ-
ual with a low probability. Crossover on test suites is based on ex-
changing test cases [113]; mutation adds/modifies tests to suites, and
adds/removes/changes statements within tests. While standard se-
lection techniques are largely used, the variable size representation
(number of statements in a test and number of test cases in a suite
can vary) requires modification to avoid bloat [115]; this is typically
achieved by ranking individuals with identical fitness based on their
length, and then using rank selection.
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2.4.2 Random Search

Random search is a baseline search strategy which does not use
crossover, mutation, or selection, but a simple replacement strat-
egy [116]. Random search consists of repeatedly sampling candidates
from the search space; the previous candidate is replaced if the fitness
of the new sampled individual is better. Random search can make use
of a test archive [117] (which store tests for covered goals) by chang-
ing the sampling procedure, i.e., new tests may be created by mutat-
ing tests in the archive rather than randomly generating completely
new tests. Random testing is a variant of random search in test gen-
eration which builds test suites incrementally. Test cases (rather than
test suites) are sampled individually, and if a test improves coverage,
it is retained in the test suite, otherwise it is discarded. It has been
shown that in test generation, due to the flat fitness landscapes and
often simple search problems, random search is often as effective as
EAs, and sometimes even better [118].

2.4.3 Local Search Algorithms

2.4.3.1 Hill Climbing

Hill Climbing [119] is a local search algorithm which evaluates so-
lutions according to a fitness function. It starts with a random solu-
tion and in an, e.g., 1-dimensional problem, evaluates two neighbours
(one to the right and one to the left). The solution with the best score
value, i.e., fitness value, replaces the current one. However, due to
lack of search power, the Hill Climbing algorithm does not make any
assumptions about the landscape (a plot of the fitness) of the problem
as described in Figure 2.4. Therefore, it only performs movements in
the landscape if the next individual is better than the current, which
could lead to be trapped in a local optimum solution.
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Figure 2.4: Hill Climbing landscape example taken from McMinn [95].
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2.4.3.2 Tabu-search

Tabu-search [120, 121] is a local search algorithm which incorporates
adaptive memory and responsive exploration. First, it generates a ran-
dom solution and evaluates it. Then, it generates several other solu-
tions and evaluated them. If any of the additional solutions is bet-
ter than the current solution, the current one is replaced. Otherwise,
new sets of solutions are generated until a new solution that is better
than the current one is found. However, and like Hill Climbing, Tabu-
search could also stop on a local optimum solution. For instance, if
two solutions in the search are always considered as the best ones,
then the search may spend all the time bouncing between the two
indefinitely. To avoid that, Tabu-search keeps a list of all previous so-
lutions and restrain their re-selection. Thus, increasing the likelihood
of finding an optimum solution.

2.4.3.3 Simulated Annealing

Simulated Annealing [104, 122] is a meta-heuristic algorithm similar
to Hill Climbing, however, movements through the search space are
not so restricted. To explore a large portion of the search-space, it uses
a control parameter called temperature as the probability of accepting
worse solutions, i.e., solutions with a lower fitness value. It starts with
a high temperature value, but as the search evolves, the temperature
decreases until it reaches zero, in which the search would work simi-
lar to the Hill Climbing algorithm. As Hill Climbing and Tabu-search
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Figure 2.5: Simulated Annealing landscape example taken from McMinn
[95].

algorithms, Simulated Annealing only considers one solution at time
and it does not make any assumption about the landscape. If the tem-
perature cools down to quickly, it might get stuck in a local optimum
as the Hill Climbing algorithm.
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2.4.4 Global Search Algorithms

2.4.4.1 Genetic Algorithm (GA)

The Genetic Algorithm (GA) [123] is one of the most widely-used EAs
in many domains because it can be easily implemented and obtains
good results on average. Algorithm 1 illustrates a Standard GA. It
starts by creating an initial random population of size ps (Line 1).
Then, a pair of individuals is selected from the population using a
strategy sf, such as rank-based, elitism or tournament selection (Line
6). Next, both selected individuals are recombined using crossover cf
(e.g., single point, multiple-point) with a probability of cp to produce
two new offspring o1,o2 (Line 7). Afterwards, mutation is applied on
both offspring (Lines 8–9), independently changing the genes with
a probability of mp, which usually is equal to 1

n , where n is the
number of genes in a chromosome. The two mutated offspring are
then included in the next population (Line 10). At the end of each
iteration the fitness value of all individuals is computed (Line 13).

Algorithm 1 Standard Genetic Algorithm

Input: Stopping condition C, Fitness function δ, Population size ps,
Selection function sf, Crossover function cf, Crossover probability
cp, Mutation function mf, Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(ps)
2: PerformFitnessEvaluation(δ,P)
3: while ¬C do
4: NP ← {}

5: while |NP | < ps do
6: p1,p2 ← Selection(sf,P)
7: o1,o2 ← Crossover(cf, cp,p1,p2)
8: Mutation(mf,mp,o1)
9: Mutation(mf,mp,o2)

10: NP ← NP ∪ {o1,o2}
11: end while
12: P ← NP
13: PerformFitnessEvaluation(δ,P)
14: end while
15: return P

2.4.4.2 Monotonic GA

Many variants of the Standard GA have been proposed to improve
effectiveness. For example, a monotonic version of the Standard GA
which, after mutating and evaluating each offspring, only includes
either the best offspring or the best parent in the next population
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(whereas the Standard GA includes both offspring in the next popu-
lation regardless of their fitness value).

2.4.4.3 Steady State GA

Another variation of the Standard GA is a Steady State GA, which
uses the same replacement strategy as the Monotonic GA, but instead
of creating a new population of offspring, the offspring replace the
parents from the current population immediately after the mutation
phase.

2.4.4.4 1 + (λ, λ) GA

The 1+ (λ, λ) GA, introduced by Doerr et al. [124], starts by generat-
ing a random population of size 1. Then, mutation is used to create
λ different mutated versions of the current individual. Mutation is
applied with a high mutation probability, defined as mp = k

n , where
k is typically greater than one, which allows, on average, more than
one gene to be mutated per chromosome. Then, uniform crossover is
applied to the parent and best generated mutant to create λ offspring.
While a high mutation probability is intended to support faster ex-
ploration of the search space, a uniform crossover between the best
individual among the λ mutants and the parent was suggested to re-
pair the defects caused by the aggressive mutation. Then all offspring
are evaluated and the best one is selected. If the best offspring is bet-
ter than the parent, the population of size one is replaced by the best
offspring. 1+ (λ, λ) GA could be very expensive for large values of λ,
as fitness has to be evaluated after mutation and after crossover.

2.4.4.5 µ+ λ Evolutionary Algorithm (EA)

The µ + λ Evolutionary Algorithm (EA) is a mutation-based algo-
rithm [125]. As its name suggests, the number of parents and off-
spring are restricted to µ and λ, respectively. Each gene is mutated
independently with probability 1

n . After mutation, the generated off-
spring are compared with each parent, aiming to preserve the so-far
best individual including parents; that is, parents are replaced once a
better offspring is found. Among the different (µ+λ) EA versions, two
common settings are (1+λ) EA and (1+1) EA, where the population
size is 1, and the number of offspring is also limited to 1 for the (1+1)
EA.

2.4.4.6 Many-Objective Sorting Algorithm (MOSA)

Unlike the whole test suite generation proposed by Fraser et al. [113],
the Many-Objective Sorting Algorithm (MOSA) [126] regards each
coverage goal as an independent optimisation objective. MOSA is a
variant of NSGA-II [127], and uses a preference sorting criterion to
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reward the best tests for each non-covered target, regardless of their
dominance relation with other tests in the population. MOSA also
uses an archive to store the tests that cover new targets, which aiming
to keep record on current best cases after each iteration.

Algorithm 2 illustrates how MOSA works. It starts with a random
population of test cases. Then, and similar to typical EAs, the off-
spring are created by applying crossover and mutation (Line 6). Se-
lection is based on the combined set of parents and offspring. This set
is sorted (Line 9) based on a non-dominance relation and preference
criterion. MOSA selects non-dominated individuals based on the re-
sulting rank, starting from the lowest rank (F0), until the population
size is reached (Lines 11-14). If fewer than ps individuals are selected,
the individuals of the current rank (Fr) are sorted by crowding dis-
tance (Line 16-17), and the individuals with the largest distance are
added. Finally, the archive that stores previously uncovered targets
is updated in order to yield the final test suite (Line 18). In order
to cope with the large numbers of goals resulting from the combi-
nation of multiple coverage criteria, the DynaMOSA [128] extension
dynamically selects targets based on the dependencies between the
uncovered targets and the newly covered targets. Both, MOSA and
DynaMOSA, have been shown to result in higher coverage of some
selected criteria than traditional GAs for WTS optimisation [126, 128].

2.4.5 Fitness Functions

In search-based test generation, the selection of individuals is guided
by fitness functions (which measure how good a test case or test suite
is with respect to the search optimisation objective), such that indi-
viduals with good fitness values are more likely to survive and be
involved in reproduction. Fitness functions are usually based on met-
rics [129] such as structural coverage [87, 97, 100], functional and non-
functional requirements [101, 102], or mutation [20, 103]; and provide
additional search guidance leading to satisfaction of the goals. For ex-
ample, just checking in the fitness function whether a coverage target
is achieved would not give any guidance to help covering it.

Although structural coverage criteria are well established in order
to evaluate existing test cases [18] (as we previously described in Sec-
tion 2.1.2.1), they may be less suitable in order to guide test genera-
tion. As with any optimisation problem, an imprecise formulation of
the optimisation goal could lead to unexpected results: for example,
although it is generally desirable that a reasonable test suite covers
all statements of a software under test, the reverse may not hold – not
every test suite that executes all statements is reasonable.

In the following sections we describe the most simple structural
coverage fitness function (i.e., line coverage) and the most common
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Algorithm 2 Many-Objective Sorting Algorithm (MOSA)

Input: Stopping condition C, Fitness function δ, Population size ps,
Crossover function cf, Crossover probability cp, Mutation proba-
bility mp

Output: Archive of optimised individuals A
1: p← 0

2: Np ← GenerateRandomPopulation(ps)
3: PerformFitnessEvaluation(δ,Np)
4: A← { }

5: while ¬C do
6: No ← GenerateOffspring(cf, cp,mp,Np)
7: Rt ← Np ∪No
8: r← 0

9: Fr ← PreferenceSorting(Rt)
10: Np+1 ← { }

11: while |Np+1|+ |Fr| 6 ps do
12: CalculateCrowdingDistance(Fr)
13: Np+1 ← Np+1 ∪ Fr
14: r← r+ 1

15: end while
16: DistanceCrowdingSort(Fr)
17: Np+1 ← Np+1 ∪ Fr with size ps − |Np+1|

18: UpdateArchive(A,Np+1)
19: p← p+ 1

20: end while
21: return A

structural coverage fitness function, branch coverage [87, 97, 100]. Note
that, although structural coverage fitness functions are the most com-
mon used ones, there has been little innovation in the fitness functions
for structural/path coverage over the past 25 years. In the following
sections we also describe a fitness function which has been reported
as effective at finding faults [130, 131], weak mutation [20]. Further-
more, in Chapter 3 we define a few more coverage-based fitness func-
tions and propose a simple approach to combine all of them; and
in Chapter 5 we present a non-functional functional criterion which
can guide a search algorithm to produce test case that are effective at
diagnosing a faulty software.

2.4.5.1 Line Coverage

A basic criterion in procedural code is statement coverage, which re-
quires all statements to be executed. Modern test generation tools for
Java (e.g., EvoSuite [9]) or C# (e.g., Pex [81]) often use the bytecode
representation for test generation, and bytecode instructions may not
directly map to source code statements. Therefore, a more common
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alternative in coverage analysis tools, and the de-facto standard for
most Java bytecode-based coverage tools, is to consider coverage of
lines of code. Each statement in a software has a defined line, which
represents the statement’s location in the source code of the software.
The source code of a software consists of non-comment lines, and
lines that contain no code (e.g., whitespace or comments). A test
suite satisfies the Line Coverage criterion only if it covers each non-
comment source code line of the software under test with at least one
of its tests. Line Coverage is very easy to visualise, interpret, and to
implement in an analysis tool; all these reasons probably contribute
to its popularity.

To cover each line of source code, each basic code block must to be
reached. In traditional search-based testing, this reachability would
be expressed by a combination of approach-level [100] and branch
distance [87, 97] as illustrated in Figure 2.6. The approach-level [100]
measures how far an individual execution and the target statement
are in terms of the control dependencies (i.e., distance between point
of diversion and target statement in control dependence graph). The
branch distance estimates how far a predicate is from evaluating to
a desired target outcome. For example, given the first predicate a

>= b and an execution with values a=5 and b=3, the branch distance
to the predicate evaluating to true would be |3 − 5| = 2, whereas
an execution with values a=5 and b=4 is closer to being true with a
branch distance of |4− 5| = 1. Branch distances can be calculated by
applying a set of standard rules [87, 97].

In contrast to test case generation, the optimisation of test suites to
execute all statement does not require the approach level, as all state-
ments will be executed by the same test suite. Thus, it only needs
to consider the branch distance of all branches that are control de-
pendencies of any of the statements in the software under test. That
is, for each conditional statement that is a control dependency for
some other statement in the code, it is required that the branch of
the statement leading to the dependent code is executed. Thus, the
Line Coverage fitness value of a test suite can be calculated by execut-
ing all its tests, calculating for each executed statement the minimum
branch distances dmin(b, Suite) among all observed executions to ev-
ery branch b in the set of control dependent branches BCD, i.e., the
distances to all the branches which need to be executed in order to
reach such a statement. The Line Coverage fitness function is thus
defined as:

fLC(Suite) = ν(| NCLs |− | CoveredLines |)+
∑
b∈BCD

ν(dmin(b, Suite))

where NCLs is the set of all non-comment lines of code in the soft-
ware under test, CoveredLines is the total set of lines covered by the
execution traces of every test in the suite, and ν(x) is a normalising
function in [0, 1] (e.g., ν(x) = x/(x+ 1)) [132].
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public void foo(int a, int b, int c, int d) {

if (a >= b) {

if (b >= c) {

if (c >= d) {

// target

Target Missed
Approach level = 2 
Branch distance = |b - a|

Target Missed
Approach level = 1 
Branch distance = |c - b|

if a >= b

if b >= c

if c >= d

true

true

Target

true

false

false

falseTarget Missed
Approach level = 0 
Branch distance = |d - c|

Figure 2.6: Example of how approach level and branch distances are calcu-
lated1.

2.4.5.2 Branch Coverage

The concept of covering branches is also well understood in practice
and implemented in popular tools, even though the practical defini-
tion of branch coverage may not always match the more theoretical
definition of covering all edges of a program’s control flow. Branch
coverage is often interpreted as maximising the number of branches
of conditional statements that are covered by a test suite. Hence, a
test suite is said to satisfy the Branch Coverage criterion if and only
if for every branch statement in the software under test, it contains at
least one test whose execution evaluates the branch predicate to true,
and at least one test whose execution evaluates the branch predicate
to false.

The fitness function for the Branch Coverage criterion estimates
how close a test suite is to covering all branches of the software. The
fitness value of a test suite is measured by executing all its tests, keep-
ing track of the branch distances d(b, Suite) for each branch in the
software under test. Then:

fBC(Suite) =
∑
b∈B

v(d(b, Suite))

1 Example based on the one presented by Phil McMinn at TAROT 2010, and by Gordon
Fraser at TAROT 2014.
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Here, d(b, Suite) for branch b ∈ B (where B is the set of all branches
in the software) on the test suite is defined as follows:

d(b, Suite) =



0 if the branch has been covered,

ν(dmin(b, Suite)) if the predicate has been

executed at least twice,

1 otherwise.

Note that a predicate must be executed at least twice, because the true
and false evaluations of the predicate need to be cover; if the predicate
were only executed once, then the search could theoretically oscillate
between true and false.

Flag Problem

A very well known problem of search-based approaches on soft-
ware testing is the “flag” problem. This problem occurs when a
flag (boolean variable) is involved in branch predicates as described
in Listing 2.4. In this case, the landscape of the search-space consists
of two plateaus (one for each branch outcome). A plateau region oc-
curs when the search is so flat, that the fitness value of a particular
point is indistinguishable from the value returned by its neighbours.
For example, in Listing 2.4 the fitness function value is zero if d is
equal to zero, otherwise is always one (no matter what is the value of
d). Harman et al. [133] proposed the use of program transformation to
remove flag variables from branch predicates. In their work, flags are
replaced from the branch predicates with the expression that could
led to their determination, thus removing plateau regions created by
flag variables.

Listing 2.4: Motivational flag example taken from McMinn [95].

boolean flag = (d == 0);

if (flag) {

result = 0;

} else {

result = n / d;

}

2.4.5.3 Weak Mutation

Test generation tools typically include values generated to satisfy
constraints or conditions, rather than values developers may prefer;
in particular, anecdotal evidence suggests developers like boundary
cases [134]. Test generation can be forced to produce such values us-
ing weak mutation testing, which applies small code modifications to
the software under test, and then checks if there exists a test that can
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distinguish between the original and the mutant. In weak mutation, a
mutant is considered to be covered (i.e., “killed”) if the execution of
a test on the mutant leads to a different state than the execution on
the software under test, i.e., if it infects the state. A test suite hence
satisfies the Weak Mutation criterion if and only if for each mutant
for the software under test at least one of its tests reaches state infec-
tion [135].

The fitness function for the Weak Mutation criterion guides the
search [136] using infection distances with respect to a set of muta-
tion operators [103]. For instance, “replace variable” operator which
replaces the value of any variable with the value of any other variable
of the same type and in the same scope. For this mutation operator
the infection distance is 0 if old and new values differ, 1 otherwise.
Assuming a minimal infection distance function dmin(µ, Suite) exists
(e.g., one of the infection distances proposed by Fraser et al. [103]):

dw(µ, Suite) =


1 if mutant µ was not reached,

ν(dmin(µ, Suite)) if mutant µ was reached.

This results in the following fitness function for weak mutation test-
ing:

fWM(Suite) =
∑
µ∈MC

dw(µ, Suite)

where MC is the set of all mutants generated for the software under
test.

2.4.5.4 Non-Functional Coverage Criteria

Despite the fact that branch coverage is the most common structural
criterion [93, 137], many other have been proposed [138–140]. For in-
stance, to increase the likelihood of human developers integrating
automatically generated tests in their software projects, Daka et al.
[141, 142] proposed the use of a human-based model to automati-
cally generate readable test cases. Afshan et al. [143] used natural lan-
guage processing to improve inputs used in test cases. Their results
shown that users are significantly quicker at understanding the nat-
ural language-based inputs, than inputs generated by a coverage ap-
proach. However, the question on how to integrate any of these two
non-functional criteria with a functional criterion such as coverage
still remains.

The integration of functional and non-functional properties in
test generation is usually described as a multiple-objective problem.
For example, Ferrer et al. [144] proposed the optimisation of cov-
erage and the oracle cost using multiple-objective algorithms such
as NSGA-II [127] and SPEA2 [145]. Harman et al. [146] proposed
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the optimisation of branch coverage and memory consumption also
using multiple-objective algorithms. However, it has been reported
that the integration of a functional criterion such as coverage and
non-functional criteria has a negative impact on the final coverage
achieved [144, 146], and on the usefulness of automatically gener-
ated test cases due to implicit trade-offs between functional and non-
functional criteria [147]. I.e., the most effective test case in terms of
memory may not be the one with the highest coverage, and vice-
versa.

Unlike these multiple-objective approaches, Fraser et al. [115] pro-
posed the use of non-functional criteria (e.g., length of a test suite) as
a secondary objective of the search. I.e., test suites are still optimised
for coverage, but when selecting which test suites should form the
new offspring, their approach prefers the shortest test suites to those
with the same coverage level but are longer. As shorter test suites
would require less memory and execution time, their approach im-
proves the performance of the search. Instead of length as a secondary
objective, Palomba et al. [147] proposed the optimisation of cohesion
(which measures the textual similarity within a test case) and coupling
(which measures the textual similarity between all tests within a test
suite). Besides improving cohesion and coupling, their approach also
increases the coverage achieved and produces shorter tests.

2.4.6 Seeding

One of the many parameters [148] that could influence the efficiency
of evolutionary algorithms is the initial population (as we empirically
evaluate in Chapter 4). Miraz et al. [149] proposed to initialise the
initial population with the best individuals of a randomly generated
population. A study conducted by Fraser et al. [150] concluded that
in the earlier steps of the search, seeding strategies — which exploits
previous related knowledge, e.g., the reuse of previously solutions
to seed the initial population, can lead to an overall improvement
of the final solutions. Rojas et al. [151] explored the seeding of 1)
constants extracted from the source code, and 2) values identified at
runtime during the execution of test cases. They found that seeding
can significantly improve the performance of the search.

2.4.7 Enhancing Search-based Software Testing with Symbolic Exe-
cution

Generating test inputs for software programs with loop structures
is not just a problem of SE approaches (as described in Section 2.3),
search-based approaches are also affected by the same problem. In
order to address the loop problem on search-based approaches, Bare-
sel et al. [139] included the dependencies of a single loop iteration on
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the evaluation of the fitness function. Tracey et al. [106] computed the
branch distance of each loop iteration and used the minimum branch
distance to compute the final fitness value.

Considering the main issues of DSE approaches (see Section 2.3.1),
e.g., no support for generating sequences of method calls to initialise
non primitive arguments [152], and the main issues of search-based
approaches, e.g., no sufficient guidance [118]; several works have pro-
posed the integration of SBST and DSE. Inkumsah et al. [153] pro-
posed an approach that combines SBST and DSE to overcome the
general weaknesses of both strategies and maximise code coverage.
On their approach, the evolutionary testing tool eToc [36] is used to
generate sequences of method calls and the DSE tool jCute [152] to
generate methods arguments.

Lakhotia et al. [154] presented a combination of DSE and SBST
using an Alternative Variable Method (AVM) [97], to overcome the
imprecision of constraint solvers to compute floating point numbers
used on DSE. AVM is an optimisation algorithm (like Hill Climb-
ing) where values (solutions) are increased/decreased one-by-one by
a delta value. If the search gets stuck, the algorithm restarts from a
random input. Recently, Galeotti et al. [155] proposed a hybrid ap-
proach that combines the best of SBST and DSE, which depending
on the search properties, DSE is adaptively used to satisfy coverage
goals that are difficult for SBST.

2.5 regression testing

“Yesterday, My Program Worked.
Today, It Does Not. Why?”

— Zeller, 1999 [156]

Usually, a software program is not developed on a single iteration.
Instead, it is developed over time and each version that is released is
the sum of all previous iterations. In each iteration, developers add
new functionalities to the software, remove deprecated or obsolete
functionalities, and address bugs that have been reported. However,
despite the fact that these changes aim to enhance the software, they
may also introduce unintended side-effects. If an existing test suite is
available — also know as regression test suite — it can be executed
to ensure that all existing functionalities (i.e., the ones before changes
are made) have not been affected by any new change. If any test case
passes before the changes are made but fails after, it may indicate that
a regression bug has been introduced or just that the failing test has
become obsolete (e.g., the tested functionality has been modified or
removed) and it has to be repaired to match the new requirements.
This testing process is known as regression testing and it has been
widely studied [157] and adopted by software engineers [158].
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As the software evolves over time, the number of regression test
cases tend to grow (as new test cases need to be created to ensure
new functionalities would still work as expected after future changes).
Therefore, executing all test cases every time a change is made on the
software can be very expensive. In order to reduce this cost, three
approaches have been proposed in the literature [157]: test case min-
imisation, selection, and prioritisation.

2.5.1 Test Case Minimisation, Selection, and Prioritisation

Test case minimisation [159] aims to identify and remove redundant
test cases. Most of the approaches proposed on test minimisation are
based on structural coverage [157]. For instance, Chvatal [160] pro-
posed the use of a greedy algorithm to identify the minimum set of
test cases that are required to cover most of the program. Although
the algorithm is efficient, the minimum set of tests may still include
some redundant ones. Suppose a program with three components
(e.g., statements, c1, c2, and c3) and a test suite with four test cases
(t1, t2, t3, and t4). t1 covers all components but c3, t2 covers c1, t3
covers c2, and t4 covers c3. As t1 is the test case that covers most of
the program, it is selected first. Then, t2, t3, and t4 are selected in or-
der since they all cover the same number of components. Although t1
is subsumed by the coverage of t2, t3, and t4, it is not considered re-
dundant. Harrold et al. [159] proposed an approach named Harrold-
Gupta-Soffa (HGS) which starts by selecting components that are cov-
ered by k test cases (k starts with one). Then, from all those k test
cases, it selects the one that covers more components (in case of a tie,
it chooses one at random). Finally, it excludes the components cov-
ered by the selected test, and repeats these steps until all components
have been covered, or if there is not any other test case left to select. A
potential risk shared by all minimisation techniques is the fact that a
test case that actually reveals a failure could end up being discarded.
An empirical study conducted by Rothermel et al. [161] has shown
that after minimising the set of tests, its effectiveness is reduced by
50% and sometimes even 100%, i.e., the minimum set of tests would
only able to detect half of the failures and sometimes would not even
able to detect any failure.

Test case selection [162] is very similar to test minimisation but
rather than removing redundant tests, it selects a subset of test cases
that need to be re-executed for a particular change. That is, test se-
lection takes into account the change that has been made to the soft-
ware and selects a set of test cases that are relevant to test it [157], i.e.,
which may help in revealing a regression fault. Rothermel et al. [163]
proposed an approach that creates two control flow graphs of a given
program: one before a change has been introduced, and one after
changing the program. Then, it compares both control flow graphs to
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identify each parts have been changed. Finally, it selects the test cases
that execute the changed code. Although their approach is considered
safe, i.e., it includes all test cases that are able to reveal a fault, if the
changed code does not introduce any difference to the original con-
trol flow graph, their approach would not be as effective as suggested.
Other approaches that explore other strategies such as symbolic exe-
cution [164], integer programming [165], and textual differences [166]
have also been proposed. However, their high computational cost may
limit their adoption in practice. A recent study has shown that selec-
tion techniques run less test cases than minimisation techniques, and
they are more effective at revealing any fault related to the changed
code [167].

Test case prioritisation [168] aims to reduce the cost of regression
testing by scheduling test cases in a specific order such that any ex-
isting fault is reveal as soon as possible. That is, instead of directly
reducing the number or the set of test cases that are executed as test
minimisation and selection, test prioritisation aims to reveal a regres-
sion as soon as possible. Rothermel et al. [21] empirically evaluated
several prioritisation techniques in addition to two random baseline
techniques. Their study reported that a technique named Fault Ex-
posing Potential (FEP) is the most effective of all techniques evalu-
ated. FEP is based on the ability of test cases at “killing” mutated
versions of the program under test. As we previously described, in
mutation testing different versions of the same program are created
by introducing small changes (e.g., changing > to <). These changes
(usually referred as mutants) are “alive” if undetected by any test
case, or “killed” once a test case detects the mutant. FEP repeatedly
selects the test case that kills the highest number of mutants that have
not already been killed by any other test case in the prioritised suite.
One of the downsides of this approach is that it is notoriously expen-
sive. In order to calculate which mutants are killed by which tests,
each mutant must be run against the entire test suite in isolation.
However, as the number of tests and mutants grow, the cost of per-
forming such mutation analysis increases dramatically. Li et al. [169]
compared the performance of different meta-heuristics techniques at
prioritising test cases. In their study they considered a hill climbing
algorithm, a genetic algorithm, and a greedy algorithm (and two vari-
ations of it). The study found that although a greedy algorithm can be
more effective at prioritising test cases, it is not significantly more ef-
fective than a genetic algorithm. Other test prioritisation approaches
include, but are not limited to scheduling test cases based on their
execution history [170], prioritisation based on the execution cost of
each test case [171], and model-based prioritisation techniques [172].
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2.5.2 Test Suite Maintenance

As a software program evolves over time, test cases do also
evolve [173]. Due to changes to the software, some test cases may
become obsolete (e.g., test cases that cover a functionality that no
longer exists) and should be removed, others may start to fail (e.g.,
requirements of a certain functionality have changed) and should be
repaired, and new test cases are created to, for example, validate a
new functionality, or increase coverage [174]. Analysing test cases that
become obsolete or start failing after a change was performed to the
software can be a very time consuming task, especially for a large
test suite [175]. For instance, a developer would have to determine
whether each failing test case is revealing a regression that needs to
be addressed or if it only needs to be repaired due to a recent change
to the software.

Daniel et al. [176] proposed the first automated technique to repair
failing test cases. Their technique (named ReAssert) starts by instru-
menting the test code and executing the failing test cases to identify
the location of the failures. Then, it applies one of the many strategies
proposed to repair each failure, e.g., replacing of literal values. This
process is repeated until one of the following three conditions is met:
(i) all failures have been repaired, (ii) there is not any suitable strategy
to repair a particular failure, or (iii) the maximum number of repairs
has been reached. The suggested repairs are based on the current be-
haviour of the software. Although in their study ReAssert was able to
repair 45% of all failures, its effects on test suite maintenance can be
minimal. Pinto et al. [174] reported that less than 10% of all test mod-
ifications involve repairing assertions only. Mirzaaghaei et al. [177]
proposed a technique to repair test cases that are no longer valid (i.e.,
tests that do not compile) due to changes in method signatures. Their
technique analyses the compilation errors of each test case to iden-
tify the broken method calls, and collects initialisation values during
the execution of the test case on the previous version of the program.
Then, it attempts to replace the broken method calls with valid ones
(using suitable values for each parameter). Although their technique
fixes method calls involved in the addition, deletion, or modification
of parameters, the technique however does not support the addition
of method calls, which is a common type of change required to repair
broken test cases [174].

2.5.3 Test Suite Augmentation

According to a study conducted by Pinto et al. [174], after the soft-
ware is changed, a large number of test cases need to be created to ex-
ercise the changed code, as the existing ones may not be able to exer-
cise it. This activity of adding new test cases is referred to as test suite
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augmentation and several techniques have been explored to automate
it. For instance, some test suite augmentation techniques aim to re-
store code coverage in test suites after the software is changed by pro-
ducing new tests for new behaviour [68], while other approaches ex-
plicitly try to exercise changed code to reveal differences introduced
by the changes [178, 179].

Orso et al. [178] proposed a technique named BERT which aims to
identify behavioural differences between two versions of a software
program through dynamic analysis. BERT starts by creating a large
set of automatically generated test cases that exercise the modified
code. Then, it executes each test case on the previous version of the
software and on the current version to identify any difference in the
behaviour of each test. Finally, it analyses the identified differences
and presents them to the user. Although, in their study, BERT man-
aged to find regression faults between two versions of a software
program, its effectiveness is limited to the automatically generated
test cases. The approach proposed by Santelices et al. [179] performs
symbolic execution on two different versions of the software program
(one before the software is changed, and one right after it is modified),
to help developers at augmenting any existing test suite with new
test cases. That is, rather than automatically generating tests (as the
technique proposed by Orso et al. [178]), this approach only provides
guidelines on how to augment a test suite.

2.5.4 The Oracle Problem

A common assumption when studying automated test generation
techniques is that these techniques are applied in a regression test-
ing scenario: Tests are generated automatically with assertions on
the current state of the software, and they are executed repeatedly
throughout software evolution to check if software modifications lead
to undesired side-effects, which are revealed by failing tests. An alter-
native, but much less studied, scenario is the use of automated test
generation to find bugs in the current version of the program. The
challenge with this scenario is that it requires an explicit test oracle:
Unless there is some sort of specification (e.g., code contracts), some-
one has to manually decide for every single generated test whether
it reveals undesired behaviour, and thus a bug [180]. The lack of ora-
cles or automated techniques to generated them is known as the oracle
problem [181].

In software testing of object-oriented programs, test oracles are rep-
resented as test assertions that check properties of objects created as
part of the test. Providing such test oracles for a generated test can
be a difficult task: Generated tests may not represent realistic scenar-
ios and may not be as nicely readable as human written tests. Test
generation tools also tend to produce large numbers of tests. Thus, it
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may not be feasible for a human developer to annotate all generated
tests for a program under test with a test oracle. Although several
approaches have been proposed to address the oracle problem, it still
remains an open problem [181].

In order to generate oracles that are easier to understand by a hu-
man developer as opposed to oracles randomly generated, McMinn et
al. [182] proposed the extraction of knowledge from the source-code
and documentation of a software program. Afshan et al. [143] pro-
posed an approach based on natural language. The main intuition is
that if a test case with a readable test oracle starts to fail due to future
changes, a developer would be able to easily understand the testing
goal and judge whether the test is correct (i.e., it reveals a a bug in the
program) or it needs to be fixed. Harman et al. [183] proposed an ap-
proach to reduce the number of generated test cases to overcome the
oracle cost problem without losing code coverage. Fraser et al. [20]
proposed a mutation-based approach to select a subset of oracles per
test case. Their approach generates all possible oracles for each test
case, and then filters out oracles that are weak at killing mutated ver-
sions of the program under test. Pastore et al. [184] proposed the use
of crowdsourcing to address the oracle problem. In their approach,
users are asked whether an oracle (that reflects the current behaviour
of the program) matches the behaviour described in the documenta-
tion. If not, a bug has been found.

2.6 the evosuite unit test generation

tool

In this thesis, we use the state of the art automatic test generation tool
for Java programs, EvoSuite [9]. EvoSuite works at Java bytecode
level (so it can also be used on third-party systems with no available
source code), and it is fully automated: it does not require manually
written test drivers or parameterised unit tests. For example, when
EvoSuite is used from its Eclipse plugin, a user just needs to select
a class, and tests are generated with a mouse-click. EvoSuite is a
tool that was mature enough to win a recent competition on unit test
generation tools [16, 185–188].

EvoSuite has been extended in several ways. For example, a hy-
brid approach has been proposed [155] to combine the best of SBST
and DSE to generate unit test suites for individual Java classes. Evo-
Suite uses a genetic algorithm in which it evolves whole test suites,
which has been shown to be more efficient at achieving code coverage
than generating tests individually [103, 113]. Depending on the search
properties, DSE is adaptively used to satisfy coverage goals that are
difficult for SBST. To achieve even higher coverage, several optimisa-
tions [189] have been implemented on EvoSuite. For example, proper
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handling of test length bloat [115], smart seeding strategies [150, 151,
190], support for Java code that uses Java Generics [191], support of
Java Enterprise Edition features [192], and the creation of mock ob-
jects to cover target goals that cannot be easily covered without mock-
ing [193].

Once unit tests with high code coverage are generated, EvoSuite

applies various post-processing steps. First, it applies minimisation in
order to optimise the size of the resulting test suite both in terms of to-
tal number of lines of code and in number of unit tests. Minimisation
works as described in Algorithm 3. For each coverage goal defined by
the selected criterion, a test that covers this goal is selected from the
generated test suite. Then, on a copy of that test, all statements that
do not contribute to satisfaction of the goal are successively removed.
When minimising for multiple criteria (as required in Chapter 3), the
order in which each criterion is evaluated may influence the result-
ing minimised test suite. In particular, if criterion C1 subsumes crite-
rion C2, then minimising for criterion C2 first and then for C1 may
lead to tests being added during minimisation for C2, but made re-
dundant later, by tests added during minimisation for C1. EvoSuite

handles this problem with a second minimisation pass where a fi-
nal minimised test suite with no redundant tests is produced. Sec-
ond, it adds test assertions that capture the current behaviour of the
tested classes. To select the most effective assertions, EvoSuite uses
mutation analysis [20]. EvoSuite can generate test suites covering
different kinds of coverage criteria, such as line and branch cover-
age (described in Sections 2.4.5.1 and 2.4.5.2 respectively), weak and
strong mutation testing [103] (described in Section 2.4.5.3), and it can
also aim at triggering undeclared exceptions [130]. This latter feature
made it possible to automatically find thousands of faults in several
open source projects [130, 194] — in Chapter 3 we present and inte-
grate a few other coverage criteria. EvoSuite can be integrated into a
programmer’s development environment with its Eclipse plugin, or
it can be used on the command line — in Chapter 7 we augment the
number of development environments supported by EvoSuite.

2.7 summary

In this chapter, we surveyed the literature that is most related to our
main contributions or that is in line with the research topics studied
in this thesis.

In particular, we revisited the problem of software testing, the test-
ing concepts used in this thesis, and how developers usually esti-
mate the effectiveness of manually-written test cases. Moreover, we
reviewed the literature of three different approaches on testing: ran-
dom testing, symbolic execution, and search-based software testing.
Although each approach has advantages and disadvantages, search-
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Algorithm 3 Test case minimisation algorithm
Input: Test Suite T , Coverage Goals G
Output: Minimised Test Suite M

1: coveredGoals← { }

2: T ′ ← [ ]

3: for all g ∈ G do
4: if g ∈ coveredGoals then
5: next // if ’g’ has been covered, there is no need to search

for yet another test case to cover it
6: end if
7: // Step 1 collect all test cases that cover goal ’g’
8: testsThatCoverGoal← [ ]

9: for all t ∈ T do
10: if isGoalCoveredByTest(g, t) then
11: testsThatCoverGoal← testsThatCoverGoal∪ {t}
12: end if
13: end for
14: SortTestsByAscFitnessValue(testsThatCoverGoal)

15: // Step 2 minimise the best test case that covers goal ’g’
16: if testsThatCoverGoal 6= ∅ then
17: t← testsThatCoverGoal[0]

18: for i = NumStatements(t) to 0 do
19: copy← Copy(t)

20: if RemoveStatement(i, t) fails then
21: t← copy // deletion of statement ’i’ has failed due

to, e.g., other statement(s) that depend on that one
22: else
23: fa← CalculateFitnessValue(g, t)
24: fb← GetFitnessValue(g, copy)
25: if fa > fb then
26: t ← copy // shorter version is worse (assumes

a fitness function has been minimised)
27: end if
28: end if
29: end for
30: coveredGoals← coveredGoals∪GetCoveredGoals(t)

31: T ′ ← T ′ ∪ {t}
32: end if
33: end for
34: // Step 3 additional pass to remove redundant test cases
35: M← RemoveRedundantTestCases(T ′,G)
36: return M

based has been the most successful approach on automatic test gen-
eration. Furthermore, we reviewed approaches to reduce the effort of
testing a software program that is, typically, developed in a continu-
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Algorithm 4 Remove redundant test cases
Input: Test Suite T , Coverage Goals G
Output: Minimised Test Suite M

1: covGoals← { }

2: T ′ ← { }

3: for all t ∈ Reverse(T) do // assumes subsuming test cases have
been inserted in the back, therefore those are consider first

4: if |covGoals| = |G| then
5: stop // as all goals have been covered, there is no need to

consider any other test case
6: end if
7: for all g ∈ G∧ g /∈ covGoals do
8: if isGoalCoveredByTest(g, t) then
9: // test case ’t’ covers at least one goal that has not been

covered by any other test case
10: covGoals← covGoals∪GetCoveredGoals(t)

11: T ′ ← T ′ ∪ {t}
12: stop // as ’covGoals’ already contains all goals covered

by ’t’, there is no need to search for another goal(s) covered by ’t’
13: end if
14: end for
15: end for
16: return Reverse(T ′)

ous way. In particular, we looked at techniques that efficiently execute
existing test cases to verify the correctness of the software after it is
modified, and techniques to maintain and augment any existing test
suite. Finally, we provided an overview of the automatic test genera-
tion tool used in this thesis.

Although much work has been done in the automation of soft-
ware testing, in particular on automatic generation of test cases using
search-based techniques, the applicability of search-based test genera-
tion techniques in practice is still fundamentally limited. For instance,
which criteria should test generation use in order to produce the best
test suites? Which evolutionary algorithms are more effective at gen-
erating test cases with high coverage? How to scale up search-based
unit test generation to software projects consisting of large numbers
of components, evolving and changing frequently over time? In order
to answer these fundamental questions, in the following chapters we
will enhance search-based software testing with several criteria to im-
prove the search guidance of a test generator, we will evaluate which
evolutionary algorithm performs best, and we will investigate several
strategies to automatically generate test cases for evolving software.
We will also present a set of plugins for the EvoSuite tool that will
allow developers to automatically generate test cases from different
development environments.
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C O M B I N I N G M U LT I P L E C O V E R A G E C R I T E R I A
I N S E A R C H - B A S E D U N I T T E S T G E N E R AT I O N

abstract

Automated test generation techniques typically aim at maximising
coverage of well-established structural criteria such as statement or
branch coverage. In practice, generating tests only for one specific cri-
terion may not be sufficient when testing object oriented classes, as
standard structural coverage criteria do not fully capture the proper-
ties developers may desire of their unit test suites. For example, cover-
ing a large number of statements could be easily achieved by just call-
ing the main method of a class; yet, a good unit test suite would con-
sist of smaller unit tests invoking individual methods, and checking
return values and states with test assertions. There are several differ-
ent properties that test suites should exhibit, and a search-based test
generator could easily be extended with additional fitness functions
to capture these properties. However, does search-based testing scale
to combinations of multiple criteria, and what is the effect on the size
and coverage of the resulting test suites? To answer these questions,
we extended the EvoSuite unit test generation tool to support com-
binations of multiple test criteria, defined and implemented several
different criteria, and applied combinations of criteria to a sample of
650 open source Java classes. Our experiments suggest that optimis-
ing for several criteria at the same time is feasible without increasing
computational costs: When combining nine different criteria, we ob-
served an average decrease of only 0.4% for the constituent coverage
criteria, while the test suites may grow up to 70%.

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Whole Test Suite Generation for Multiple Criteria . 50

3.3 Experimental Evaluation . . . . . . . . . . . . . . . 54

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 introduction

To support developers in creating unit test suites for object-oriented
classes, automated tools can produce small and effective sets of unit
tests. Test generation is typically guided by structural coverage crite-
ria; for example, the search-based unit test generation tool EvoSuite
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public class ArrayIntList extends RandomAccessIntList

implements IntList, Serializable {

public int set(int index, int element) {

checkRange(index);

incrModCount();

int oldval = _data[index];
_data[index] = element;

return oldval;

}

}

(a) Source code excerpt.

@Test

public void test9() throws Throwable {

ArrayIntList arrayIntList0 = new ArrayIntList();

// Undeclared exception!

try {

int int0 = arrayIntList0.set(200, 200);

fail("Expecting IndexOutOfBoundsException");

} catch(IndexOutOfBoundsException e) {

// Should be at least 0 and less than 0, found 200

}

}

(b) Test case generated by EvoSuite.

Figure 3.1: This example shows how EvoSuite covers method set of the
class ArrayIntList: the method is called, but statement coverage
is not achieved.

by default generates test suites optimised for branch coverage [9], and
these tests can achieve higher code coverage than manually written
ones [195]. However, although manual testers often check the cover-
age of their unit tests, they are usually not guided by it in creating
their test suites. In contrast, automated tools are only guided by code
coverage, and do not take into account how this coverage is achieved.
As a result, automatically generated unit tests are fundamentally dif-
ferent to manually written ones, and may not satisfy the expectations
of developers, regardless of coverage benefit [196].

For example, consider the excerpt of class ArrayIntList from the
Apache Commons Primitives project in Figure 3.1a. Applying Evo-
Suite results in a test suite including the test case in Figure 3.1b: The
test calls set, but with parameters that do not pass the input vali-
dation by checkRange, and so an exception is thrown. Nevertheless,
EvoSuite believes set is covered with this test, and adds no further
tests, thus not even satisfying statement coverage in the method. The
reason is that EvoSuite follows common practice in bytecode-based
coverage analysis, and only checks if branching statements evaluated
to true and false [197].
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public class Complex {

public Complex log() {

if (isNaN) {

return NaN;

}

return createComplex(FastMath.log(abs()),

FastMath.atan2(imaginary, real));

}

public Complex pow(double x) {

return this.log().multiply(x).exp();

}

...

}

(a) Source code excerpt.

@Test

public void test1() throws Throwable {

Complex complex0 = new Complex(Double.NaN);

Complex complex1 = complex0.pow(Double.NaN);

assertEquals(Double.NaN, complex1.getArgument(),0.01D);

}

@Test

public void test2() throws Throwable {

Complex complex0 = Complex.ZERO;

Complex complex1 = complex0.pow(complex0);

assertFalse(complex1.isInfinite());

assertTrue(complex1.isNaN());

}

(b) Test cases generated by EvoSuite.

Figure 3.2: This example shows how EvoSuite covers method log, even
though there is no test that directly calls the method.

To fully cover the set method, one would also need to aim at cov-
ering all instructions. However, when optimising test suites to cover
branches and instructions, automated techniques may find undesired
ways to satisfy the target criteria. For example, consider the excerpt of
class Complex from the Apache Commons Math project shown in Fig-
ure 3.2a: EvoSuite succeeds to cover method log, but because log is
called by pow, in the end often only tests calling pow (see Figure 3.2b)
are retained, which makes it hard to check the behaviour of log inde-
pendently (e.g., with test assertions on the return value of log), or to
debug problems caused by faults in log. Thus, a good test suite needs
to exhibit properties beyond those captured by individual structural
coverage criteria.

In this chapter, we define different criteria and their fitness func-
tions to guide search-based test suite generation, and investigate the
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effects of combining these during test generation. In particular, we in-
vestigate the effects on (i) the size of resulting test sets, and (ii) on the
effectiveness of the test generators used at optimising multiple crite-
ria. To investigate these effects, we performed a set of experiments on
a sample of 650 open source classes. In summary, the contributions
of this chapter are as follows:

– Identification of additional criteria to guide test suite genera-
tion.

– Implementation of these criteria as fitness functions for search-
based test suite optimisation.

– An empirical study of the effects of a multiple criteria optimisa-
tion on effectiveness, convergence, and test suite size.

Our experiments suggest that optimising for several criteria at the
same time is feasible without increasing computational costs, or sac-
rificing coverage of the constituent criteria. The increase in size de-
pends on the combined criteria; for example, optimising for line and
branch coverage instead of just line coverage increases test suites by
only 10% in size, while optimising for nine different criteria leads to
an increase of 70% in size. The effects of the combination of criteria
on the coverage of the constituent criteria are minor; for criteria with
fine-grained fitness functions the overall coverage may be reduced
slightly (0.4% in our experiments), while criteria with coarse fitness
functions (e.g., method coverage) may benefit from the combination
with other criteria.

The chapter is structured as follows. Section 3.2 formally defines
six fitness functions to guide test suite generation and presents a sim-
ple strategy to combine them. Section 3.3 presents our experimental
setup, the research questions this chapter is aiming to address, and
discusses the results of our experiments. Thereafter, Section 3.4 dis-
cusses the most relevant related work and Section 3.5 summarises the
chapter.

3.2 whole test suite generation for multi-
ple criteria

In principle, the combination of multiple criteria is independent of
the underlying test generation approach. For example, dynamic sym-
bolic execution can generate test suites for any coverage criteria as
by-product of the path exploration [198]. However, our initial usage
scenario lies in unit testing for object oriented classes, an area where
search-based approaches have been shown to perform well. In search-
based testing, the test generation problem is cast as a search problem,
such that efficient meta-heuristic search algorithms can be applied to



3.2 whole test suite generation for multiple criteria 51

create tests. In the context of whole test suite generation [113], which
refers to the generation of test suites rather than individual test cases,
the search algorithm starts with a population of random test suites,
and then evolves these using standard evolutionary operators [113].
The evolution is guided by a fitness function that estimates how close
a candidate solution is to the optimal solution; i.e., 100% coverage in
coverage-driven test generation.

3.2.1 Fitness Functions

In search-based test suite generation, a fitness function measures how
good a test suite is with respect to the search optimisation objective,
which is usually defined according to a test coverage criterion. Impor-
tantly, a fitness function usually also provides additional search guid-
ance leading to satisfaction of the goals. For example, just checking in
the fitness function whether a coverage target is achieved would not
give any guidance to help covering it.

3.2.1.1 Method Coverage

Method Coverage is the most basic criterion for classes and requires
that all methods in the Class Under Test (CUT) are executed by a
test suite at least once, either via a direct call from a unit test or via
indirect calls.

3.2.1.2 Top-level Method Coverage

For regression test suites it is important that each public method is
also invoked directly (see Figure 3.2). Top-level Method Coverage re-
quires that all methods are covered by a test suite such that a call to
the method appears as a statement in a test case.

3.2.1.3 No-exception Top-level Method Coverage

In practice, classes often consist of many short methods with sim-
ple control flow. Often, a generated test suite achieves high levels of
coverage by calling these simple methods in an invalid state or with
invalid parameters (see Figure 3.1). To avoid this, No-exception Top-
level Method Coverage requires that all methods are covered by a
test suite via direct invocations from the tests and considering only
normal-terminating executions (i.e., no exception).

The fitness functions for Method Coverage, Top-level Method Cov-
erage and No-exception Top-level Method Coverage are discrete and
thus have no possible guidance. Fitness values are simply calculated
by counting the methods that have been covered by a test suite. Let
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TotalMethods be the set of all public methods in the CUT and Covered-
Methods be the set of methods covered by the test suite, then:

fcrit(Suite) = | TotalMethods |− | CoveredMethodscrit |

3.2.1.4 Direct Branch Coverage

When a test case covers a branch in a public method indirectly, i.e.,
without directly invoking the method that contains the branch, it
is more difficult to understand how the test relates to the branch
it covers (see Figure 3.2). Anecdotal evidence, from previous work
with EvoSuite, also indicates that developers dislike tests that cover
branches indirectly, because they are harder to understand and to
extend with assertions [195]. Direct Branch Coverage requires each
branch in a public method of the CUT to be covered by a direct call
from a unit test, but makes no restriction on branches in private meth-
ods. The fitness function is the same as the Branch Coverage fitness
function, but only methods directly invoked by the test cases are con-
sidered for the fitness and coverage computation of branches in pub-
lic methods.

3.2.1.5 Output Coverage

Class ArrayIntList from Figure 3.1 has a method size that simply re-
turns the value of a member variable capturing the size of the internal
array; class Complex from Figure 3.2 has methods isNaN or isInfinite
returning boolean member values. Such methods are known as ob-
servers or inspectors, and method, line, or branch coverage are all iden-
tical for such methods. Developers in this case sometimes write unit
tests to cover not only in the input values of methods, but also in
the output (return) values they produce; indeed output diversity can
help improve the fault detection capability [199].

To account for output uniqueness and diversity, the following func-
tion maps method return types to abstract values that serve as output
coverage goals:

output(Type) =



{true, false} if Type ≡ Boolean

{−, 0,+} if Type ≡ Number

{alphabetical,digit, ∗} if Type ≡ Char

{null, 6= null} otherwise

A unit test suite satisfies the Output Coverage criterion only if
for each public method M in the CUT and for each Vabst ∈
output(type(M)), there is at least one unit test whose execution con-
tains a call to method M for which the concrete return value is char-
acterised by the abstract value Vabst.
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The fitness function for the Output Coverage criterion is then de-
fined as:

fOC(Suite) =
∑
g∈G

ν(do(g, Suite))

where G is the total set of output goals for the CUT and do(g, Suite) is
an output distance function that takes as input a goal g = 〈M,Vabst〉:

do(g, Suite) =



0 if g is covered by at least one test,

ν(dnum(g, Suite)) if type(M) ≡ Number and g is not

covered,

1 otherwise.

In the case of methods declaring numeric return types, the search
algorithm is guided with normalised numeric distances (dnum). For
example, if a call to a method m with integer return type is observed
in an execution trace and its return value is 5 (positive integer), the
goal 〈m,+〉 has been covered, and the distances 5 and 6 are computed
for goals 〈m, 0〉 and 〈m,−〉, respectively.

3.2.1.6 Exception Coverage

One of the most interesting aspects of test suites that is not captured
by standard coverage criteria is the occurrence of run-time errors, also
known as exceptions. If exceptions are directly thrown in the CUTs
with a throw statement, those will be retained in the final test suites
if for example we optimise for line coverage. However, this might not
be the case if exceptions are unintended (e.g., a null-pointer exception
when calling a method on a null instance) or if thrown in the body of
external methods called by the CUT. Unfortunately, it is not possible
to know ahead of time the total number of feasible undeclared excep-
tions (e.g., null-pointer exceptions), in particular as the CUT could
use custom exceptions that extend the ones in the Java API.

As a coverage criterion, we consider all possible exceptions in each
method of the CUT. However, in contrast to the other criteria, it can-
not be defined with a percentage (e.g., we cannot say a test suite
covers 42% of the possible exceptions). We rather use the sum of all
unique exceptions found per CUT method as a metric to maximise.
The fitness function for Exception Coverage is thus also discrete, and
is calculated in terms of the number of exceptions NE, explicit and
implicit, that have been raised in the execution of all the tests in the
suite:

fEC(Suite) =
1

1+NE

Tracey et al. [105] were the first to present a search-based approach
able to optimise test cases towards raising exceptions in order to ex-
ercise structural elements of the exception handler. Experiments on
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seven simple programs reported that a search-based approach could
1) generate test cases that are able to raise almost all the exception
conditions in each program, and 2) fully cover all branches of the
exception handling code.

3.2.2 Combining Fitness Functions

All criteria considered in this chapter are non-conflicting: we can al-
ways add new tests to an existing suite to increase the coverage of
a criterion without decreasing the coverage of the others. However,
with limited time it may be necessary to balance the criteria, e.g., by
prioritising weaker ones to avoid over-fitting for just some of the crite-
ria involved. Thus, multi-objective optimisation algorithms based on
Pareto dominance are less suitable than a linear combination of the
different objectives, and we can define a combined fitness function
for a set of n non-conflicting individual fitness functions f1 . . . fn as:
fcomp =

∑n
i=1wi× fi, where w1 . . . wn are weights assigned to each

individual function which allow for prioritisation of the fitness func-
tions involved in the composition. Given enough time, a combined
fitness search is expected to have the same result for each involved
non-conflicting fitness function as if they were optimised for individ-
ually.

For some of the fitness functions defined above, a natural par-
tial order exists. For instance, Method Coverage subsumes Top-level
Method Coverage. The intuition is that we first want to cover all meth-
ods, independently of whether they are invoked directly from a test
case statement or not. In turn, Top-level Method Coverage subsumes
No-Exception Top-level Method Coverage, that is, covering all meth-
ods with direct calls from test cases is more general than covering all
methods with direct calls from test cases which do not raise any ex-
ception. However, there is no natural order between other functions
like for instance Output Coverage and Weak Mutation. In this chap-
ter, we arbitrarily assign wi = 1 for all i and leave the question of
what are optimal wi values for future work.

3.3 experimental evaluation

In order to better understand the effects of combining multiple cov-
erage criteria, we empirically aim to answer the following research
questions:

RQ1: What are the effects of adding a second coverage criterion on
test suite size and coverage?

RQ2: How does combining of multiple coverage criteria influence the
test suite size?
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RQ3: Does combining multiple coverage criteria lead to worse perfor-
mance of the constituent criteria?

RQ4: How does coverage vary with increasing search budget?

3.3.1 Experimental Setup

To answer our research questions, we performed two different studies.
The first one try to clarify if the number of test cases generated is
influenced by combining more than one test criterion. The second
aims to identify if a multiple criteria approach influences the global
coverage of the test suite.

3.3.1.1 Unit test generation tool

We used EvoSuite [9], which already provides support for several cri-
teria, in particular: Branch Coverage (Section 2.4.5.2), and Weak Mu-
tation (Section 2.4.5.3). For this study, we implemented all the criteria
described in Section 3.2.1 in the EvoSuite [9] tool. See Section 2.6 for
more information about EvoSuite.

3.3.1.2 Subject Selection

We used the SF110 corpus [200] of Java classes for our experimental
evaluation. SF110 consists of more than 20,000 classes in 110 projects;
running experiments on all classes would require an infeasibly large
amount of resources. Hence, we decided to select a stratified random
sample of 650 classes. That is, we constructed the sample iteratively
such that in each iteration we first selected a project at random, and
then from that project we selected a class and added it to the sample.
As a result, the sample contains classes from all 110 projects, totalling
63,191 lines of code.

3.3.1.3 Experiment Procedure

For each selected class, we ran EvoSuite with ten different configura-
tions: 1) Combination of all fitness functions defined in Section 3.2.1,
Branch Coverage, and Weak Mutation defined in Sections 2.4.5.2
and 2.4.5.3 respectively. 2) Only Line Coverage (baseline). 3-10) For
each fitness function f defined in Section 3.2.1 (except Line Cover-
age) and also Branch Coverage, and Weak Mutation, a fitness func-
tion combining f and Line Coverage. Combining the other criteria
with Line Coverage instead of using each of them in isolation al-
lows a more objective evaluation, since not all the fitness functions for
these other criteria can provide guidance to the search on their own.
Each configuration was run using two different search budgets for the
search: a small search budget of 2 minutes (it has been shown [200]
that 2 minutes is sufficient for the search in EvoSuite to converge on
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average), and a larger search budget of 10 minutes to study the effect
of the search budget on the coverage achieved. Test suite minimisa-
tion was enabled, so that all gathered statistics refer to the final test
suites EvoSuite normally produces(please refer to Section 2.6 for an
explanation of how EvoSuite’s minimisation works). To take the ran-
domness of the genetic algorithm into account, we repeated the two
minutes experiments 40 times, and the 10 minute experiments five
times. All experiments were executed on the University of Sheffield
Iceberg HPC Cluster [201].

3.3.1.4 Experiment Analysis

We used coverage as the main measurement of effectiveness, for all
the test criteria under study. Furthermore, we also analysed the size of
the resulting test suites; as the number of unit tests could be mislead-
ing, we analysed the size of a test suite in terms of its total number of
statements. Statistical analysis follows the guidelines discussed by Ar-
curi et al. [202]: We used the Vargha-Delaney Âab [203] to evaluate
if a particular configuration a used on experiments performed better
than another configuration b. E.g, an Âab value of 0.5 means equal
performance between configurations; when Âab is less than 0.5, the
first configuration (a) is worse; and when Âab is more than 0.5, the
second configuration (b) is worse. Furthermore, we used Wilcoxon-
Mann-Whitney statistical symmetry test to assess the performance
of different experiments. As a configuration could be better than an-
other (i.e., Âab > 0.5) on some classes, but worse on other classes
(i.e., Âab < 0.5), the statistical test checks if effect sizes (one per class)
are symmetric around 0.5. I.e., it checks if there are as many classes
in which a configuration gets better results as there are classes in
which it gets worse results. As suggested by Fraser et al. [103], the
Wilcoxon-Mann-Whitney symmetry test should only be used on a
statistical sample of subjects, as it is the SF110 corpus [200] we used
in our experiments. Finally, we also report the standard deviation σ
and confidence intervals of averaged values using bootstrapping at
95% significance level.

3.3.1.5 Threats to Validity

To counter internal validity, we have carefully tested our framework,
and we repeated each experiment several times and followed rigorous
statistical procedures in the analysis. To cope with possible threats
to external validity, the SF110 corpus was employed as case study,
which is a collection of 100 Java projects randomly selected from
SourceForge and the top 10 most popular projects [200]. We used
only EvoSuite for experiments and did not compare with other tools;
however, at least in terms of the generated tests EvoSuite is similar to
other unit test generation tools. Threats to construct validity might re-
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Table 3.1: Coverage results for each configuration, average of all runs for
all CUTs. Size is measured in number of statements in the final
minimised test suites.

Criteria Lines Branches D. Branches Methods Top Methods M. No Exc. Exceptions Mutation Output Size

ALL 0.78 0.75 0.75 0.87 0.90 0.88 1.35 0.75 0.64 38.01

Lines 0.78 0.73 0.22 0.81 0.74 0.71 0.45 0.69 0.27 22.25

L. & Branches 0.78 0.77 0.24 0.81 0.74 0.72 0.47 0.70 0.27 24.92

L. & D. Branches 0.78 0.76 0.76 0.87 0.85 0.82 0.48 0.70 0.27 26.73

L. & Methods 0.79 0.73 0.22 0.87 0.80 0.77 0.46 0.70 0.27 22.33

L. & Top Methods 0.78 0.73 0.22 0.87 0.89 0.86 0.48 0.70 0.27 24.89

L. & M. No Exc. 0.78 0.73 0.23 0.87 0.89 0.88 0.40 0.69 0.27 25.26

L. & Exceptions 0.78 0.72 0.22 0.81 0.78 0.70 1.93 0.70 0.27 28.00

L. & Mutation 0.79 0.75 0.23 0.81 0.75 0.72 0.50 0.76 0.27 27.45

L. & Output 0.77 0.71 0.21 0.80 0.77 0.75 0.36 0.69 0.64 23.98

Standard deviation (σ)

ALL 0.33 0.35 0.34 0.30 0.27 0.28 1.24 0.35 0.32 46.37

Lines 0.33 0.35 0.27 0.34 0.34 0.34 0.61 0.35 0.44 30.79

L. & Branches 0.33 0.35 0.30 0.34 0.34 0.34 0.62 0.35 0.44 35.25

L. & D. Branches 0.33 0.35 0.34 0.30 0.30 0.31 0.63 0.35 0.44 36.86

L. & Methods 0.33 0.35 0.27 0.30 0.31 0.32 0.62 0.35 0.44 31.47

L. & Top Methods 0.33 0.35 0.27 0.30 0.27 0.29 0.62 0.35 0.44 34.42

L. & M. No Exc. 0.33 0.35 0.27 0.30 0.28 0.29 0.54 0.35 0.44 34.96

L. & Exceptions 0.33 0.35 0.27 0.34 0.32 0.34 1.90 0.35 0.44 37.02

L. & Mutation 0.33 0.35 0.29 0.33 0.33 0.34 0.66 0.35 0.44 38.22

L. & Output 0.33 0.35 0.27 0.34 0.34 0.34 0.46 0.35 0.32 28.30

Confidence Intervals (CI) at 95% significance level

ALL 0.75,0.80 0.72,0.78 0.72,0.78 0.85,0.90 0.88,0.92 0.86,0.91 0.61,0.74 0.72,0.78 0.62,0.67 34.59,41.81

Lines 0.76,0.81 0.70,0.75 0.20,0.24 0.79,0.84 0.71,0.76 0.69,0.74 0.19,0.26 0.66,0.72 0.23,0.30 20.04,24.78

L. & Branches 0.76,0.81 0.74,0.79 0.22,0.27 0.79,0.84 0.72,0.77 0.69,0.74 0.20,0.27 0.68,0.73 0.23,0.30 22.31,27.68

L. & D. Branches 0.76,0.81 0.73,0.79 0.73,0.79 0.85,0.89 0.83,0.87 0.80,0.85 0.20,0.27 0.67,0.73 0.23,0.30 24.13,30.24

L. & Methods 0.76,0.81 0.70,0.75 0.20,0.24 0.85,0.89 0.77,0.82 0.74,0.79 0.19,0.26 0.67,0.72 0.23,0.30 20.23,24.95

L. & Top Methods 0.76,0.81 0.70,0.75 0.20,0.25 0.85,0.89 0.87,0.92 0.84,0.89 0.21,0.27 0.67,0.72 0.23,0.30 22.40,27.69

L. & M. No Exc. 0.76,0.81 0.70,0.75 0.21,0.25 0.85,0.90 0.87,0.91 0.86,0.90 0.17,0.23 0.67,0.72 0.23,0.30 22.51,28.16

L. & Exceptions 0.76,0.81 0.70,0.75 0.20,0.24 0.79,0.84 0.76,0.81 0.68,0.73 0.85,1.07 0.67,0.72 0.23,0.30 25.47,31.28

L. & Mutation 0.76,0.81 0.72,0.78 0.21,0.26 0.79,0.84 0.72,0.77 0.70,0.75 0.21,0.29 0.73,0.78 0.23,0.30 24.71,30.69

L. & Output 0.74,0.79 0.68,0.74 0.19,0.24 0.78,0.83 0.74,0.80 0.72,0.78 0.15,0.20 0.66,0.71 0.61,0.66 21.99,26.26

sult from our focus on coverage; for example, this does not take into
account how difficult it will be to manually evaluate the test cases
for writing assert statements (i.e., checking the correctness of the out-
puts). Although this is beyond the scope of this thesis, we have been
investigating this problem [141].

3.3.2 Results and Discussion

In this section we present and discuss the results of each research
question.

3.3.2.1 RQ1: What are the effects of adding a second coverage criterion on
test suite size and coverage?

Table 3.1 shows the results of the experiments when using a two min-
utes timeout for the search. Considering line coverage as baseline,
adding a further coverage criterion does not increase test suite size
by a large amount. For example, adding branch coverage only in-
creases average test suite size from 22.25 statements to 24.92 (a rela-
tive 24.92−22.25

22.25 = 12% increase). The largest increase is for the Excep-
tion Coverage testing criterion, which adds a further 28.00 - 22.25 =
5.75 statements on average to the test suites.
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Regarding coverage of all criteria combined, a basic criterion like
line coverage can achieve reasonable results. For instance, when line
coverage is explicitly combined with branch coverage, the number of
covered branches only increases 4% (from 73% to 77%). For other cri-
teria, improvements are higher. For example, we obtain a 88 - 71 =
17% coverage improvement of No-exception Top-level Method Cover-
age, although with the need of 25.26 - 22.25 = 3.01 more statements.
Of particular interest is the case of output coverage, where any com-
bination of criteria (but output) achieves the same output coverage
(27%), and the explicit optimisation of output achieves a higher cov-
erage of 64% (37% increase). It is fair to assume that a method of a
class under test could be fully covered at line level by a single test
case and only exercise an output goal. In such case, we could say that
the output coverage achieved was a simple side effect of optimising
for line coverage. However, when output diversity is explicit targeted
(i.e., “All” and “Line & Output” configurations), the search would try
to satisfy the line criterion and exercise all possible output goals at the
same time. Assuming a test case exercises one single feature (as the
test cases generated by EvoSuite), exercising different output goals
explicit require more test cases: ‘Line” configuration generates a test
suite with 22.25 statements on average, and “Line & Output” config-
uration generates slightly larger test suites with 23.98 statements on
average. The Weak Mutation criterion reports a higher mutation score
than reported by previous studies [20, 103]. Our conjecture is that the
high mutation score achieved in our study is due to the different
set of classes used. The Direct Branch Coverage criterion shows the
largest increase (76 - 22 = 54%), which confirms that in the traditional
approach code is often covered through indirect calls; this increase
comes at the cost of 26.73 - 22.25 = 4.48 statements on average.

RQ1: In our experiments, adding a second criterion increased test suites
size by 14%, and coverage by 20% over line coverage test suites.

3.3.2.2 RQ2: How does combining of multiple coverage criteria influence
the test suite size?

When combining all criteria together, test suite sizes increase sub-
stantially, from 22.25 to 38.01 statements. However, we argue that the
resulting test suites could still be manageable for developers: 1) their
size is still less than twice the size of the average baseline test suite;
and 2) the increase of 15.76 (38.01 - 22.25) statements on average is
also less than the sum of the increases observed for each criterion in
isolation (25.56). This shows that the criteria are related and lead to
coincidental coverage, where tests covering one particular goal may
lead to coverage of other goals. Nevertheless, a controlled experiment
with real developers to access whether the size of the resulting test
suites is or is not manageable needs to be addressed in future work.
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Table 3.2: For each criterion, we compare the “All” configuration for that cri-
terion with the configuration for that criterion and line coverage.
Averaged effect sizes are reported with p-values of the statistical
tests of symmetry around µ = 0.5, σ and CI report the standard
deviation and confidence intervals using bootstrapping at 95% sig-
nificance level of the effect size, respectively.

Criterion All Just Line & Criterion Avg. Â12 σ CI p-value

Line 0.78 0.78 0.47 0.10 [0.46,0.48] 6 0.001

Branch 0.75 0.77 0.47 0.11 [0.46,0.47] 6 0.001

Direct Branch 0.75 0.76 0.47 0.10 [0.47,0.48] 6 0.001

Exception 1.35 1.93 0.43 0.15 [0.42,0.44] 6 0.001

Method 0.87 0.87 0.50 0.04 [0.49,0.50] 0.015

Top Method 0.90 0.89 0.50 0.05 [0.50,0.51] 0.025

Method No Exc. 0.88 0.88 0.51 0.08 [0.51,0.52] 6 0.001

Mutation 0.75 0.76 0.46 0.10 [0.46,0.47] 6 0.001

Output 0.64 0.64 0.51 0.09 [0.51,0.52] 6 0.001

RQ2: In our experiments, combining all nine criteria increased test suites
size by 70%.

3.3.2.3 RQ3: Does combining multiple coverage criteria lead to worse per-
formance of the constituent criteria?

When combining different criteria together, the test generation be-
comes more complicated. Given the same amount of time, it could
even happen that for some criteria we would get lower coverage com-
pared to just targeting those criteria in isolation. For example, the
class Auswahlfeld in the SF110 project nutzenportfolio consists of
29 methods, each consisting of only a single line. There are only 15

mutants, and when optimising for line coverage and weak mutation
all mutations are easily covered within two minutes. However, when
using all criteria, then the number of additional test goals based on
the many methods (many of which return primitive types) means that
on average after two minutes of test generation only seven mutations
are covered.

On the other hand, it is conceivable that coverage criteria can
“help each other”, in the sense that they might smoothen the search
landscape. For example, the NewPassEventAction class from the
jhandballmoves project in SF110 has two complex methods with
nested branches, and the if statements have complex expressions
with up to four conditions. When optimising method calls without
exceptions, after two minutes the constructor is the only method
covered without exceptions, as the search problem is of the type of
needle-in-the-haystack problem. However, if optimising for all crite-
ria, then branch coverage helps reaching test cases where both meth-
ods are called without triggering any exception.
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Table 3.2 shows the comparison of the “All” configuration on each
criterion with the configuration that optimises line coverage and each
particular criterion. For each class, we calculated the Vargha-Delaney
Âab effect size [202]. For each configuration comparison, we calcu-
lated the average Âab and ran a Wilcoxon-Mann-Whitney symmetry
test on µ = 0.5, to see if a configuration leads to better or worse results
on a statistically higher number of classes.

There is strong statistical difference in all the comparisons except
Method Coverage and Top-level Method Coverage, which seem to
consist of methods that are either trivially covered by all criteria,
or never covered. For No-exception Top-level Method Coverage and
Output Coverage there is a small increase in coverage; this is likely
because these criteria provide little guidance and benefit from the
combination with criteria with better guidance. For Exception Cover-
age targeting all criteria decreases the average number of exceptions
substantially from 1.93 to 1.35, which may be caused by the search
focusing more on valid executions related to branches and mutants,
whereas without that the search becomes more random. For all other
criteria there is a decrease in coverage, although very small (6 2%).

RQ3: Combining multiple criteria leads to a 0.4% coverage decrease on
average; criteria with coarse fitness functions can benefit more from the

combination than criteria with finer grained guidance.

3.3.2.4 RQ4: How does coverage vary with increasing search budget?

Figure 3.3 compares the performance of the “All” configuration with
the ones of Line Coverage combined with each further criterion. Per-
formance is measured with different coverage criteria in each subplot
based on the type of comparison. For example, Branch Coverage is
used as performance metric when “All” is compared with “Line &
Branch” configuration, whereas Method Coverage is used as perfor-
mance metric when “All” is compared with “Line & Method”. Perfor-
mance is reported through time, from one minute to ten. The vertical
y axes are scaled between the minimum and maximum value each
metric obtained.

Given enough time, one could expect that the performance of “All”
in each metric would become maximised and equal to just generating
data for that criterion alone. Figure 3.3 shows that for the majority of
criteria the performance of the “All” configuration remains slightly
below the more focused search, and for Exception Coverage the more
focused search even improves over time. For Output Coverage both
configurations seem to converge around ten minutes and for Method
Coverage the “All” configuration even takes a small lead. Overall,
these results suggest that 10 minutes might not be a sufficient time
interval to see convergence for all criteria – in fact, further computa-
tion, i.e., an even larger search budget than 10 minutes, may allow
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Figure 3.3: Time analysis, per minute, for each criterion for the “All” config-
uration compared with just optimising Line Coverage together
with each of those criteria, one at a time.

the underlying evolutionary algorithm to perform even better, as the
coverage achieved has not flattened out. There might also be side-
effects between the combination of criteria in the “All” configuration
that generate fitness plateaus in the search landscape. Another possi-
ble conjecture is that, because the search in EvoSuite minimises size
as a secondary objective, over time the amount of exploration in the
search space will be reduced, making it more difficult to hit addi-
tional targets that are not closely related to what is already covered.
This could in principle be overcome by keeping an archive of already
covered goals and matching tests, and letting the fitness function fo-
cus on uncovered goals.

RQ4: The influence of combining criteria is not limited to early phases of
the search but persists over longer time, and the combination does not

catch up with focused search within ten minutes.
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3.4 related work

As we discussed in Section 2.1.2, coverage criteria are well established
to estimate the quality of test sets [18], and combinations of criteria
have been considered in the context of regression testing [204]. For ex-
ample, using multiple criteria can improve the fault detection ability
after minimisation [205], and Yoo et al. [206, 207] combined coverage
criteria with non-functional aspects such as execution time during
minimisation. Non-functional aspects have also been considered dur-
ing test generation; for example, Harman et al. [146] generated tests
optimised for branch coverage and memory consumption. In contrast
to this approach, we combine different non-conflicting functional cri-
teria, and thus do not require specialised multi-objective optimisation
algorithms.

3.5 summary

Although structural coverage criteria are well established in order to
evaluate existing test cases [18], they may be less suitable in order to
guide test generation. As with any optimisation problem, an impre-
cise formulation of the optimisation goal will lead to unexpected re-
sults: For example, although it is generally desirable that a reasonable
test suite covers all statements of a Class Under Test (CUT), the re-
verse may not hold — not every test suite that executes all statements
is reasonable. Additionally to this, developers do not only write test
cases that maximise the number of, e.g., covered branches, they also
try to write tests that cover other aspects of the program under test,
e.g., exceptions. Hence, the desirable properties of a test suite are in-
deed multi-faceted.

In this chapter, we have tried to identify standard criteria used in
practice as well as functional aspects that are not captured by stan-
dard structural coverage criteria, but are still common practice in ob-
ject oriented unit testing. We have implemented a search-based ap-
proach to generate test suites optimised for combinations of these
criteria. Experiments with a sample of open source Java classes have
shown that such a combination does neither mean that the test suite
sizes become unreasonable large, nor that the test generation perfor-
mance suffers. In fact some aspects can even benefit from the combi-
nation, for example when search guidance in the case of search-based
test generation is only coarse.

Equipped with several coverage criteria and a simple approach to
optimise all of them, in the following chapter we perform an empir-
ical study to identify which evolutionary algorithm is more effective
at optimising (i) a single criterion (i.e., branch coverage), and (ii) the
combination of all criteria evaluated in this chapter.
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abstract

Evolutionary algorithms have been shown to be effective at generat-
ing unit test suites optimised for code coverage. While many aspects
of these algorithms have been evaluated in detail (e.g., the length of
generated tests), the influence of the specific algorithms has to date
seen less attention in the literature. As it is theoretically impossible to
design an algorithm that is best on all possible problems, a common
approach in software engineering problems is to first try a Genetic Al-
gorithm, and only afterwards try to refine it or compare it with other
algorithms to see if any of them is better suited to address the specific
problem. This is particularly important in test generation, since recent
work suggests that random search may in practice be equally effective,
whereas the reformulation as a many-objective problem seems to be
more effective. To shed light on the influence of the search algorithms,
we empirically evaluate seven evolutionary algorithms and two ran-
dom approaches on a selection of non-trivial open source classes. Our
study shows that the use of a test archive makes evolutionary algo-
rithms clearly better than random testing, and it confirms that the
many-objective search is the most effective.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Empirical Study . . . . . . . . . . . . . . . . . . . . 65
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4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 introduction

Search-based testing has been successfully applied to generating unit
test suites optimised for code coverage on object-oriented classes. A
popular approach is to use evolutionary algorithms where the indi-
viduals of the search population are whole test suites, and the op-
timisation goal is to find a test suite that achieves maximum code
coverage [113]. Tools like EvoSuite [9] have been shown to be effec-
tive in achieving code coverage on different types of software [200],
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and there is evidence that developers can benefit from using such
tools [134, 196].

Since the original introduction of whole test suite generation [113],
many different techniques have been introduced to improve perfor-
mance even further and to get a better understanding of the current
limitations. For example, the insufficient guidance provided by basic
coverage based fitness functions has been shown to cause evolution-
ary algorithms to often be equally effective as random search [118].
As we presented in Chapter 3, optimisation no longer focuses on in-
dividual coverage criteria, but combinations of criteria [131, 134]. To
cope with the resulting larger number of coverage goals, whole test
suite optimisation has been re-formulated as a many-objective opti-
misation problem [126], and evolutionary search can be supported
with archives [117] that keep track of useful solutions encountered
throughout the search. In the context of these developments, one as-
pect of whole test suite generation remains largely unexplored: What
is the influence of different evolutionary algorithms applied to evolve
test suites?

In this chapter, we aim to shed light on the influence of the different
evolutionary algorithms in whole test suite generation, to find out
whether the choice of algorithm is important, and which one should
be used. As we previously discussed in Section 2.4, although it is
impossible to comprehensively cover all existing algorithms, in this
chapter we evaluate common variants of evolutionary algorithms for
test suite optimisation such as Standard GA, Monotonic GA, Steady
State GA, 1+(λ, λ) GA, µ+λ EA, MOSA, DynaMOSA, Random Search
and Random Testing. By using a large set of complex Java classes as
case study, and the EvoSuite [9] search-based test generation tool, we
specifically investigate:

RQ1: Which evolutionary algorithm works best when using a test
archive for partial solutions?

RQ2: How does evolutionary search compare to random search and
random testing?

RQ3: How does evolution of whole test suites compare to many-
objective optimisation of test cases?

We investigate each of these questions in the light of individual and
multiple coverage criteria as optimisation objectives, and we study
the influence of the search budget. Our results show that in most
cases a simple µ+λ EA is better than other, more complex algorithms.
In most cases, the variants of EAs and GAs are also clearly better
than random search and random testing, when a test archive is used.
Finally, we confirm that many-objective search achieves higher branch
coverage, even in the case of optimisation for multiple criteria.

The chapter is organised as follows. First, we detail our experimen-
tal setup in Section 4.2. We describe the classes under test used in
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our study, our experiment procedure, and threats to validity inherent
to this study. Thereafter, we answer the three research questions we
enumerated earlier. In Section 4.4 we compare our work to relevant
related work done in this topic. Finally, we summarise the chapter
in Section 4.5.

4.2 empirical study

In order to evaluate the influence of the evolutionary algorithm on
test suite generation, we conducted an empirical study. In this section,
we describe the experimental setup as well as results.

4.2.1 Experimental Setup

4.2.1.1 Selection of Classes Under Test

A key factor of studying evolutionary algorithms on automatic test
generation is the selection of classes under test. As many open source
classes, for example contained in the SF110 [200] corpus, are trivially
simple [118] and any algorithm easily covers each class fully not al-
lowing us to make a comparison between algorithms, we used the
selection of non-trivial classes from the DynaMOSA study [128]. This
is a corpus of 117 open-source Java projects and 346 classes, selected
from four different benchmarks. The complexity of classes ranges
from 14 statements and 2 branches to 16,624 statements and 7,938

branches. The average number of statements is 1,109, and the average
number of branches is 259.

4.2.1.2 Unit Test Generation Tool

We used EvoSuite [9], which already provides support for most of
the search algorithms used this study, and would allow an unbiased
comparison of the algorithms as the underlying implementation of
the tool is the same across all algorithms. By default, EvoSuite uses
a Monotonic GA described in Section 2.4.4.2. It also provides a Stan-
dard (Section 2.4.4.1) and Steady State GA (Section 2.4.4.3), Random
search and Random testing (Section 2.4.2) and, more recently, MOSA
and DynaMOSA (Section 2.4.4.6). For this study, we added the 1+(λ,
λ) GA and the µ+ λ EA (Sections 2.4.4.4 and 2.4.4.5, respectively) to
EvoSuite. All evolutionary algorithms use a test archive.

4.2.1.3 Experiment Procedure

We performed two experiments to assess the performance of six evo-
lutionary algorithms (described in Sections 2.4.2 and 2.4.4.1 to 2.4.4.6).
First, we conducted a tuning study to select the best population size
(µ) of four algorithms, number of mutations (λ) of 1+ (λ, λ) GA, and
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population size (µ) and number of mutations (λ) of µ+ λ EA, since
the performance of each EA can be influenced by the parameters
used [148]. Note that, Random-based approaches do not require any
tuning. Following the tuning study, we then conducted a larger study
to perform the comparison between search algorithms.

For both experiments we have four configurations: two search bud-
gets, EvoSuite’s default search budget (i.e., a small search budget) of
1 minute, and a larger search budget of 10 minutes to study the effect
of the search budget on the coverage of resulting test suites; single-
criterion optimisation (branch coverage) and multiple-criteria optimi-
sation1 (i.e., line, branch, exception, weak-mutation, output, method,
method-no-exception, and cbranch) [10]2. To account for the random-
ness of EAs, we repeated the one minute experiments 30 times, and
the 10 minutes experiments 10 times. All experiments were executed
on the University of Sheffield ShARC HPC Cluster [208].

For the tuning study, we randomly selected 10% (i.e., 34) of Dy-
naMOSA’s study classes [128]3 (with 15 to 1,707 branches, 227 on av-
erage) from 30 Java projects. This resulted in a total of 79,200 (59, 400
one minute configurations, and 19, 800 ten minutes configurations)
calls to EvoSuite and more than 175 days of CPU-time overall. For
the second experiment, we used the remaining 312 classes4 (346 total
- 34 used to tune each EA) from the DynaMOSA study [128]. Besides
the tuned µ and λ parameters, we used EvoSuite’s default parame-
ters [148].

4.2.1.4 Experiment Analysis

For any test suite generated by EvoSuite on any experimental con-
figuration we measure the coverage achieved on eight criteria, along-
side other metrics, such as the number of generated test cases, the
length of generated test suites, number of iterations of each EA, num-
ber of fitness evaluations. As described by Arcuri et al. [148] “easy”
branches are always covered independently of the parameter settings
used, and several others are just infeasible. Therefore, rather than us-
ing raw coverage values, we use relative coverage [148]: Given the
coverage of a class c in a run r, c(r), the best and worst coverage of c
in any run,max(c) andmin(c) respectively, a relative coverage (rc) can
be defined as c(r) − min(c)

max(c) − min(c) . If the best and worst coverage of c is
equal, i.e., max(c) == min(c), then rc is 1 (if range of c(r) is between
0 and 1) or 100 (if range of c(r) is between 0 and 100). In order to

1 At the time of writing this chapter, DynaMOSA did not support all the criteria used
by EvoSuite.

2 Top-level method fitness function has been excluded from our study as it is sub-
sumed by method-no-exception fitness function.

3 Class com.yahoo.platform.yui.compressor.YUICompressor was excluded from tun-
ing experiments due to a bug in EvoSuite.

4 Nine classes were discarded from the second experiment due to crashes of EvoSuite.
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statistically compare the performance of each EA we use the Vargha-
Delaney Â12 effect size, and the Wilcoxon-Mann-Whitney U-test with
a 95% confidence level. We also consider a relative average improvement
metric which, given two sets of coverage values: configuration A and
configuration B, can be defined as mean(A)−mean(B)

mean(B) . Furthermore,
we also consider the standard deviation σ and confidence intervals of
the coverage achieved by each EA using bootstrapping at 95% signif-
icance level.

4.2.1.5 Threats to Validity

The results reported in this chapter are limited to the number and
type of EAs used in the experiments. However, we believe these are
representative of state-of-art algorithms, and are sufficient in order
to demonstrate the influence of each algorithm on the problem. Al-
though we used a large number of different subjects (346 complex
classes from 117 open-source Java projects), also used by a previous
study [128] on test generation, our results may not generalise to other
subjects. The range of parameters used in the tuning experiments
was limited to only 4 values per EA. Although we used common or
reported as best values, different values might influence the perfor-
mance of each EA. The two search budgets used in the tuning experi-
ments and in the empirical study are based on EvoSuite’s defaults (1
minute), and used by previous studies to assess the performance of
EAs with a larger search budget (10 minutes) [10, 131].

4.2.2 Parameter Tuning

The execution of an EA requires a number of parameters to be set.
As there is not a single best configuration setting to solve all prob-
lems [114] in which an EA could be applied, a possible alternative
is to tune EA’s parameters for a specific problem at hand to find the
“best” ones. We largely rely on a previous tuning study [148] in which
default values were determined for most parameters of EvoSuite.
However, the main distinguishing factor between the algorithms we
are considering in this study are µ (i.e., the population size) and λ
(i.e., the number of mutations). In particular, we selected common
values used in previous studies and reported to be the best for each
EA:

– Population size of 10, 25, 50, and 100 for Standard GA, Mono-
tonic GA, SteadyState GA, MOSA, and DynaMOSA.

– λ size of 1, 8 [124], 25, and 50 for 1+ (λ, λ) GA.

– µ size of 1, 7 [209], 25, and 50, and λ size of 1, 7, 25, and 50 for
µ+ λ EA.
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Table 4.1: Best population / λ size of each EA per search budget, and single
and multiple criteria optimisation. “Br. Cov.” column reports the branch

coverage per EA, and column “Over. Cov.”, the overall coverage of a multiple-

criteria optimisation. σ and CI columns report the standard deviation and confi-

dence intervals, respectively, of the branch coverage per EA on single-criteria, and

the overall coverage per EA on multiple-criteria.

Branch Overall Avg. Better Worse
Algorithm |P| Cov. Cov. σ CI Â12 Â12 Â12

Search budget of 60 seconds – Single-criteria
Standard GA 10 0.83 — 0.21 [0.82,0.84] 0.52 0.75 0.24

Monotonic GA 25 0.83 — 0.20 [0.83,0.84] 0.52 0.76 0.32

Steady-State GA 100 0.81 — 0.22 [0.80,0.81] 0.50 0.72 0.32

1+ (λ, λ) GA 50 0.57 — 0.28 [0.56,0.58] 0.58 0.70 N/A
µ+ λ EA 1+7 0.84 — 0.21 [0.83,0.84] 0.55 0.74 0.21

MOSA 100 0.84 — 0.20 [0.84,0.85] 0.51 0.79 0.32

DynaMOSA 25 0.84 — 0.20 [0.84,0.85] 0.51 0.68 0.28

Search budget of 600 seconds – Single-criteria
Standard GA 100 0.86 — 0.19 [0.85,0.87] 0.50 0.84 0.21

Monotonic GA 100 0.87 — 0.19 [0.86,0.88] 0.53 0.83 0.22

Steady-State GA 10 0.85 — 0.20 [0.84,0.86] 0.51 0.80 0.23

1+ (λ, λ) GA 50 0.57 — 0.28 [0.56,0.59] 0.57 0.83 N/A
µ+ λ EA 50+50 0.85 — 0.19 [0.84,0.86] 0.49 0.84 0.12

MOSA 50 0.86 — 0.21 [0.85,0.88] 0.53 0.88 0.18

DynaMOSA 25 0.85 — 0.21 [0.84,0.87] 0.50 0.83 0.19

Search budget of 60 seconds – Multiple-criteria
Standard GA 100 0.78 0.88 0.14 [0.88,0.89] 0.52 0.75 0.23

Monotonic GA 100 0.78 0.88 0.14 [0.88,0.89] 0.52 0.77 0.21

Steady-State GA 100 0.74 0.86 0.14 [0.86,0.87] 0.53 0.75 0.27

1+ (λ, λ) GA 50 0.65 0.81 0.16 [0.81,0.82] 0.53 0.69 0.33

µ+ λ EA 1+7 0.79 0.89 0.13 [0.89,0.89] 0.56 0.76 0.28

MOSA 25 0.81 0.62 0.32 [0.61,0.63] 0.54 0.70 0.21

DynaMOSA — — — — — — — —

Search budget of 600 seconds – Multiple-criteria
Standard GA 25 0.84 0.93 0.09 [0.92,0.93] 0.51 0.76 0.23

Monotonic GA 25 0.84 0.92 0.08 [0.92,0.93] 0.52 0.80 0.24

Steady-State GA 25 0.79 0.90 0.10 [0.89,0.90] 0.51 0.79 0.26

1+ (λ, λ) GA 8 0.75 0.81 0.25 [0.79,0.83] 0.53 0.85 0.19

µ+ λ EA 1+1 0.85 0.92 0.09 [0.92,0.93] 0.53 0.86 0.22

MOSA 10 0.87 0.68 0.33 [0.66,0.70] 0.54 0.86 0.12

DynaMOSA — — — — — — — —

A N/A effect size means there is no other configuration that achieved a statistically
significantly higher coverage than the best configuration.

Thus, for Standard GA, Monotonic GA, SteadyState GA, MOSA, Dy-
naMOSA, and 1+ (λ, λ) GA there are 4 different configurations; for
µ+ λ, and as λ must be divisible by µ, there are 8 different configura-
tions (i.e., 1+ 1, 1+ 7, 1+ 25, 1+ 50, 7+ 7, 25+ 25, 25+ 50, 50+ 50);
i.e., a total of 32 different configurations.
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Table 4.2: Branch and overall coverage, standard deviation (σ), and confi-
dence intervals (CI) at 95% significance level per algorithm for a
search budget of 60 seconds.

Branch Overall
Algorithm Cov. σ CI Cov. σ CI

Search budget of 60 seconds – Single-criteria
Random search 0.78 0.26 [0.75,0.81] — — —
Random testing 0.72 0.30 [0.68,0.75] — — —

Standard GA 0.80 0.25 [0.77,0.83] — — —
Monotonic GA 0.82 0.23 [0.80,0.85] — — —

Steady-State GA 0.77 0.27 [0.74,0.80] — — —
1+ (λ, λ) GA 0.74 0.27 [0.71,0.77] — — —
µ+ λ EA 0.83 0.23 [0.80,0.86] — — —
MOSA 0.84 0.23 [0.82,0.87] — — —

DynaMOSA 0.85 0.22 [0.83,0.88] — — —

Search budget of 60 seconds – Multiple-criteria
Random search 0.76 0.24 [0.73,0.79] 0.65 0.21 [0.63,0.68]
Random testing 0.71 0.27 [0.68,0.74] 0.67 0.20 [0.64,0.69]

Standard GA 0.77 0.25 [0.75,0.80] 0.79 0.19 [0.77,0.82]
Monotonic GA 0.78 0.24 [0.75,0.81] 0.80 0.18 [0.78,0.82]

Steady-State GA 0.72 0.27 [0.69,0.75] 0.76 0.20 [0.74,0.78]
1+ (λ, λ) GA 0.53 0.30 [0.49,0.56] 0.70 0.18 [0.68,0.72]
µ+ λ EA 0.77 0.24 [0.74,0.79] 0.79 0.18 [0.77,0.81]
MOSA 0.80 0.22 [0.78,0.83] 0.58 0.33 [0.55,0.62]

DynaMOSA — — — — — —

To identify the best population size of each EA, we performed a
pairwise comparison of the coverage achieved by using any popula-
tion size. The population size that achieved a significantly higher cov-
erage more often was selected as the best. Table 4.1 shows that, for a
search budget of 60 seconds and single-criteria, the best population
size is different for almost all EAs (e.g., Standard GA works best with
a population size of 10, and MOSA with a population size of 100).
For a search budget of 600 seconds and multiple-criteria several EAs
share the same population size, for example, the best value for Stan-
dard GA, Monotonic GA and Steady-State GA on multiple-criteria is
25. Table 4.1 also reports the average effect size of the best parame-
ter value when compared to all possible parameter values; and the
effect size of pairwise comparisons in which the best parameter was
statistically significantly better/worse.
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Table 4.3: Branch and overall coverage, standard deviation (σ), and confi-
dence intervals (CI) at 95% significance level per algorithm for a
search budget of 600 seconds.

Branch Overall
Algorithm Cov. σ CI Cov. σ CI

Search budget of 600 seconds – Single-criteria
Random search 0.80 0.27 [0.77,0.83] — — —
Random testing 0.73 0.33 [0.69,0.77] — — —

Standard GA 0.87 0.22 [0.85,0.90] — — —
Monotonic GA 0.89 0.20 [0.87,0.92] — — —

Steady-State GA 0.86 0.23 [0.84,0.89] — — —
1+ (λ, λ) GA 0.77 0.23 [0.75,0.80] — — —
µ+ λ EA 0.90 0.19 [0.88,0.92] — — —
MOSA 0.90 0.19 [0.88,0.93] — — —

DynaMOSA 0.91 0.18 [0.89,0.93] — — —

Search budget of 600 seconds – Multiple-criteria
Random search 0.70 0.28 [0.67,0.73] 0.65 0.26 [0.62,0.67]
Random testing 0.72 0.30 [0.69,0.76] 0.74 0.22 [0.71,0.76]

Standard GA 0.84 0.22 [0.82,0.87] 0.85 0.19 [0.83,0.87]
Monotonic GA 0.85 0.20 [0.83,0.87] 0.85 0.18 [0.83,0.87]

Steady-State GA 0.72 0.29 [0.69,0.76] 0.79 0.21 [0.77,0.82]
1+ (λ, λ) GA 0.62 0.32 [0.58,0.65] 0.75 0.16 [0.74,0.77]
µ+ λ EA 0.87 0.19 [0.85,0.90] 0.86 0.18 [0.84,0.88]
MOSA 0.87 0.20 [0.84,0.89] 0.71 0.33 [0.67,0.75]

DynaMOSA — — — — — —

4.3 experimental results

Tables 4.2 and 4.3 summarises the results of the main experiment
described in the previous section. For each algorithm we report the
branch coverage achieved for single and multiple criteria, and the
overall coverage for multiple criteria. Tables 4.2 and 4.3 also reports
the standard deviation and confidence intervals (CI) of the coverage
achieved (either branch or overall coverage) using bootstrapping at
95% significance level.

4.3.1 RQ1 – Which evolutionary algorithm works best when using
a test archive for partial solutions?

Table 4.4 summarises the results of a pairwise tournament of all EAs.
An EA X is considered to be better than an EA Y if it performs statis-
tically significantly better on a higher number of comparisons, i.e., if
it achieves a statistically significantly higher coverage more often. As
there are 5 algorithms and 303 classes under test, we performed (5 -
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Table 4.4: Pairwise comparison of all evolutionary algorithms. “Better than”

and “Worse than” give the number of comparisons for which the best EA is sta-

tistically significantly (i.e., p-value< 0.05) better and worse, respectively. Columns

Â12 give the average effect size.

Tourn. Branch Overall Better Worse

Algorithm Position Cov. Cov. Â12 than Â12 than Â12

Search budget of 60 seconds – Single-criteria

Standard GA 3 0.80 — 0.52 223 / 1212 0.79 149 / 1212 0.25

Monotonic GA 2 0.82 — 0.56 299 / 1212 0.78 57 / 1212 0.27

Steady-State GA 4 0.77 — 0.42 112 / 1212 0.76 401 / 1212 0.19

1+ (λ, λ) GA 5 0.74 — 0.40 53 / 1212 0.73 432 / 1212 0.22

µ+ λ EA 1 0.83 — 0.60 387 / 1212 0.79 35 / 1212 0.26

Search budget of 600 seconds – Single-criteria

Standard GA 3 0.87 — 0.52 129 / 1212 0.87 96 / 1212 0.16

Monotonic GA 2 0.89 — 0.57 192 / 1212 0.89 20 / 1212 0.16

Steady-State GA 4 0.86 — 0.44 50 / 1212 0.80 217 / 1212 0.10

1+ (λ, λ) GA 5 0.77 — 0.39 14 / 1212 0.82 258 / 1212 0.13

µ+ λ EA 1 0.90 — 0.59 224 / 1212 0.88 18 / 1212 0.19

Search budget of 60 seconds – Multiple-criteria

Standard GA 2 0.77 0.79 0.62 473 / 1212 0.85 98 / 1212 0.20

Monotonic GA 1 0.78 0.80 0.62 470 / 1212 0.85 95 / 1212 0.21

Steady-State GA 4 0.72 0.76 0.43 233 / 1212 0.88 503 / 1212 0.19

1+ (λ, λ) GA 5 0.53 0.70 0.25 140 / 1212 0.86 896 / 1212 0.10

µ+ λ EA 3 0.77 0.79 0.59 493 / 1212 0.84 217 / 1212 0.19

Search budget of 600 seconds – Multiple-criteria

Standard GA 2 0.84 0.85 0.59 357 / 1212 0.93 112 / 1212 0.11

Monotonic GA 3 0.85 0.85 0.58 345 / 1212 0.93 125 / 1212 0.13

Steady-State GA 5 0.72 0.79 0.33 118 / 1212 0.94 566 / 1212 0.08

1+ (λ, λ) GA 4 0.62 0.75 0.35 254 / 1212 0.91 623 / 1212 0.05

µ+ λ EA 1 0.87 0.86 0.64 437 / 1212 0.93 85 / 1212 0.09

1) × 303 = 1,212 comparisons. For example, for a search budget of
60 seconds and single-criteria, 1+ (λ, λ) was statistically significantly
better than on 53 comparisons, while it was statistically significantly
worse on 432 comparisons out of 1,212 – which make it the worst
EA. On the other hand, µ + λ was the one that won more tourna-
ments (387) and lost less tournaments (just 35) – thus, being the best
EA for a search budget of 60 seconds and single-criteria, and for a
search budget of 600 seconds on single and multiple-criteria. While
it is ranked only third for 60 seconds search budget and multiple-
criteria, the coverage is only slightly lower compared to the higher
ranked algorithms (0.79 vs. 0.80), with an Â12 effect size of 0.59 aver-
aged over all comparisons.

RQ1: In 3 out of 4 configurations, µ+ λ EA is better than the other
considered evolutionary algorithms.
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Table 4.5: Comparison of evolutionary algorithms and two random-based
approaches: Random search and Random testing.

Branch Overall EA vs. Random search EA vs. Random testing

Algorithm Cov. Cov. Â12 p Rel. Impr. Â12 p Rel. Impr.

Search budget of 60 seconds – Single-criteria

Random search 0.78 — — — — — — —

Random testing 0.72 — — — — — — —

Standard GA 0.80 — 0.62 0.26 +15.9% 0.68 0.22 +62.4%

Monotonic GA 0.82 — 0.66 0.23 +21.9% 0.71 0.20 +68.9%

Steady-State GA 0.77 — 0.51 0.27 +2.9% 0.60 0.28 +37.8%

1+ (λ, λ) GA 0.74 — 0.50 0.32 +1.5% 0.58 0.34 +36.1%

µ+ λ EA 0.83 — 0.69 0.22 +23.5% 0.73 0.19 +71.8%

Search budget of 600 seconds – Single-criteria

Random search 0.80 — — — — — — —

Random testing 0.73 — — — — — — —

Standard GA 0.87 — 0.69 0.19 +29.0% 0.73 0.16 +116.0%

Monotonic GA 0.89 — 0.73 0.16 +35.2% 0.76 0.14 +122.0%

Steady-State GA 0.86 — 0.63 0.22 +20.9% 0.71 0.19 +97.3%

1+ (λ, λ) GA 0.77 — 0.57 0.39 +8.4% 0.63 0.38 +63.6%

µ+ λ EA 0.90 — 0.74 0.16 +36.5% 0.76 0.12 +128.7%

Search budget of 60 seconds – Multiple-criteria

Random search 0.76 0.65 — — — — — —

Random testing 0.71 0.67 — — — — — —

Standard GA 0.77 0.79 0.79 0.20 +36.2% 0.84 0.19 +26.7%

Monotonic GA 0.78 0.80 0.80 0.21 +37.6% 0.84 0.18 +28.5%

Steady-State GA 0.72 0.76 0.72 0.23 +29.6% 0.78 0.24 +18.8%

1+ (λ, λ) GA 0.53 0.70 0.62 0.26 +20.1% 0.62 0.39 +9.7%

µ+ λ EA 0.77 0.79 0.76 0.21 +35.9% 0.83 0.20 +25.8%

Search budget of 600 seconds – Multiple-criteria

Random search 0.70 0.65 — — — — — —

Random testing 0.72 0.74 — — — — — —

Standard GA 0.84 0.85 0.88 0.17 +64.0% 0.83 0.20 +28.0%

Monotonic GA 0.85 0.85 0.88 0.18 +64.8% 0.83 0.20 +28.7%

Steady-State GA 0.72 0.79 0.79 0.23 +51.4% 0.71 0.29 +17.6%

1+ (λ, λ) GA 0.62 0.75 0.79 0.30 +49.1% 0.72 0.40 +14.0%

µ+ λ EA 0.87 0.86 0.88 0.15 +66.1% 0.84 0.18 +30.6%

4.3.2 RQ2 – How does evolutionary search compare to random
search and random testing?

Table 4.5 compares the results of each EA with the two random-based
techniques, Random search and Random testing. Although Random
search performs better than Random testing on single-criteria, the
overall coverage in the multiple-criteria case is higher for Random
testing than Random search. Our conjecture is that, in the multiple-
criteria scenario, there are many more trivial coverage goals where
the fitness function provides no guidance (thus benefiting Random
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testing); in contrast, branch coverage goals seem to benefit from the
test archive when generating new individuals (thus benefiting Ran-
dom search).

On average, EAs achieve higher coverage (either branch coverage
on single-criteria or overall coverage on multiple-criteria) than Ran-
dom search and Random testing. For instance, for a search budget
of 600 seconds and single-criteria, Random search covers 80% of all
branches on average and µ+λ EA covers 90% (a relative improvement
of +36.5%). This result is different to the earlier study by Shamshiri
et al. [118], where Random testing achieved similar, and sometimes
higher coverage. Our conjecture is that the better performance of the
EAs in our evaluation is due to (1) the use of the test archive as sug-
gested by Rojas et al. [117], and (2) the use of more complex classes
in the experiment, as opposite to all classes from SF110 [200] cor-
pus which due to the simplicity of the majority of classes, the EAs
would be equally effective. Although different, our results corrobo-
rate Shamshiri et al. [118] findings that on classes where EAs benefit
of guidance, EAs are more successful than Random testing.

RQ2: Evolutionary algorithms (in particular µ+ λ EA) perform better
than random search and random testing.

4.3.3 RQ3 – How does evolution of whole test suites compare to
many-objective optimisation of test cases?

Table 4.6 compares each EA with the many-objective optimisation
techniques MOSA and DynaMOSA. Our results confirm and enhance
previous studies [126, 128] by evaluating four different EAs (i.e., Stan-
dard GA, Steady-State GA, 1+(λ, λ) GA, and µ+λ EA) in addition to
Monotonic GA, and show that MOSA and DynaMOSA perform bet-
ter at optimising test cases than any EA at optimising test suites for
single criteria. Although µ+ λ achieves a marginally higher average
coverage on single criteria (600 seconds) with a relative improvement
of +1.6%, it is still slightly worse than MOSA with an average effect
size of 0.49.

In the multiple-criteria scenario (in which we can only compare
to MOSA), MOSA performs better than any other EA at optimis-
ing branch coverage, but the overall coverage is substantially lower
compared to all other EAs. On the one hand, the lower overall cov-
erage is expected since MOSA is not efficient for very large sets of
coverage goals (this is what DynaMOSA addresses). However, the
fact that branch coverage is nevertheless higher is interesting. A pos-
sible conjecture is that this is due to MOSA’s slightly different fit-
ness function for branch coverage [126], which includes the approach
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Table 4.6: Comparison of evolutionary algorithms on whole test suites opti-
misation and many-objective optimisation algorithms of test cases.

Branch Overall EA vs. MOSA EA vs. DynaMOSA

Algorithm Cov. Cov. Â12 p Rel. Impr. Â12 p Rel. Impr.

Search budget of 60 seconds – Single-criteria

MOSA 0.84 — — — — — — —

DynaMOSA 0.85 — — — — — — —

Standard GA 0.80 — 0.39 0.27 -3.6% 0.37 0.28 -6.0%

Monotonic GA 0.82 — 0.43 0.26 -0.4% 0.41 0.28 -2.3%

Steady-State GA 0.77 — 0.30 0.19 -9.7% 0.28 0.19 -10.7%

1+ (λ, λ) GA 0.74 — 0.31 0.26 -12.5% 0.29 0.25 -14.3%

µ+ λ EA 0.83 — 0.46 0.28 +0.8% 0.44 0.29 -1.5%

Search budget of 600 seconds – Single-criteria

MOSA 0.90 — — — — — — —

DynaMOSA 0.91 — — — — — — —

Standard GA 0.87 — 0.42 0.24 -3.2% 0.40 0.23 -4.6%

Monotonic GA 0.89 — 0.47 0.24 +0.2% 0.44 0.23 -1.4%

Steady-State GA 0.86 — 0.38 0.22 -3.5% 0.36 0.21 -5.1%

1+ (λ, λ) GA 0.77 — 0.34 0.37 -14.3% 0.33 0.35 -15.6%

µ+ λ EA 0.90 — 0.49 0.22 +1.6% 0.47 0.23 -0.7%

Search budget of 60 seconds – Multiple-criteria

MOSA 0.80 0.58 — — — — — —

DynaMOSA — — — — — — — —

Standard GA 0.77 0.79 0.71 0.18 +8737.7% — — —

Monotonic GA 0.78 0.80 0.71 0.17 +9069.9% — — —

Steady-State GA 0.72 0.76 0.63 0.17 +9058.6% — — —

1+ (λ, λ) GA 0.53 0.70 0.59 0.21 +7941.9% — — —

µ+ λ EA 0.77 0.79 0.70 0.17 +9071.2% — — —

Search budget of 600 seconds – Multiple-criteria

MOSA 0.87 0.71 — — — — — —

DynaMOSA — — — — — — — —

Standard GA 0.84 0.85 0.64 0.19 +772.4% — — —

Monotonic GA 0.85 0.85 0.64 0.20 +773.4% — — —

Steady-State GA 0.72 0.79 0.52 0.19 +694.6% — — —

1+ (λ, λ) GA 0.62 0.75 0.56 0.27 +632.7% — — —

µ+ λ EA 0.87 0.86 0.67 0.18 +769.5% — — —

level (whereas whole test suite optimisation considers only branch
distances)5.

RQ3: MOSA improves over EAs for individual criteria; for
multiple-criteria it achieves higher branch coverage even though overall

coverage is lower.

5 Please refer to Sections 2.4.5.1 and 2.4.5.2 for a detailed explanation of branch dis-
tance and approach level, respectively.
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4.4 related work

Although a common approach in search-based testing is to use ge-
netic algorithms, numerous other algorithms have been proposed in
the domain of nature-inspired algorithms, as no algorithm can be best
on all domains [114].

Many researchers compared evolutionary algorithms to solve prob-
lems in domains outside software engineering [210–212]. Within
search-based software engineering, comparative studies have been
conducted in several domains such as discovery of software architec-
tures [213], pairwise testing of software product lines [214], or finding
subtle higher order mutants [215].

In the context of test data generation, Harman et al. [119] empiri-
cally compared GA, Random testing and Hill Climbing for structural
test data generation. While their results indicate that sophisticated
evolutionary algorithms can often be outperformed by simpler search
techniques, there are more complex scenarios, for which evolution-
ary algorithms are better suited. Ghani et al. [216] compared Simu-
lated Annealing (SA) and GA for the test data generation for Matlab
Simulink models, and their results show that GA performed slightly
better than SA. Sahin et al. [140] evaluated Particle Swarm Optimisa-
tion (PSO), Differential Evolution (DE), Artificial Bee Colony, Firefly
Algorithm and Random search algorithms on software test data gen-
eration benchmark problems, and concluded that some algorithms
performs better than others depending on the characteristics of the
problem. For example, ABC performs better when a larger number
of constraints is involved. They also concluded that Random search
is effective on easy problems, while it is not satisfactory on hard prob-
lems. Varshney et al. [217] proposed a DE-based approach to gener-
ate test data that cover data-flow coverage criteria, and compared
the proposed approach to Random search, GA and PSO with respect
to number of generations and average percentage coverage. Their re-
sults show that the proposed DE-based approach is comparable to
PSO and has better performance than Random search and GA. In
contrast to these studies, we consider unit test generation, which ar-
guably is a more complex scenario than test data generation, and in
particular local search algorithms are rarely applied.

Although often newly proposed algorithms are compared to ran-
dom search as a baseline (usually showing clear improvements), there
are some studies that show that random search can actually be very
efficient for test generation. In particular, Shamshiri et al. [118] com-
pared GA against Random search for generating test suites, and
found almost no difference between the coverage achieved by evolu-
tionary search compared to random search. They observed that GAs
covers more branches when standard fitness functions provide guid-
ance, but most branches of the analysed projects provided no such
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guidance. Similarly, Sahin et al. [140] showed that Random search is
effective on simple problems.

To the best of our knowledge, no study has been conducted to
evaluate several different evolutionary algorithms in a whole test
suite generation context and considering a large number of complex
classes. As can be seen from this overview of comparative studies, it
is far from obvious what the best algorithm is, since there are large
variations between different search problems.

4.5 summary

Although evolutionary algorithms are commonly applied for whole
test suite generation, there is a lack of evidence on the influence of
different algorithms. Our study yielded the following key results:

– The choice of algorithm can have a substantial influence on the
performance of whole test suite optimisation, hence tuning is
important. While EvoSuite provides tuned default values, these
values may not be optimal for different flavours of evolutionary
algorithms.

– EvoSuite’s default algorithm, a Monotonic GA, is an appro-
priate choice for EvoSuite’s default configuration (60 seconds
search budget, multiple criteria). However, for other search bud-
gets and optimisation goals, other algorithms such as a µ+λ EA
may be a better choice.

– Although previous studies showed little benefit of using a GA
over random testing, our study shows that on complex classes
and with a test archive, evolutionary algorithms are superior to
random testing and random search.

– The Many Objective Sorting Algorithm (MOSA) is superior to
whole test suite optimisation; it would be desirable to extend
EvoSuite so that DynaMOSA supports all coverage criteria.

Despite the fact we have provided evidence of which evolution-
ary algorithm achieves high coverage, an important question remains
open: Are test cases generated by the best evolutionary algorithm
found in our evaluation, i.e., MOSA, able to fulfil the purpose of test-
ing — finding faults in the software under test? In the next chapter
we study the effectiveness of test cases generated by MOSA and an ex-
tended version of MOSA (which besides coverage also optimises the
diversity of test cases) at detecting real faults, and helping developers
to find the location of the faulty code.
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abstract

Automatic unit test generation techniques usually aim to cover struc-
tural properties of the program under test, e.g., all program branches.
However, even if they exercise 100% of all lines/branches of the pro-
gram under test, automatically generated unit tests might not exhibit
properties one might desire, for example, ability to find faults. In this
chapter we extend a coverage based approach to test generation with
an additional non-functional criterion dubbed entropy, to improve the
ability of automatically generated tests at (i) triggering the faulty be-
haviour of a program under test, and (ii) reducing the human effort
of localising the root cause of a fault. An empirical evaluation on real
faults shows that test suites optimised for coverage and entropy are
more effective at revealing 4 out of 6 real faults, 25% more effective at
localising the root cause of each real fault, and 1.5% smaller than test
suites only optimised for coverage.
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5.1 introduction

As discussed and evaluated in the previous chapters, evolutionary
algorithms are very effective at generating unit test suites optimised
for code coverage. Our experiments in Chapter 3 have shown that
an evolutionary algorithm can optimise several coverage criteria at
the same time without sacrificing its performance, and in Chapter 4

we evaluated which evolutionary algorithm achieves the highest code
coverage on object-oriented programs. However, it has been recently
reported that (i) although automatically generated test cases are more
effective at achieving higher levels of coverage than manually written
test cases, they are not as easy to adopt by developers as one might
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think [196]; and (ii) although test suites with high coverage are more
likely to find faults [131], they are not necessarily more effective [218].

In order to increase the practicality of automatically generated test
cases, non-functional properties such as the length [113] of a test suite,
memory consumption [146], readability [141], or code quality [147]
have been explored. In this chapter we propose the integration of
a functional criterion such as branch coverage and a non-functional
metric called entropy [219, 220] to improve the ability of automatically
generated test cases at detecting and localising faults. In summary,
the contributions of this chapter are as follows:

– We propose an entropy-based metric effective at fault detection
and fault localisation.

– We integrate the proposed metric into the most effective evolu-
tionary algorithm for unit test generation, MOSA.

– We empirically evaluate the effectiveness of the proposed metric
at detecting and localising six real faults.

The results of our experiments showed strong statistical evidence
that optimising for coverage and entropy is more effective at revealing
4 out of 6 real faults, 25% more effective at localising the root cause of
each fault, and results in 1.5% smaller test suites than only optimising
for coverage.

The chapter is structured as follows. Section 5.3 defines entropy as
a fitness function and discusses different alternatives of integrating it
in unit test generation. Section 5.4 details the experimental setup and
discusses the results. Section 5.5 surveys the most relevant related
work and Section 5.6 summarises the chapter.

5.2 background

To illustrate that other criteria than coverage may need to be explored
to improve the diagnostic ability of automatically generated tests,
consider the example in Figure 5.1 which shows a variation of the
well-known triangle example [221]. There is a fault at statement c6:
method type declares the predicate b == a but the correct condition
should be b == c. The automatically generated test suite (T ) is com-
posed of five test cases (t1 – t5) which cover all lines, branches, and
functions of the source code. However, they are not able to trigger the
faulty condition and therefore not helpful at debugging and localis-
ing the faulty source code.

Suppose we have received a bug report for the Triangle class, what
could a human developer do to identify the faulty behaviour and lo-
calise the root cause of the failure? A typical approach to address a
software bug is to first write a test case that is able to reveal the faulty
behaviour, otherwise all statements of the source code would have to
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T

t1 t2 t3 t4 t5 t6 t7 t8 t9

public class Triangle { ...

int type(int a, int b, int c) {

c1 int type = SCALENE; 1 1 1 1 0 0 1 1 1

c2 if ((a==b) && (b==c)) 1 1 1 1 0 0 1 1 1

c3 type = EQUILATERAL; 1 0 0 0 0 0 0 1 0

c4 else if ((a*a) == ((b*b) + (c*c))) 0 1 1 1 0 0 1 0 1

c5 type = RIGHT; 0 0 1 0 0 0 1 0 0

c6 else if ((a==b) || (b==a)) /* FAULT */ 0 1 0 1 0 0 1 0 1

c7 type = ISOSCELES; 0 1 0 0 0 0 0 0 0

c8 return type; 1 1 1 1 0 0 1 1 1

}

double area(int a, int b, int c) {

c9 double s = (a+b+c)/2.0; 0 0 0 0 1 1 1 1 1

c10 return Math.sqrt(s*(s-a)*(s-b)*(s-c)); 0 0 0 0 1 1 1 1 1

}

}

Test case outcome (pass “P”, fail “F”) P P P P P P F P F

Figure 5.1: Triangle class adapted from [221] with tests and coverage ma-
trix; type classifies triangles based on the side lengths, and area
calculates the area of the triangle. Automatically generated test
suite T is not able to trigger the fault and therefore all statements
would have to be manually inspected in order to find the faulty
one. However, by augmenting T with four additional test cases
t6 t7, t8, t9, the faulty behaviour is detected and root cause of
the failure can be automatically localised.

be manually inspected. Then, to find the location of the faulty code,
a developer would need to manually debug the source code, which
could be very tedious as any combination of statements covered by a
triggering test is in theory faulty, or he/she could use an automated
fault localisation technique such as Spectrum-Based Fault Localisa-
tion (SBFL) [222] (one the most popular automated approaches to
assist developers in debugging).

5.2.1 Spectrum-Based Fault Localisation (SBFL)

SBFL is a popular automated approach to assist developers in debug-
ging [223–228]. It takes as input the code coverage information of a
given test suite, and produces a list of components (typically state-
ments) ranked in order of fault suspiciousness. Although the tech-
nique still has important known limitations [226], research in SBFL
has continuously advanced over the past few years and many of its
notorious initial limitations are no longer a problem. For instance, 1)
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it can identify multiple faults [229–232]; 2) it can aggregate faults scat-
tered across the code [229–232]; and 3) it can quantify confidence of
the diagnosis [227, 233].

Although many techniques have been proposed for automating the
process of locating the root-cause of observed failures [222], it has
been shown that Spectrum-based reasoning can achieve better diag-
nostic results (either on single-faults and multiple-faults) than other
spectrum-based approaches [229]. Spectrum-based reasoning is an ap-
proach to fault localisation founded on probability theory which uses
an abstraction of the software under test to generate a diagnostic. The
main principles underlying the technique are based on Model-Based
Diagnosis (MBD) [227, 230, 234–237], which uses logical reasoning to
find faults.

In this chapter, we consider a component to be a program state-
ment, without loss of generality. A fault candidate is a set of statements
that together explain a fault. Let the symbol C denote the set of source
code statements, the symbol D denote a set of fault candidates d each
consisting of a set of one or more statements that together explain a
fault. The set D = 〈{c1, c2, c3}〉 indicates that statements c1, c2, and c3
are simultaneously at fault, and no other. On the other hand, D = 〈{c1},
{c2}, {c3}〉 means that either c1, c2, or c3 is at fault.

The following subsections explain the two phases that comprises
spectrum-based reasoning: candidate generation and candidate rank-
ing.

5.2.2 Candidate Generation

In theory, there are 2M possible candidates that could be generated
for a software under test with M components (i.e., 2M = 210 = 1024

candidates for the toy example described in Figure 5.1). However, the
generation of all candidates may be ineffective when applied to large
and real software programs where the number of components (i.e.,
M) is usually high. In practice, not all candidates are valid: 1) each d
is considered valid if and only if every failing test execution involves
a component from d; 2) a candidate d is considered minimal if and
only if there is not any other d ′ ∈ D that is a subset of d.

The problem of finding the set of minimal candidates can be de-
fined in terms of the widely-known Minimal Hitting Set (MHS) prob-
lem [234]. However, being a NP-hard problem, the precise computa-
tion of MHS is highly demanding [238]. Thus, the usage of exhaus-
tive search algorithms may be prohibitive for real and large software
programs. In practice, previous research has found that the precise
computation of D is not necessary [239]. To solve the candidate gener-
ation problem in a reasonable amount of time, approaches that relax
the minimality constraint have been proposed [239]. Staccato [239]
is a low-cost heuristic for computing a relevant set of multiple-fault
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candidates. As all test cases in T pass (see Figure 5.1) and a bug has
been reported, Staccato yields a theoretical baseline diagnostic report
containing all statements in the program, i.e., D = 〈{c1}, {c2}, {c3}, {c4},
{c5}, {c6}, {c7}, {c8}, {c9}, {c10}〉. If on the other hand, we consider a test
suite T augmented with test cases t6, t7, t8, t9 (note that are two fail-
ing test cases: t7 and t9), Staccato would provide a more accurate
list of likely faulty candidates, i.e., D ′ = 〈{c1}, {c2}, {c4}, {c4}, {c6}, {c8},
{c9}, {c10}〉. Note that components c3, c5, and c7 are not considered
valid candidates because they have not been covered by both failing
test cases. Figure 5.2 shows a subset of all (valid and not valid) candi-
dates that could be generated for a test suite T augmented with test
cases t6, t7, t8, t9.

{ }

{1}

...

{2} {3} {4} {5} {6}

{1, 6} {2, 6} {3, 6} {4, 6} {5, 6}

{1, 5, 6} {2, 5, 6} {3, 5, 6} {4, 5, 6} {5, 6, 7}

{1, 5, 6, 7} {2, 5, 6, 7} {3, 5, 6, 7} {4, 5, 6, 7}

{1, 4, 5, 6, 7} {2, 4, 5, 6, 7} {3, 4, 5, 6, 7} {4, 5, 6, 7, 8}

{1, 4, 5, 6, 7, 8} {2, 4, 5, 6, 7, 8} {3, 4, 5, 6, 7, 8}

{1, 3, 4, 5, 6, 7, 8} {2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 4, 5, 6, 7, 8} {2, 3, 4, 5, 6, 7, 8, 9}

{1, 2, 3, 4, 5, 6, 7, 8, 9}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{2, 3, 4, 5, 6, 7, 8, 9, 10}

{2, 3, 4, 5, 6, 7, 8, 10}

{3, 4, 5, 6, 7, 8, 9} {3, 4, 5, 6, 7, 8, 10}

{4, 5, 6, 7, 8, 9} {4, 5, 6, 7, 8, 10}

{4, 5, 6, 7, 9} {4, 5, 6, 7, 10}

{5, 6, 7, 8} {5, 6, 7, 9} {5, 6, 7, 10}

{5, 6, 8} {5, 6, 9} {5, 6, 10}

{6, 7} {6, 8} {6, 9} {6, 10}

{7} {8} {9} {10}

Figure 5.2: Subset of all candidates for the toy example described in Fig-
ure 5.1. The candidates in a grey box are the ones considered as
valid minimal candidates for the test suite T augmented with test
cases t6, t7, t8, t9.

5.2.3 Candidate Ranking

The candidate generation phase may result in an extensive list of diag-
nosis candidates. However, as not all candidates have the same prob-
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ability of being the true fault explanation, techniques have been de-
vised to assign a probability to each diagnosis candidate d, so that
candidates more likely to be faulty could be inspected first.

The probability diagnosis of a candidate, Pr(d|obs), is computed as-
suming conditional independence of all components. An observation
obsi (i.e., test case) is a tuple composed of its coverage (ai, a column
in Figure 5.1) and its outcome (ei, pass or fail). Thus, the probability
of each candidate is calculated according to Bayes rules as

Pr(d|obs) = Pr(d) ·
∏

i∈1..|obs|

Pr(obsi|d)
Pr(obsi)

where Pr(obsi) represents the probability of the observed outcome,
independently of which diagnostic explanation is the correct one. The
value of Pr(obsi) is a normalising factor given by

Pr(obsi) =
∑
d∈D

Pr(obsi|d) · Pr(d)

Pr(d) estimates the probability of a candidate d being the true expla-
nation of the faulty behaviour. Assuming that any component fails
independently, the probability of a candidate d can be defined as

Pr(d) =
∏
j∈d

pj ·
∏

j∈M\d

(1− pj)

where pj is the priori probability of a component being at fault,
typically 1/1000 = 0.001, i.e., 1 fault for every 1000 Lines of Code
(LOC) [240]. Pr(obsi|d) represents the conditional probability of the
observed outcome ei produced by a test ti (i.e., obsi), assuming that
candidate d is the actual diagnosis

Pr(obsi|d) =


∏

j∈d∧aij=1
hj if ei = 0

1−
∏

j∈d∧aij=1
hj if otherwise

where, aij represents the coverage of the statement j when the test
i is executed. As the real values for hj are typically not available,
the values for hj ∈ [0, 1] are estimated by maximising Pr(obsi|d) us-
ing maximum likelihood estimation [229]. To solve the maximisation
problem, a simple gradient ascent procedure [241] (bounded within
the domain 0 < hj < 1) is applied.

As there is not any triggering test case in T (see Figure 5.1) and
a bug has been reported, it is reasonable to consider that any state-
ment is not more or less likely to be faulty than any other. Therefore,
each d ∈ D would have a probability of being faulty of Pr(d|obs) =
1/10 = 0.1 (assuming faults are uniformly distributed). However, if
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we consider the test suite T augmented with test cases t6, t7, t8, t9
(and therefore the set of candidates previously explained, D ′ = 〈{c1},
{c2}, {c4}, {c6}, {c8}, {c9}, {c10}〉), the procedure described above would be
applied as follows1

Pr(d ′1|obs) =

Pr(d ′1)︷ ︸︸ ︷
1

1000
·

Pr(obs|d ′1)︷ ︸︸ ︷
h1︸︷︷︸
t1

× h1︸︷︷︸
t2

× h1︸︷︷︸
t3

× h1︸︷︷︸
t4

× (1− h1)︸ ︷︷ ︸
t7

× h1︸︷︷︸
t8

× (1− h1)︸ ︷︷ ︸
t9

. . .

Pr(d ′4|obs) =

Pr(d ′4)︷ ︸︸ ︷
1

1000
·

Pr(obs|d ′4)︷ ︸︸ ︷
h6︸︷︷︸
t2

× h6︸︷︷︸
t4

× (1− h6)︸ ︷︷ ︸
t7

× (1− h6)︸ ︷︷ ︸
t9

. . .

Pr(d ′7|obs) =

Pr(d ′7)︷ ︸︸ ︷
1

1000
·

Pr(obs|d ′7)︷ ︸︸ ︷
h10︸︷︷︸
t5

× h10︸︷︷︸
t6

× (1− h10)︸ ︷︷ ︸
t7

× h10︸︷︷︸
t8

× (1− h10)︸ ︷︷ ︸
t9

By performing a maximum likelihood estimation, the value for each
Pr(d ′|obs) is as follows

Pr(d ′1|obs) = 0.04347826 (h1 = 0.01517357, see Figure 5.3a)

Pr(d ′2|obs) = 0.04347826 (h2 = 0.01517357)

Pr(d ′3|obs) = 0.17391300 (h4 = 0.03456000)

Pr(d ′4|obs) = 0.34782610 (h6 = 0.06250000, see Figure 5.3b)

Pr(d ′5|obs) = 0.04347826 (h8 = 0.01517357)

Pr(d ′6|obs) = 0.17391300 (h9 = 0.03456000)

Pr(d ′7|obs) = 0.17391300 (h10 = 0.03456000, see Figure 5.3c)

After computing the probabilities for each d ∈ D, the candidates
are ranked and shown to the user in descending order of probability
to the true fault explanation.

5.3 entropy as a non-functional crite-
rion for automated test generation

Given a diagnostic report D, ranked by the probability of each candi-
date being the true fault explanation, the uncertainty in the ranking
can be quantified using entropy, H(D) [219, 220] — a measure of un-
certainty in a random variable [242]. For instance, the value of H(D)

is maximum for the theoretical baseline diagnostic report generated

1 Although used, Pr(obsi) factor has been omitted as it is identical for all d ′ ∈ D ′.
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Figure 5.3: Optimisation of hj values.

in the previous section, D = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1},
because all elements in the set share the same probability of being
faulty and therefore they cannot be distinguished from one another.
The minimum ideal value for H is zero, in which case all elements
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in the set can be distinguished from one another. As there are in the-
ory 2M different ways of representing the whole set C, the theoretical
maximum value of entropy is log2(M), where M is the number of
statements. So, H(D) can be defined as

H(D) = −
∑
dk∈D

Pr(dk) · log2(Pr(dk)), 0 6 H 6 log2(M)

thus, the entropy value of the test suite T from Figure 5.1 is

H(D) = −10×
(
0.1 · log2(0.1)

)
= 3.322

which corresponds to the maximum value. This means that the rank-
ing suffers considerably from uncertainty, and we cannot distinguish
which of the statements in the example with probability 0.1 of being
faulty can explain the fault better. Therefore, in order to reveal the
reported fault and to pinpoint the exact location of the root cause of
the failure, entropy in the ranking must be reduced.

5.3.1 Estimating Entropy: Coverage Density Fitness Function

Search-based test generation algorithms as the ones described in Sec-
tion 2.4 and evaluated in Chapter 4 are guided by a fitness function,
which describes a desirable optimization goal. This is particularly use-
ful when we can measure a property but have no immediate way to
construct suitable test cases systematically. A fitness function takes a
candidate solution (e.g., a test suite) as input, and maps it to a nu-
meric value that estimates how close the solution is to the optimal
solution. In theory, entropy (H(D)) could be used as a fitness func-
tion. However, to generate the diagnostic report D a test suite with
oracles (i.e., pass/fail verdicts) for all tests is required — this oracles
are typically provided by human developers, and thus is not available
during test generation. Therefore, we require a measure that could es-
timate entropy without the need of explicit test oracles.

The coverage density, which is the average percentage of statements
covered by all test cases, is able to measure the relation between va-
riety and size of a test suite, and it has been shown to be a reliable
proxy for the entropy value [227, 243]. It is defined as follows

ρ̄(T) =
1

N
·
N∑
i=1

ρ(ti), 0 6 ρ̄(T) 6 1

where ρ(ti) refers to the coverage density of a test case ti

ρ(ti) =
|{j | aij = 1 ∧ 1 6 j 6 M}|

M

where N and M denote the number of test cases and the number
of statements, respectively. Low values of ρ̄ mean that test cases ex-
ercise small parts of the program (sparse matrices), whereas high
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values mean that test cases tend to involve most statements of the
program (dense matrices). For example, the ρ̄ value of test suite T
from Figure 5.1 is 0.4. The coverage density fitness function can then
be defined as follows

fitness(T) = |β− ρ̄(T)|

where β is a value between 0.0 – 1.0. This fitness function turns the
problem into a minimisation problem, i.e., the optimization aims to
achieve a fitness value of zero, which is the case if a solution is found
such that β is equal to ρ̄(T). However, what is the optimal value of ρ̄
that could lead to a lower value of entropy?

A reduction in entropy is known as information gain [242], and it
has been previously demonstrated [243] that the information gain of
a test suite with uniformly distributed coverage2 can be modelled as
follows

IG(ρ̄) = −ρ̄ · log2(ρ̄) − (1− ρ̄) · log2(1− ρ̄), 0 6 IG(ρ̄) 6 1
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Figure 5.4: Relation between ρ̄ and IG(ρ̄).

As we can see in Figure 5.4, the value of IG(ρ̄) is optimal for ρ̄ = 0.5.
Hence, a technique that is able to generate a test suite such that the
coverage density is ρ̄ = 0.5 (provided there is a variety of test cases)
would have the capability of reducing the entropy of a diagnostic
ranking, and consequently ability to diagnose a program under test.
Indeed, the test suite T augmented with test cases t6, t7, t8, t9 (ρ̄ = 0.5
and H(D) = 2.437) is able to trigger the faulty behaviour and to
identify the component c6 as the most likely to be at fault. In Sec-
tion 5.4.2 we evaluate what is the ideal value of ρ̄ for test suites with
non-uniformly distributed coverage as the ideal value may be high-
er/lower for different systems.

2 Each test case in a test suite with uniformly distributed coverage covers a random
sample of ρ×M statements, and each statement is randomly covered by ρ×N test
cases. This type of test suite is commonly used as synthetic benchmark to, for ex-
ample, demonstrate the best-case performance of regression testing algorithms [219,
244].
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5.3.2 Integrating Coverage Density in Evolutionary Algorithms

Typically, the combination of functional and non-functional criteria in
automatic test generation is considered as a multiple-objective prob-
lem. For instance, Ferrer et al. [144] optimised coverage and the or-
acle cost using multiple-objective algorithms such as NSGA-II [127]
and SPEA2 [145]. Thus, the most naïve strategy to integrate a non-
functional criterion such entropy would be to consider it as an addi-
tional objective to, for instance, the most common criterion, branch
coverage. However, such integration raises two main problems: 1) By
definition, multi-objective optimisation algorithms generate multiple
solutions, i.e., some that only maximise code coverage, others that
only minimise entropy, and others in between. Although we aim to
optimise the entropy of a test suite, the fault could only be revealed
if and only if the faulty code is covered. As entropy does not aim
to cover every single line of code, it might happen that the solution
that improves entropy the most does not explore the faulty code. 2)
It has been reported that the combination of a functional criterion
such coverage and non-functional criteria has a negative impact on
the coverage achieved [144, 146]. If the combination of coverage and
entropy has a detrimental effect on the overall coverage achieved, it
could mean the faulty code is never exercised, and therefore the fault
never revealed. For these reasons, multiple-objective optimisation al-
gorithms are not suitable to address our problem, and therefore we
do not consider them in our empirical evaluation.

Another strategy to optimise for functional and non-functional cri-
teria is by using secondary objectives [113, 147]. As in a typical search-
based test generation, the evolutionary algorithm is guided by a func-
tional criterion (e.g., branch coverage), and during evolution the in-
dividuals with the highest coverage are selected. However, if two or
more individuals of the population have the same coverage value, a
secondary objective is used to break the tie. The default secondary
objective of the EvoSuite test generation tool compares the length of
two individuals with the same coverage and selects the shortest one,
i.e., the one with the lowest number of statements. In this chapter
we propose to replace this secondary objective with a combination of
length and entropy. For a set of n non-conflicting individual secondary
objectives s1 . . . sn, a combined secondary objective function sfcomp
can be defined as

sfcomp(T) =

n∑
i=1

wi × si(T)

where w1 . . . wn are weights assigned to each individual secondary
objective which allow for prioritisation of the secondary objectives
involved in the composition. In this chapter, we arbitrarily give the
same importance to each secondary objective (i.e., wi = 1) and leave
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the question of what are optimalwi values for future work. Therefore,
the linear combination of length and entropy can be defined as

sfcomp(T) = Length(T) + |β− ρ̄(T)| (5.1)

The test suite T with the lowest value of sfcomp implies it is the
shortest and the one with the lowest entropy value.

5.4 empirical study

We have conducted an empirical study to evaluate the extent to which
the combination of length and coverage density as a secondary objective
(see Equation 5.1) is capable of improving the diagnostic quality of
automatically generated tests. In particular, our empirical study aims
to answer the following research questions:

RQ1: Can optimisation of entropy improve the fault detection ability
of automatically generated tests?

RQ2: Can optimisation of entropy improve the fault localisation abil-
ity of automatically generated tests?

RQ3: Does optimisation of entropy affect the coverage achieved or the
number of automatically generated tests?

5.4.1 Experimental Setup

In our set of experiments we used the unit test generation tool Evo-
Suite [9] (see Section 2.6 for more details of the tool) which already
supports length as a secondary objective. For this study, we added
the combined secondary objective function (see Equation 5.1) to Evo-
Suite. We evaluated the fault detection and localisation effectiveness
of MOSA (the most effective evolutionary algorithm for unit test gen-
eration evaluated in Chapter 4) using the default secondary objective
and the proposed one on a set of six real faults.

A particular difficulty to address in our evaluation setup is the need
to create test oracles: the test generation procedure needs to decide
whether a test it generates passes or not. The automated generation
of test oracles is challenging [20, 180, 184]. This has to do with the
fact that the behaviour of the software has to be known so that the
right oracles are added to the test cases. As the oracle problem is
orthogonal to this chapter, we mitigated this problem by using two
versions of each subject program (more details of each subject in Sec-
tion 5.4.1.1). Let P be the faulty program and P ′ its fixed version, a test
case t passes if P ′(t) == P(t); it fails otherwise. EvoSuite adds regres-
sion oracles to the tests which make it possible to do this comparison
automatically.
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Table 5.1: Details of real faults used in our experiments. For each fault we report

the bug report id, the faulty CUT and its LOC. As for Joda-Time fault there was

not a bug report id available, the hash of the commit that fixed the bug is reported.

SUT Bug Id CUT LOC

Codec 99 Base64 233

Compress 114 TarUtils 61

Math 835 Fraction 182

Math 938 Line 44

Math 939 Covariance 53

Joda-Time “941f59” BasicDayOfYearDateTimeField 22

5.4.1.1 Selection of Subject Programs

The requirements for choosing the subject programs used in our eval-
uation are as follows: (1) the software programs should be developed
in Java, (2) the fault must be documented, and (3) the fix should be
available to validate if a test generation technique is able to trigger the
faulty behaviour and therefore identify the exact place of the fault.

We selected six real faults from four large open-source libraries. For
each program, we analysed recent bug reports, and selected those re-
ports where the fix represents a change in only one statement (single-
fault programs). We used the fixed version P ′ of a faulty version P to
evaluate whether each test generation technique is able to: 1) gener-
ate a test case that reveals the faulty behaviour, and 2) pinpoint the
exact location of the bug in the report, i.e., we checked if it effectively
isolates the faulty statement on the top of the ranking. Note that the
same programs have also been used in previous studies (e.g., [245]),
but we used different faults to demonstrate that coverage density fit-
ness function works regardless of whether the fault causes an unde-
clared exception or a wrong output. Table 5.1 provides details about
our experimental subjects.

Apache Commons Codec #99

Apache Commons Codec [246] provides an API of common encoders
and decoders such as Base64, Hex and URLs. As described in the ma-
jor bug 99 [247], the method encodeBase64String of the class Base64

fails because it chunks the parameter binaryData. This means that
the second parameter of the method newStringUtf8 called on method
encodeBase64String should be false and not true.

Listing 5.1: Apache Commons Codec fix for bug 99.

--- org/apache/commons/codec/binary/Base64.java

@@ f7966c1..954d995 @@

public static String encodeBase64String(byte[] binaryData) {
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- return StringUtils.newStringUtf8(encodeBase64(binaryData,

true));

+ return StringUtils.newStringUtf8(encodeBase64(binaryData,

false));

}

Apache Commons Compress #114

The Apache Commons Compress [248] library defines an API for
working with the most popular compressed archives such as ar, cpio,
Unix dump, tar, zip, gzip, XZ, Pack200 and bzip2. The reported major
bug 114 [249] explains that the project Apache Commons Compress
fails when the class TarUtils receive as input a tarfile which contains
files with special characters. A simple fix to resolve the encoding prob-
lem is to guarantee that the name of the files are treated as unsigned.

Listing 5.2: Apache Commons Compress fix for bug 114.

--- org/apache/commons/compress/archivers/tar/TarUtils.java

@@ 2419bb5..2d858d5 @@

for (int i = offset; i < end; ++i) {

- if (buffer[i] == 0) { // Trailing null

+ byte b = buffer[i];

+ if (b == 0) { // Trailing null

break;

}

-

- result.append((char) buffer[i]);

+ result.append((char) (b & 0xFF)); // Allow for sign-extension

Apache Commons Math #835

The Apache Commons Math [250] is a library that provides self-
contained mathematics and statistics functions for Java. The bug
835 [251] reports a failure when the percentageValue() method of
the Fraction class multiplies a fraction value by 100, and then con-
verts the result to a double. This causes an overflow when the nu-
merator is greater than Integer.MAX_VALUE/100, and even when the
value of a fraction is far below this value. A change in the order of
multiplication, i.e., first convert a fraction value to a double and then
multiply that value by 100, resolved the overflow problem.

Listing 5.3: Apache Commons Math fix for bug 835.

--- org/apache/commons/math3/fraction/Fraction.java

@@ a49e44..63a487 @@

public double percentageValue() {

- return multiply(100).doubleValue();

+ return 100 * doubleValue();

}
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Apache Commons Math #938

The major bug 938 [252] explains that the method revert from the
class Line only maintains 10 digits of precision for the field direction.
This becomes a bug when the line’s position is evaluated far from
the origin. A possible fix is creating a new instance of Line and then
reverting its direction.

Listing 5.4: Apache Commons Math fix for bug 938.

--- org/apache/commons/math3/geometry/euclidean/threed/Line.java

@@ 43a6f1..736055 @@

public Line revert() {

- return new Line(zero, zero.subtract(direction));

+ final Line reverted = new Line(this);

+ reverted.direction = reverted.direction.negate();

+ return reverted;

}

Apache Commons Math #939

The specification of the class Covariance states that it only takes a
single-column matrix (i.e., N-dimensional random variable with N=1)
as argument and returns a 1-by-1 covariance matrix. However, the
method checkSufficientData throws an IllegalArgumentException

(see major bug 939 [253] for detailed information) when the construc-
tor of the class receives a 1-by-M matrix.

Listing 5.5: Apache Commons Math fix for bug 939.

--- org/apache/commons/math3/stat/correlation/Covariance.java

@@ 736055..49444e @@

private void checkSufficientData(final RealMatrix matrix)

throws MathIllegalArgumentException {

int nRows = matrix.getRowDimension();

int nCols = matrix.getColumnDimension();

- if (nRows < 2 || nCols < 2) {

+ if (nRows < 2 || nCols < 1) {

throw new MathIllegalArgumentException(

LocalizedFormats.INSUFFICIENT_ROWS_AND_COLUMNS,

nRows, nCols);

Joda-Time

Joda-Time [254] is a library for advanced date and time functionalities
for the Java language. The class BasicDayOfYearDateTimeField pro-
vides methods to perform time calculations for a day of a year. Joda-
Time bug [255] was related to the method getMaximumValueForSet,
which returns an incorrect value. The fix of this bug consists of vali-
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dating if the value of the variable value is between the maximum and
the minimum value of the range or not.

Listing 5.6: Joda-Time fix.

--- org/joda/time/chrono/BasicDayOfYearDateTimeField.java

@@ a0c65a..941f59 @@

protected int getMaximumValueForSet(long instant, int value) {

int maxLessOne = iChronology.getDaysInYearMax() - 1;

- return value > maxLessOne ? getMaximumValue(instant) :

maxLessOne;

+ return (value > maxLessOne || value < 1) ?

getMaximumValue(instant) : maxLessOne;

}

5.4.1.2 Experiment Procedure

In order to answer our research questions we performed two studies
to assess the performance of two different configurations of MOSA at
(i) detecting faults and (ii) localising a fault. In summary, we evalu-
ated the following configurations of MOSA:

– MOSA: The default configuration of the evolutionary algorithm
MOSA described in Section 2.4.4.6, i.e., branch coverage as the
main fitness function and test suite length as a secondary objec-
tive.

– MOSAρ̄: The evolutionary algorithm MOSA described in Sec-
tion 2.4.4.6 using branch coverage as the main fitness function,
and a combination of test suite length and coverage density as
a secondary objective, as described in Section 5.3.2.

Our first study is composed of two experiments. First, we con-
ducted a preliminary experiment to select the best value of β in Equa-
tion 5.1. I.e., we ran configuration MOSAρ̄ with β = {0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and performed a pairwise comparison of
the number of real faults detected by using any β value. The β value
that allowed a technique to significantly detect more faults more often
was selected as the best value. In case of a tie, the number of gener-
ated test cases is used. Then, and to answer RQ1, in order to access
whether the optimisation of entropy does lead to an improvement
on the fault detection ability of automatically generated test cases,
we performed a comparison between MOSA and MOSAρ̄ (using the
best overall value of β found in the first experiment) for each fault. A
configuration A is considered more effective at detecting fault X than
configuration B if it detects X in a statistically significantly higher
number of runs than B.

To answer RQ2, in order to measure the success of a configuration
at localising the faulty code we used the SBFL technique described
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in Section 5.2.1. Then, we used a commonly used [227, 229] metric
called diagnostic quality Cd to measure the human effort of inspect-
ing the ranking produced by SBFL. This metric is independent of the
number of faults Mf in the program in order enable an unbiased eval-
uation of the effect of Mf on Cd. As multiple explanations can be
assigned with the same probability, the value of Cd for the real fault
d∗ is the average of the ranks that have the same probability:

θ = |{dk|Pr(dk) > Pr(d∗)}|, 1 6 k 6M

φ = |{dk|Pr(dk) > Pr(d∗)}|, 1 6 k 6M

Cd = θ + φ − Mf

2

A value of zero for Cd indicates an ideal diagnostic report where all
Mf faulty statements appear on top of the ranking, i.e., there is no
wasted effort in inspecting other statements. For example, suppose
the following ranking generated by SBFL for a program with 3 state-
ments in which only the second statement (c2) is faulty:

c2 = 0.85

c1 = 0.10

c3 = 0.05

Cd = 0+1−1
2 = 0

On the other hand, Cd = M −Mf indicates that the user needs to
inspect all M−Mf healthy statements until reaching the Mf faulty
ones — this is the worst-case outcome:

c1 = 0.85

c3 = 0.10

c2 = 0.05

Cd = 2+3−1
2 = 2

To answer RQ3, we performed a statistical analysis to understand
the effects of an additional criterion on the coverage achieved and on
the number of automatically generated test cases.

For all experiments we used the same search budget used by a
previous study on real faults [256, 257], 3 minutes. To account for
the randomness of the test generation, we repeated all experiments
30 times (as suggested by Arcuri et al. [202] and Rice [258] and gen-
eral advisable by previous studies on automatic test generation [113])
to take the randomness of the search-based algorithms into account.
All experiments were executed on the University of Sheffield ShARC
HPC Cluster [208].
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5.4.1.3 Experiment Analysis

All data produced have been analysed following the guidelines de-
scribed by Arcuri et al. [202]. In particular, we have used the Wilcoxon-
Mann-Whitney U-test, the Vargha-Delaney Â12 effect size [203], and
Fisher’s exact test [259]. We used the Wilcoxon-Mann-Whitney U-test
to compare two different data sets, and the Vargha-Delaney Â12 effect
size to measure the probability of configuration a achieving better val-
ues than configuration b. In order to determine whether one config-
uration a was statistically significantly more successful than another
configuration b we used Fisher’s exact test. For both Wilcoxon-Mann-
Whitney U-test and Fisher’s exact statistical test, we consider a 95%
confidence level. To also provide more information on how much
better one configuration is than other, we also report the relative im-
provement. Assuming X the data set reported by configuration a, and
data set Y reported by configuration b, relative improvement can be
defined as rel. impr. = mean(X)−mean(Y)

mean(Y) . Furthermore, we also con-
sider the standard deviation σ and confidence intervals of averaged
values using bootstrapping at 95% significance level.

5.4.1.4 Threats to Validity

Construct Validity: The fault localisation effectiveness of each test gen-
eration configuration has been evaluated using the Cd metric, which
measures diagnostic effort in terms of the position of the fault in the
diagnostic report. This metric assumes that developers traverse the
ranking, but that may not be the case in practice [226]. However, we
argue that developers are more likely to traverse the ranking if the
precision is increased.

External Validity: Although they are real and widely developed
open source subjects, we have only considered five in our empiri-
cal study, all of which are libraries. Therefore, it is possible that the
results for a different set of subjects with different characteristics and
even with multiple-faults may produce different results.

Internal Validity: Eventual faults in the implementation of each test
generation technique or in the underlying test case generation Evo-
Suite may invalidate the results. To mitigate this threat, we have not
only thoroughly tested our scripts but also manually checked a large
set of results. Furthermore, all experiments were repeated multiple
times to account for the randomness of the test generation, and we
verified the results between runs for consistency.

5.4.2 Coverage Density Tuning

As we saw in Chapter 4, the performance of each evolutionary algo-
rithm heavily relies on the problem at hand and on several parame-
ters such as, for example, size of the algorithm’s population. In this
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Table 5.2: The most effective configuration at detecting each fault. Column

ρ̄ reports the range and the average value in which configuration X performed

statistically significantly better at detecting fault Y, Cov. the branch coverage of the

generated test suite, #T the total number of generated test cases, Tc the number of

test cases that cover the faulty statement, Tf−c the number of test cases that trigger

the fault and cover the faulty statement.

Conf. ρ̄ Cov. #T Tp−dc Tp−c Tf−c

Codec #99
MOSAρ̄ 0.30-0.40 (0.37) 0.97 46 42 2 2

Compress #114
MOSAρ̄ — — — — — —

Math #835
MOSAρ̄ 0.30-0.40 (0.31) 0.98 50 38 10 1

Math #938
MOSAρ̄ 0.60-0.70 (0.61) 1.00 9 5 1 3

Math #939
MOSAρ̄ 0.10-0.20 (0.18) 0.96 12 10 2 1

Joda-Time
MOSAρ̄ — — — — — —

Table 5.3: The most effective configuration at detecting faults overall. Please

refer to Table 5.2 for an explanation of each column.

Better

ρ̄ Cov. #T Tp−dc Tp−c Tf−c than #F

MOSAρ̄
0.30-0.40 (0.33) 0.97 29 23 5 1 34 / 54 4 / 6

0.20-0.30 (0.26) 0.97 31 23 6 1 29 / 54 2 / 6

0.10-0.20 (0.18) 0.96 12 10 2 1 13 / 54 1 / 6

chapter, there is another parameter that requires an additional study,
the β of Equation 5.1. As discussed in Section 5.3.1, the optimal cov-
erage density of test suites with an uniformly distributed coverage is
0.5 (i.e., β = ρ̄ = 0.5). However, the coverage of automatically gener-
ated tests is not uniformly distributed by nature, i.e., some tests could
cover more code than others.

Table 5.2 shows that, the value of β for which MOSAρ̄ is able to
detect a fault on a statistically significantly higher number of runs is
different for almost all faults. For example, MOSAρ̄ works statistically
significantly better at detecting fault Math #938 with a β value of
0.61, and fault Math #939 with 0.18. However, there are some faults
detected by MOSAρ̄ on a statistically significantly higher number of
runs with the same range values of β, e.g., Codec #99, Math #835.
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Figure 5.5: Fault detection effectiveness of MOSAρ̄ when compared to
MOSA. “Significantly higher” is the number of faults for which a technique

generated at least a test case that detected the fault in a statistically significantly

higher number of runs than the other; “Higher” refers to the number of faults

where a technique generated at least one test case that detected the fault in a

(non-statistically significantly) higher number of runs; “Equivalent” is where the

fault was detected by both techniques for the same number of runs.

Note that, despite different range values of β used in our experiments,
MOSAρ̄ was not able to detect faults Compress #114 and Joda-Time.
The reason is that a failure could only be revealed if and only if the
faulty code is covered and executed with the input that triggers it.
For instance, the percentage of generated test cases that covered the
faulty statement of fault Compress #114 was only 7% of all test cases,
whereas the average in Table 5.2 is 25%, minimum of 8.7% for Codec

#99. That is, when there are only a few test cases covering the faulty
code, it is less likely to find at least one that triggers the fault.

Table 5.3 summarises the overall results of MOSAρ̄. We performed
a pairwise tournament across all faults and all range values of β,
a total of 54 tournaments (i.e., 9 range values of β × 6 faults). If
a particular value of β performed statistically significantly better at
localising each fault than another value of β it gets a +1 point, if
performed statistically significantly worse it gets -1. In the end, the
β value with the highest number of points is selected as the most
effective one.

MOSAρ̄ works statistically significantly better at detecting faults with a
β value between 0.30 and 0.40 (0.33, on average).

5.4.3 RQ1 – Can optimisation of entropy improve the fault detection
ability of automatically generated tests?

Figure 5.5 reports the fault detection effectiveness of MOSAρ̄ vs.
MOSA. MOSAρ̄ performed statistically significantly better than
MOSA for Codec #99, and performed better for three other faults (all



5.4 empirical study 97

Math faults). The reason for such improvement of MOSAρ̄ over MOSA
can be explained by the number of generated test cases that cover the
faulty code. Table 5.4 shows that for all faults, MOSAρ̄ generated
more test cases covering the faulty code, and therefore is more likely
to find at least one that triggers the fault. E.g., for Codec #99, 4.4% of
all test cases generated by MOSA covered the faulty code, whereas
8.4% of all test cases generated by MOSAρ̄ exercised the faulty code,
i.e., almost twice the number of test cases generated by MOSA.

For Compress #114, MOSAρ̄ failed to generate a test case able to
trigger the faulty behaviour, and MOSA generated by chance one trig-
gering test case (see Listing 5.7) on a single repetition out of 30. There-
fore, MOSA was better (however not statistically significantly) than
MOSAρ̄.

Listing 5.7: Triggering test case generated by MOSA for Compress #114

fault.

@Test

public void test09() throws Throwable {

byte[] byteArray0 = new byte[3];

byteArray0[0] = (byte) (-20);

String string0 = TarUtils.parseName(byteArray0, 0, 1691);

assertEquals("\u00EC", string0);

}

RQ1: MOSAρ̄ performs statistically significantly better at detecting 1
fault and better at detecting 3 out of 6 faults than MOSA.

5.4.4 RQ2 – Can optimisation of entropy improve the fault localisa-
tion ability of automatically generated tests?

Ideally, a single trigger test case covering a single statement would be
enough to pinpoint the exact location of a fault, i.e., Cd = 0. How-
ever, on complex classes under test such as the ones used in our
experiments, it is almost impossible to cover a single statement with-
out executing a few other statements. A test suite with only trigger
test cases will not help at localising the faulty statement either, as all
covered statements would be considered faulty. Non-triggering test
cases, either the ones that cover or the ones that do not cover the
faulty statement, could also influence the fault localisation effective-
ness of a test suite. For instance, non-triggering test cases that do not
cover the faulty statement could positively improve the effectiveness
of a test suite, as the likelihood of the non-faulty statements being
faulty would decrease. On the other hand, non-triggering test cases
that cover the faulty statement would reduce the contribution of trig-
gering test cases to pinpoint the faulty statement. Thus, an ideal test
suite, i.e., a suite that is able to pinpoint the exact location of a fault,
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Table 5.4: Fault localisation effectiveness of each configuration per fault. Col-

umn Cov. report the branch coverage of the generated test suite, #T the number

of generated test cases, H the entropy value of the diagnose ranking produced by

#T, Cd the number of statement that require inspection in order to find the true

faulty one, Â12 and p the probability of MOSAρ̄ achieving a lower Cd value than

MOSA, and its p-value respectively, and Rel. Impr. which reports how much bet-

ter/worse MOSAρ̄ is than MOSA. σ and CI columns report the standard deviation

and confidence intervals (at 95% significance level), respectively, of the averaged

Cd value. The “Overall” results only consider faults detected by all configurations.

Conf. Cov. #T Tp−dc Tp−c Tf−c H Cd σ CI Â12 p Rel. Impr.

Codec #99
MOSA 0.98 49.2 95.5% 2.4% 2.0% 1.9 0.60 1.34 [-0.60,1.20] — — —
MOSAρ̄ 0.97 45.7 91.6% 4.5% 3.9% 1.5 0.27 0.93 [-0.06,0.49] 0.47 0.70 -55.4%

Compress #114
MOSA 1.00 16.0 93.8% 0.0% 6.2% 2.1 0.00 0.00 [0.00,0.00] — — —
MOSAρ̄ — — — — — — — — — — — —

Math #835
MOSA 0.98 53.9 81.7% 15.3% 3.0% 2.7 7.12 10.50 [-0.06,12.94] — — —
MOSAρ̄ 0.98 50.0 76.9% 20.8% 2.3% 3.0 10.81 15.23 [1.85,17.08] 0.62 0.36 +51.7%

Math #938
MOSA 1.00 10.4 61.4% 27.7% 10.8% 3.3 5.56 6.74 [0.62,9.31] — — —
MOSAρ̄ 1.00 12.0 58.3% 25.0% 16.7% 2.6 0.00 0.00 [0.00,0.00] 0.06 0.09 -100.0%

Math #939
MOSA 0.96 10.0 63.7% 25.8% 10.5% 2.7 4.79 0.82 [4.45,5.21] — — —
MOSAρ̄ 0.96 9.2 55.5% 33.6% 10.8% 2.7 5.00 0.00 [5.00,5.00] 0.55 0.10 +4.4%

Joda-Time
MOSA — — — — — — — — — — — —
MOSAρ̄ — — — — — — — — — — — —

Overall
MOSA 0.98 30.9 84.0% 12.1% 3.9% 2.7 4.52 4.85 [1.10,7.16] — — —
MOSAρ̄ 0.98 29.2 79.0% 15.8% 5.1% 2.5 4.02 4.04 [1.70,5.64] 0.43 0.31 -24.8%

would have: (i) at least one triggering test case, (ii) ideally zero non-
triggering test cases covering the faulty code, and (iii) as many as
possible non-triggering test cases that cover non-faulty code to exon-
erate statements covered by triggering test cases of being faulty.

As we can see in Table 5.4, the test suite generated by MOSA for
Compress #144 exhibits these three properties. One test case triggers
the fault, zero non-triggering test case covering the faulty code, and
all the remaining test cases cover non-faulty code. Therefore, MOSA
achieved a minimal Cd value of zero. However, meeting such proper-
ties or achieving a minimal Cd value is not always possible due to, for
example, the structure of the program under test. For example, the
checkSufficientData function of fault Math #939 is a private func-
tion, and it is only executed by the constructor of the class Covariance.
Therefore, at the top of the ranking will always be the statements of
the Covariance constructor and the checkSufficientData function.
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Table 5.4 also shows that the most effective configuration at rank-
ing faulty statements is the one with the largest sample of triggering
test cases. For example, MOSAρ̄ performed better than MOSA for
Math #938 as 16.7% vs 10.8% of all test cases trigger the fault, re-
spectively. Hence, the number of statements a developer would have
to investigate in order to find the true faulty one that explains fault
Math #938 is 5.56 with tests generated by MOSA, and 0.00 with tests
generated by MOSAρ̄ (i.e., the faulty statement has the highest prob-
ability of being faulty and therefore, no effort is required to actually
find it). On the other hand, MOSAρ̄ performed worse than MOSA for
Math #835 as 2.3% vs 3.0% of all test cases trigger the fault, respec-
tively. Hence, the number of statements would require inspection is
7.12 with MOSA, and 10.81 with MOSAρ̄ (a relative improvement of
+51.7%). Overall, a developer would have to inspect -24.8% statements
with tests generated by MOSAρ̄ than with tests generated by MOSA.

It is also worth mentioning that, low values of entropy lead to less
statements that must be inspected by a human developer, as moti-
vated in earlier sections. For Math #938, MOSA achieved a H value
of 3.3 and a Cd value of 5.56. On the other hand, MOSAρ̄ achieved a
lower value of H (2.6), and therefore a lower value of Cd (0.0).

RQ2: MOSAρ̄ is 24.8% more effective at localising the root case of a
failure (however with an effect size of 0.43) than MOSA.

5.4.5 RQ3 – Does optimisation of entropy affect the coverage
achieved or the number of automatically generated tests?

One of the main concerns when combining functional and non-
functional criteria on automatic test generation is the effect on the
number of test cases. Table 5.5 reports the coverage achieved and
the number of generated test cases by configurations MOSA, and
MOSAρ̄.

As we can see, the coverage achieved by both configurations is
exactly the same for all faults but Codec #99, for which MOSAρ̄
achieved -1.3% coverage than MOSA. Although coverage was slightly
lower for this fault, MOSAρ̄ performed statistically significantly bet-
ter than MOSA at detecting and localising it (see RQ1 and RQ2, re-
spectively). Thus, the reduction in coverage did not influence the fault
detection or localisation ability of MOSAρ̄.

In terms of number of generated test cases, for all faults except
Math #938, MOSAρ̄ generated statistically significantly fewer test
cases than MOSA. For faults Codec #99, Math #835, and Math #939,
MOSAρ̄ generated -7%, -7.2%, and -7.6% test cases, respectively, than
MOSA. For fault Math #938, MOSAρ̄ generated +15.7% (however, not
statistically significantly) test cases than MOSA. In contrast to the
non-influence of coverage on the fault detection/localisation ability
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Table 5.5: Coverage achieved and number of generated test cases by MOSA,
and MOSAρ̄. ÂCov reports the probability of MOSAρ̄ achieving lower coverage

than MOSA (and p, its p-value), Â#T reports the probability of MOSAρ̄ generating

fewer test cases than MOSA (and p, its p-value), and Rel. Impr. reports how much

better/worse MOSAρ̄ is than MOSA at achieving high coverage and at generating

small test suites. σ and CI columns report the standard deviation and confidence

intervals (at 95% significance level), respectively, of the averaged coverage value

(i.e., column Cov.), and of the averaged number of test cases (i.e., column #T). The

“Overall” results only consider faults detected by all configurations.

Conf. Cov. σ CI ÂCov p Rel. Impr. #T σ CI Â#T p Rel. Impr.

Codec #99
MOSA 0.98 0.00 [0.98,0.98] — — — 49 2.39 [47.20,50.80] — — —
MOSAρ̄ 0.97 0.01 [0.97,0.97] 0.05 0.00 -1.3% 46 3.49 [44.77,46.79] 0.20 0.03 -7.0%

Compress #114
MOSA 1.00 0.00 [1.00,1.00] — — — 16 0.00 [16.00,16.00] — — —
MOSAρ̄ — — — — — — — — — —

Math #835
MOSA 0.98 0.00 [0.98,0.98] — — — 54 1.96 [52.62,55.25] — — —
MOSAρ̄ 0.98 0.00 [0.98,0.98] 0.50 0.00 0.0% 50 3.14 [48.38,51.77] 0.13 0.01 -7.2%

Math #938
MOSA 1.00 0.00 [1.00,1.00] — — — 10 0.92 [9.75,11.00] — — —
MOSAρ̄ 1.00 0.00 [1.00,1.00] 0.50 0.00 0.0% 12 0.00 [12.00,12.00] 0.94 0.08 +15.7%

Math #939
MOSA 0.96 0.00 [0.96,0.96] — — — 10 1.53 [9.32,10.63] — — —
MOSAρ̄ 0.96 0.00 [0.96,0.96] 0.50 0.00 0.0% 9 0.54 [9.12,9.36] 0.37 0.05 -7.6%

Joda-Time
MOSA — — — — — — — — — —
MOSAρ̄ — — — — — — — — — —

Overall
MOSA 0.98 0.00 [0.98,0.98] — — — 31 1.70 [29.72,31.92] — — —
MOSAρ̄ 0.98 0.00 [0.98,0.98] 0.39 0.00 -0.3% 29 1.79 [28.57,29.98] 0.41 0.04 -1.5%

of each configuration, the number of test cases indeed influenced the
fault localisation effectiveness of MOSA and MOSAρ̄. For faults in
which both configurations achieved the same coverage (i.e., all Math
faults), the configuration that generated the fewest number of test
cases performed worst at ranking the faulty statements.

RQ3: On average, MOSAρ̄ achieves -0.3% coverage (with an effect size of
0.39) than MOSA, and it generates statistically significantly fewer test

cases (-1.5% on average).

5.5 related work

Although there is a large body of work on automated test generation
and debugging in general, there have only been few attempts at using
automatic test generation techniques in the context of debugging.

Baudry et al. [260] proposed an approach to improve diagnostic
accuracy using a bacteriological algorithm (similar to a GA) to se-
lect test cases from a test suite. The criterion for test selection they



5.6 summary 101

proposed estimates the quality of a test for diagnosis. Their selection
procedure attempts to find an optimal balance between the size of a
test suite and its contribution to diagnosis. The goal of their work is
similar to ours, but our contributions are complementary: One could
use entropy for test generation and the algorithm they proposed for
test selection. It remains to be evaluated if such a combination would
improve the diagnostic report’s accuracy.

Artzi et al. [261] use a specialized concrete-symbolic execution [35,
80] to improve fault localisation. The principle of their customized
algorithm is highly similar to the Nearest Neighbours Queries al-
gorithm proposed by Renieris et al. [262]. The approach proposed
by Artzi et al. [261] generates tests that are similar to a given failing
test, whereas the approach proposed by Renieris et al. [262] selects
tests that are similar to a given failing one. One important difference
between our work and theirs is in the assumptions: While we make
no assumption about any existing test suite, they assume there is at
least one fault-revealing test to seed the search. However, in practice
it is possible that no fault-revealing test exists in the test suite. An
important technical difference between our approaches is that their
algorithm uses as input a single fault-revealing test and generates
passing tests that minimises observed differences for that particular
test. However, it has been shown in previous studies [263] and as
we discussed in RQ2, multiple fault-revealing tests can help improve
diagnostic accuracy.

Rößler et al. [245] introduced a search-based approach to identify
fault candidates. Similar to the work of Artzi et al. [261], their Bugex

tool takes a failing test case as a starting point, determines a set
of “facts” (e.g., executed statements, branches, program states, etc.)
and then systematically tries to generate variations of the failing test
which differ in individual facts. If a passing test differs in only one
fact to the failing test, then that fact is assumed to be relevant for diag-
nosis; if the differing test also fails, then the fact is irrelevant. Bugex is
also implemented using EvoSuite, but our approach differs in several
aspects: First, we do not assume the existence of a single failing test —
we can optimize a test suite also in the presence of no faults or in the
presence of multiple faults. Second, Bugex uses a white-box testing
approach to minimise facts about structural aspects of a program. In
contrast, our approach is only guided by entropy, which means it is
applicable to any testing domain.

5.6 summary

Despite the fact that evolutionary algorithms are very effective at gen-
erating test suites with high levels of coverage, test suites might not
exhibit properties a developer might desire, such as, for example, abil-
ity to find faults or to minimise the effort of localising the root cause
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of a failure. In this chapter we proposed the use of an additional non-
functional criterion, entropy, as a secondary objective of an automated
test generation approach to improve the ability of test suites at detect-
ing and localising faults. An empirical study on six real faults showed
that: 1) the proposed approach is statistically significantly more effec-
tive at detecting one fault, and better at detecting three other faults
than a baseline coverage based approach; 2) the proposed approach is
25% more effective at fault localisation than a baseline approach. Our
evaluation also showed that the use of entropy as secondary objective
has a sightly negative effect on the coverage achieved (-0.3%), but has
a positive effect on the number of generated test cases (-1.5%).

So far, we have only evaluated the performance of evolutionary al-
gorithms on a single class of a single version of a program under test.
However, it is fair to accept that a developer would want to gener-
ate test cases for all classes of a project as all could be faulty, or just
because a certain amount of coverage across all classes needs to be
met. But, how to generate test cases for thousands of classes? What if
the software changes in the near future, does a developer need to re-
generate tests for all classes? To answer these and other questions, in
the next chapter we introduce the concept of continuous test generation
where we present several strategies that could be used to efficiently
generate tests for software that is typically developed incrementally.
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abstract

In object oriented software development, automated unit test gener-
ation tools typically target one class at a time. A class, however, is
usually part of a software project consisting of more than one class,
and these are subject to changes over time. This context of a class
offers significant potential to improve test generation for individual
classes. In this chapter, we introduce Continuous Test Generation (CTG),
which includes automated unit test generation during continuous in-
tegration (i.e., infrastructure that regularly builds and tests software
projects). CTG offers several benefits: First, it answers the question of
how much time to spend on each class in a project. Second, it helps to
decide in which order to test them. Finally, it provides techniques to
select which classes should be subjected to test generation in the first
place. We have implemented CTG using the EvoSuite unit test gener-
ation tool, and performed experiments using eight of the most popu-
lar open source projects available on GitHub, ten randomly selected
projects from the SF100 corpus, and five industrial projects. Our ex-
periments demonstrate improvements of up to +58% for branch cov-
erage and up to +69% for thrown undeclared exceptions, while reduc-
ing the time spent on test generation by up to +83%.

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Testing Whole Projects . . . . . . . . . . . . . . . . 106
6.3 Continuous Test Generation (CTG) . . . . . . . . . 111
6.4 Empirical Study . . . . . . . . . . . . . . . . . . . . 113
6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . 128
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 introduction

As previously reviewed in Chapter 2, a number of different auto-
mated test generation techniques and tools such as EvoSuite [9] or
Pex [81] to support software testers and developers have been pro-
posed. However, even though these tools make it feasible for develop-
ers to apply automated test generation on an individual class during
development, testing an entire project consisting of many classes in
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an interactive development environment is still problematic: system-
atic unit test generation is usually too computationally expensive to be
used by developers on entire projects. For example, the EvoSuite [9]
search-based unit test suite generator requires somewhere around 2

minutes of search time to achieve a decent level of coverage on most
classes (as every fitness evaluation requires costly test execution), and
more time for the search to converge. While 2 minutes may not sound
particularly time consuming, it is far from the instantaneous result de-
velopers might expect while writing code. Even worse, a typical soft-
ware project has more than one class — for example, JodaTime [264]
(one of the most popular Java libraries) has more than 130 classes,
and consequently generating tests for 2 minutes per class would take
more than 4 hours. Thus, most unit test generation techniques are
based on the scenario that each class in a project is considered a unit
and could be tested independently.

In practice, unit test generation may not always be performed on
an individual basis, state-of-the-art unit test generation tools still lack
wide adoption by industry. For instance, in industry there are often re-
quirements on the minimum level of code coverage1 that needs to be
achieved in a software project, meaning that test generation may need
to be applied to all classes. As the software project evolves, involving
code changes in multiple sites, test generation may be repeated to
maintain and improve the degree of unit testing. Yet another scenario
is that, for legacy projects with large codebases, an automated test
case generation tool might be applied to all classes when introduced
for the first time. If the tool does not work convincingly well in such
a case, then likely the tool will not be adopted.

By considering a software project and its evolution as a whole,
rather than each class independently, there is the potential to use
contextual information for improving unit test generation:

– When generating test cases for a set of classes, it would be sub-
optimal to use the same amount of computational resources for
all of them, especially when there are at the same time both triv-
ial classes (e.g., only having get and set methods) and complex
classes full of non-linear predicates.

– Test suites generated for one class could be used to help the test
data generation for other classes, for example using different
types of seeding strategies [150].

– Finally, test suites generated for one revision of a project can be
helpful in producing new test cases for a new revision.

An attractive way to exploit this potential lies in using continuous
integration [265]. The roots of continuous integration can be traced

1 Industrial standards such as DO-178B, IEC 61508, and IEEE 1008-1987 require 100%
code coverage.
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back to the Extreme Programming methodology. One of the main ob-
jectives of continuous integration is to reduce the problems of “inte-
gration hell”, i.e., different engineers working on the same code base
at the same time, such that their changes have to be merged together.
One approach to deal with such problems is to use controlled version
repositories (e.g., SVN or Git) and to commit changes on a daily ba-
sis, instead of waiting days or weeks. At each new code commit, a
remote server system can build the application automatically to see
if there are any code conflicts. Furthermore, at each new build, the
available regression test suites can be executed to verify whether any
new features or bug fixes break any existing functionality; developers
responsible for new failures can be automatically notified.

Continuous integration is typically run on powerful servers, and
can often resort to build farms or cloud-based infrastructure to speed
up the build process for large projects. It is widely adopted in indus-
try, and several different systems are available for practitioners. The
most popular ones include the open source projects Jenkins [266],
CruiseControl [267], and GitLab CI [268]; and the non-open source
projects Travis CI [269], Circle CI [270], and Bamboo from Atlas-
sian [271]. The functionalities of those continuous integration systems
can typically be extended with plugins. For example, at the time of
this writing, Jenkins has more than 1,000 plugins [266], including plu-
gins that measure and visualise code coverage information based on
regression test suites (e.g., the Emma plugin [272]), or plugins that
reports warnings collected with static analysis (e.g., FindBugs [273,
274]).

This opens doors for automated test generation tools, in order to
enhance the typically manually generated regression test suites with
automatically generated test cases, and it allows the test generation
tools to exploit the advantages offered when testing a project as a
whole. In fact, if automated oracles are available (e.g., formal post-
conditions and class invariants), then a test case generation tool can
be run continuously 24/7, and can report to the developers as soon as
a specification condition is violated. An example of such form of “con-
tinuous” testing is discussed by Nguyen et al. [275]. Note that, contin-
uous testing can also be performed locally [276, 277]. Besides running
regression test suites on dedicated continuous integration servers,
these suites could also be automatically run in the background on
the development machines by the IDE (e.g., Eclipse). The idea would
be to provide feedback to the developers as soon as possible, while
they are still editing code.

In this chapter, we introduce Continuous Test Generation (CTG),
which enhances continuous integration with automated test genera-
tion. This integration raises many questions on how to test the classes
in a software project: For instance, in which order should classes be
tested?, how much time to spend on each class?, and which information
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can be carried over from the tests of one class to another? To provide
first answers to some of these questions, we have implemented CTG
as an extension to the EvoSuite test generation tool and performed
experiments on a range of different software projects. In detail, the
contributions of this chapter are as follows:

– We introduce the problem of generating unit tests for whole
projects, and discuss in details many of its aspects.

– We describe different strategies of scheduling the order in
which classes are tested to improve the performance.

– We propose a technique to incrementally test the units in a soft-
ware project, leading to overall higher code coverage while re-
ducing the time spent on test generation.

– We present a rigorous empirical study on 10 open source
projects from the SF100 corpus, eight of the most popular
projects on GitHub, and five industrial projects supporting the
viability and usefulness of our presented techniques.

– All the presented techniques have been implemented as an ex-
tension of the EvoSuite test generation tool.

Our experiments demonstrate that, by intelligently using the infor-
mation provided when viewing a software project as a whole, the
techniques presented in this chapter can lead to improvements of up
to +58% for branch coverage and up to +69% for thrown undeclared
exceptions. At the same time, applying this test generation incremen-
tally not only improves the test effectiveness, but also saves time — by
up to +83%. However, our experiments also point out important areas
of future research on CTG which are discussed later in Section 8.2.4.

The chapter is organised as follows. In Section 6.2 we introduce
the problem of testing whole software projects and propose three
strategies to improve the performance of automated test generation
techniques. In Section 6.3 we introduce a CTG strategy, which inte-
grates automated test generation in a continuous integration envi-
ronment. Thereafter, in Section 6.4 we present the details of our em-
pirical study and evaluate each proposed strategy at testing whole
software projects. We compare our CTG strategy with related work
in Section 6.5, and finally, we summarise the chapter in Section 6.6.

6.2 testing whole projects

Test generation is a complex problem, therefore the longer an auto-
mated test generation tool is allowed to run on an individual class,
the better the results. For example, given more time, a search-based
approach will be able to run for more iterations, and a tool based
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on DSE can explore more paths. However, the available time budget
is usually limited and needs to be distributed among all individual
classes of a given software project. The problem addressed in this
section can thus be summarised at high level as follows:

Given a project X, consisting of n units, and a time budget b, how to best
use an automated unit test generation tool to maximise code coverage and

failure detection on X within the time limit b?

The values for n and b will be specific to the projects on which
test generation is applied. In our experiments, the values for n range
from 1 to 412, with an average of 90. Estimating what b will look
like is more challenging, and at the moment we can only rely on the
informal feedback of how our industrial partners think they will use
EvoSuite on whole projects. However, it is fair to assume that already
on a project of a few hundred classes, running EvoSuite with a min-
imum of just a few minutes per CUT might take hours. Therefore,
what constitutes a reasonable value for b will depend on the particu-
lar scenario.

If EvoSuite is run on developer machines, then running it on a
whole project at each code commit might not be a feasible option.
However, it could be run after the last code commit of the day until
the day after. For example, on a week day, assuming a work sched-
ule from 9 a.m. to 5 p.m., it could mean running EvoSuite for 16

hours, and 64 hours on weekends (i.e., 16 hours on Friday, 24 hours
on Saturday, and 24 hours on Sunday). Given a modern multicore
PC, EvoSuite could even be run on a whole project during the day,
in a similar way as done with regression suites in continuous test-
ing [276, 277]; but that could have side effects of slowing down the
PC during coding and possible noise issues that might be caused by
the CPU working at 100%. An alternative scenario would be a re-
mote continuous integration system serving several applications/de-
partments within a company. Here, the available budget b would de-
pend on the build schedule and on the number of projects for which
the continuous integration server is used. Some companies also use
larger build-farms or cloud-infrastructure for continuous integration,
which would allow for larger values of b, or more frequent runs of
EvoSuite.

6.2.1 Simple Budget Allocation

The simplest, naïve approach to target a whole project is to divide
the budget b equally among the n classes, and then apply a tool
like EvoSuite independently on each for b/n minutes (assuming no
parallel runs on different CPUs/cores). In this chapter, we call this
simple strategy, and it is the strategy we have used in past empirical
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studies of EvoSuite (e.g., [278]). However, this simple strategy may
not yield optimal results. In the rest of this section, we describe dif-
ferent aspects of targeting whole projects that can be addressed to
improve upon the simple strategy. Note that in principle test gener-
ation for a class can be finished before the allocated budget is used
up (i.e., once 100% coverage is achieved). In this case, the time saved
on such a class could be distributed on the remaining classes; that is,
the schedule could be adapted dynamically during runtime. For our
initial study we performed two experiments: 1) only optimising for
coverage, 2) only optimising for exceptions [130] (where no test gener-
ation run would end prematurely). I.e., as exception is a unbounded
fitness function (see Section 3.2.1.6 for more details), all test genera-
tion runs would spend the time budget allocated in full. However, we
will consider such optimisations as future work.

6.2.2 Smart Budget Allocation

In the simple approach, each n CUT gets an equal share of the time
budget b. If there are k CPUs/cores that can be used in parallel (or
a distributed network of computers), then the actual amount of avail-
able computational resources is k× b. For example, assuming a four
core PC and a 10 minute budget, then a tool like EvoSuite could run
on 40 CUTs for one minute per CUT. However, such a resource al-
location would not distinguish between trivial and complex classes
requiring more resources to be fully covered. This budget allocation
can be modelled as an optimization problem.

Assume n CUTs, each taking a share of the total k×b budget, with
b expressed as number of minutes. Assume a testing tool that, when
applied on a CUT c for z minutes, obtains performance response
t(c, z) = y, which could be calculated as the obtained code cover-
age and/or number of triggered failures in the CUT c. If the tool is
randomized (e.g., a typical case in search-based and dynamic sym-
bolic execution tools like EvoSuite), then y is a random variable. Let
|Z| = n be the vector of allocated budgets for each CUT, and |YZ| = n

the vector of performance responses t(c, z) calculated once Z is cho-
sen and the automated testing tool is run on each of the n CUTs for
the given time budgets in Z. Assume a performance measure f on the
entire project that should be maximised (or minimised). For example,
if y represents code coverage, one could be interested in the average
f(Z) =

∑
y∈YZ
n of all of the CUTs. Under these conditions, maximising

f(Z) could be represented as a search problem in which the solution
space is represented by the vector Z, under two constraints: first, their
total budget should not exceed the total, i.e.,

∑
zi∈Z zi 6 k× b, and,

second, it should be feasible to find a “schedule” in which those n
“jobs” can be run on k CPUs/cores within b minutes. A trivial con-
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sequence of this latter constraint is that no value in Z can be higher
than b.

Given this optimization problem definition, any optimiza-
tion/search algorithm (e.g., genetic algorithms) could be used to ad-
dress it. However, there are several open challenges with this ap-
proach, like for example:

– The optimization process has to be extremely efficient, as any
time spent on it would be taken from the budget k× b for test
generation.

– The budget allocation optimization has to be done before gen-
erating any test case for any CUT, but the values t(c, z) = y are
only obtained after executing the testing tool and the test cases
are run. There is hence the need to obtain an estimate function
t ′, as t cannot be used. This t ′ could be for example obtained
with machine learning algorithms [279], trained and released as
part of the testing tool. A further approach could also be to ex-
ecute some few test cases, and use the gathered experience to
predict the complexity of the CUT for future test case genera-
tion efforts.

– Even if it is possible to obtain a near perfect estimate func-
tion t ′ ' t, one major challenge is that its output should not
represent a single, concrete value y, but rather the probability
distribution of such a random variable. For example, if the re-
sponse is measured as code coverage, a possibility could be
that the output of t ′(c, z) is represented by a |R| = 101 vector,
where each element represents the probability P of y obtain-
ing such a code coverage value (with 1% interval precision), i.e.
R[i] = P(y == i%), where

∑
r ∈ R = 1. Based on how R is

defined (could even be a single value representing a statistics
of the random variable, like mean and median), there can be
different ways to define the performance measure f(Z) on the
entire project.

After having described the budget allocation problem in general,
in this section we present a first attempt to address it. We start our
investigation of addressing whole projects with a simple to imple-
ment technique. First, each CUT will have a minimum amount of the
time budget, e.g., z > 1 (i.e., one minute). Then the remaining budget
(k×b)− (n× z) can be distributed among the n CUTs proportionally
to their number of branches (but still under the constraint z 6 b). In
other words, we can estimate the difficulty of a CUT by counting its
number of branches. This is an easy way to distinguish a trivial from a
complex CUT. Although counting the number of branches is a coarse
measure, it can already provide good results (as we will show in the
empirical study in this chapter). It is conceivable that more sophis-
ticated metrics such as, for example, cyclomatic complexity or even
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techniques based on machine learning, may lead to improved budget
distribution. We will discuss this in Section 8.2.4 as part of our future
work.

Having a minimum amount of time per CUT (e.g., z > 1) is inde-
pendent of whether a smart budget allocation is used. For example,
if we only have one core and budget b = 5 minutes, it would make
no sense to run EvoSuite on a project with thousands of CUTs, as
only a few milliseconds would be available on average per CUT. In
such cases, it would be more practical to just run EvoSuite on a sub-
set of the classes (e.g., five) such that there is enough time (e.g., one
minute) for each of those CUTs to get some usable result. Ensuring
that all classes are tested would then require allocating the budget to
different classes in successive runs of EvoSuite in the following days
(Section 6.3.1 presents some ideas on how to use historical data to
address this problem).

6.2.3 Seeding Strategies

After allocating the time budget Z for each of the n CUTs, the test
data generation (e.g., using EvoSuite) on each of those n CUTs will
be done in a certain order (e.g., alphabetically or randomly), assum-
ing n > k (i.e., more CUTs than possible parallel runs). This means
that when we start to generate test cases for a CUT c, we will usually
have already finished generating test suites for some other CUTs in
that project, and these test suites can be useful in generating tests for
c. Furthermore, there might be information available from past Evo-
Suite runs on the same project. This information can be exploited for
seeding.

In general, with seeding we mean any technique that exploits previ-
ous knowledge to help solve a testing problem at hand. For example,
in SBST existing test cases can be used when generating the initial
population of a genetic algorithm [280], or can be included when in-
stantiating objects [150]. Seeding is also useful in a DSE context, in
particular to overcome the problem of creating complex objects [281],
and the use of seeding in test suite augmentation is established for
SBST and DSE-based augmentation approaches [68].

In order to make it possible to exploit information from different
CUTs within a run of EvoSuite on a whole project, one needs to sort
the execution of the n CUTs in a way that, when a class c can use test
cases from another class c ′, then c ′ should be executed (i.e., generated
test for) before c and if test execution for c ′ is currently running, then
postpone the one of c till c ′ is finished, but only if meanwhile another
class c ′′ can be generated tests for. I.e., if a CUT A takes as input an
object of type B, then to cover A we might need B set in a specific
way. For instance, in the following snippet of code, using the test
cases generated for B can give us a pool of interesting instances of B.
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public class A {

public void foo(B b) {

if (b.isProperlyConfigured()) {

... // target

}

}

}

To cover the target branch in A.foo, one could just rely on traditional
SBST approaches to generate an appropriate instance of B. But, if we
first generate test suites for B, then we can exploit those tests for
seeding in A. For example, each time we need to generate an input
for A.foo, with a certain probability (e.g., 50%) we can rather use a
randomly selected instance from the seeded pool, which could speed
up the search.

6.3 continuous test generation (ctg)

So far, we have discussed generating unit tests for all classes in a
project. However, projects evolve over time: classes are added, deleted,
and changed, and automated test generation can be invoked regularly
during continuous integration, by extending it to CTG. CTG can ex-
ploit all the historical data from the previous runs to improve the
effectiveness of the test generation.

There are two main ways in which CTG can exploit such historical
data: First, we can improve the budget allocation, as newly introduced
classes should be prioritized over old classes that have been exten-
sively tested by CTG in previous runs. Second, the test cases gener-
ated in the previous runs can be directly used for seeding instead of
regenerating tests for each class from scratch at every CTG run on a
new software version.

6.3.1 Budget Allocation with Historical Data

The Budget allocation described in Section 6.2.2 only takes into ac-
count the complexity of a CUT. However, there are several factors
that influence the need to do automated test generation when it is
invoked repeatedly. Usually, a commit of a set of changes only adds/-
modifies a few classes of a project.

– If a class has been changed, more time should be spent on test-
ing it. First, modified source code is more prone to be faulty
than unchanged source code [282]. Second, the modifications
are likely to invalidate old tests that need to be replaced, or add
new behaviour for which new tests are required [174].
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– If a class has not been changed, invoking automated test genera-
tion can still be useful if it can help to augment the existing test
suite. However, once the test generator has reached a maximum
level of coverage and cannot further improve it for a given class,
invoking it again will simply waste resources.

For example, suppose a project X has two classes: a “simple” one
S, and a “difficult” one D. Assume that, by applying the Budget al-
location (see Section 6.2.2), the time budget allocated for D is twice
as much than for S, i.e. zD = 2× zS and zS = zD

2 . Now, further sup-
pose that only S has been changed since the last commit; in this case,
we would like to increase the time spent on testing S, even though
it is a simple one. For this, we first use an underlying basic budget
assignment (e.g., Budget or Budget & Seeding), and then multiplied by
a factor h > 1, such that the budget for S becomes zS = h× zD2 . Thus,
if h = 2 (which is the value we use in the experiments reported in
this chapter), then the modified simple class S will receive the same
amount of time as the unchanged difficult class D.

Given an overall maximum budget (see Section 6.2.2), the total bud-
get should not exceed this maximum, even in the face of changed
classes. That is,

∑
zi∈Z zi 6 k×b; however, it will happen that adding

a multiplication factor h for new/modified classes results in the total
budget exceeding this maximum. As test generation will be invoked
regularly in this scenario, it is not imperative that all classes are tested,
especially the ones that have not been modified. So, one can apply a
strategy to skip the testing of some unchanged classes in the current
CTG execution. To do that, we rank classes according to their com-
plexity and the fact of whether they were modified, and then select
the maximum number of classes such that the total budget k× b is
not exceeded.

For classes that have not been changed, at some point we may de-
cide to stop invoking the test generator on them. A possible way to
do this is to monitor the progress achieved by the test generator. If
100% coverage has been achieved, then generating more tests for the
same criterion will not be possible. If less than 100% coverage has
been achieved, then we can invoke test generation again. However,
if after several invocations the test generator does not succeed in in-
creasing the coverage, we can assume that all coverage goals that the
test generator can feasibly cover have been reached. In the context of
this chapter, we look at the last three runs of the test generator, and if
there has been no improvement for the last three runs, then we stop
testing a class until it is changed again.

6.3.2 Seeding Previous Test Suites

When repeatedly applying test generation to the same classes, the
results of the previous test generation run can be used as a start-
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ing point for the new run. This is another instance of seeding, as
described in Section 6.2.3. There are different ways how a previous
result can be integrated into a new run of a genetic algorithm. For
example, in previous work where the goal was to improve upon man-
ually written tests, Fraser et al. [150] re-used the existing test cases
by modifying the search operators of EvoSuite such that whenever
a new test case was generated, it was based on an existing test case
with a certain probability. Xu et al. [68] considered the reuse of test
cases during test suite augmentation for DSE or search-based and
hybrid techniques [69], by using the old tests as starting population
of the next test generation run; in this approach the success of the
augmentation depends strongly on the previous tests.

The approach we took in the context of CTG is to first check which
of the previous tests still compile against the new version of a CUT.
For example, if from version pn to pn+1 a signature (i.e., name or pa-
rameters) of a method, or a class name is modified, test cases may no
longer compile and therefore are not candidates to be included in the
next test suite. One the other hand, tests that still compile on the new
version of the CUT can be used for seeding. I.e., instead of initialising
the initial population of the genetic algorithm in EvoSuite completely
randomly, we create a test suite with all valid test cases and insert it
as one individual into the initial population of the new genetic algo-
rithm. Thus, essentially applying a form of elitism between different
invocations of the genetic algorithm.

6.4 empirical study

In this section we empirically evaluate the strategies proposed in this
chapter at testing a project as a whole. In particular, we evaluate the
following strategies: a Simple strategy (Section 6.2.1), a smart Budget
allocation strategy (Section 6.2.2), a Seeding strategy (Section 6.2.3), a
combination of the latter two (i.e, smart Budget and Seeding strategy
at the same time, Budget & Seeding), and a CTG strategy (Section 6.3),
and we aim at answering the following research questions:

RQ1: What are the effects of smart Budget allocation?

RQ2: What are the effects of Seeding strategies?

RQ3: How does combining Seeding with smart Budget allocation fare?

RQ4: What are the effects of using CTG for test generation?

RQ5: What are the effects of History-based selection and Budget allo-
cation on the total time of test generation?



114 ctg : enhancing ci with automated test generation

6.4.1 Experimental Setup

To answer the research questions, we performed two different types
of experiments: The first one aims to identify the effects of optimiza-
tions based on testing whole projects; the second experiment consid-
ers the scenario of testing projects over time.

6.4.1.1 Unit Test Generation Tool

We used the EvoSuite [9] unit test generation tool, which already
provides support for the Simple strategy [200, 278], and therefore
would allow an unbiased comparison of the different strategies. For
this study we implemented the remaining strategies described in this
chapter as an extension of the EvoSuite tool.

6.4.1.2 Subject Selection

We used three different sources for case study projects (see Table 6.1):
First, as an unbiased sample, we randomly selected ten projects from
the SF100 corpus of classes [278] (which consists of 100 projects ran-
domly selected from SourceForge); this results in a total of 279 classes.
Second, we used five industrial software projects (1,307 classes in to-
tal) provided by one of our industrial collaborators. Due to confiden-
tiality restrictions, we can only provide limited information on the
industrial software.

To simulate evolution with CTG over several versions, we required
projects with version history. Because it is complicated to obtain a full
version history of compiled software versions for each project in the
two previous sets (due to different repository systems and compila-
tion methods), we additionally considered the top 15 most popular
projects on GitHub2. We had to discard some of these projects: 1) For
some (e.g., JUnit [283], JNA [284]) there were problems with EvoSuite

(e.g., EvoSuite uses JUnit and thus cannot be applied to the JUnit

source code without modifications). 2) Some projects (Jedis [285],
MongoDB Java Driver [286]) require a server to run, which is not sup-
ported by EvoSuite yet. 3) We were unable to compile the version
of RxJava [287] last cloned (10 March, 2014). 4) By default, classes
of the Rootbeer GPU Compiler [288] project were compiled with an
incorrect package name. 5) Finally, we removed Twitter4J [289],
the largest project of the 15 most popular projects, as our experi-
mental setup would not have allowed to finish the experiments in
time. This leaves the following eight projects (475 classes in total),
each with a version history for experimentation: HTTP-Request [290],
JodaTime [264], JSON [291], JSoup [292], Scribe [293], Spark [294],
Async-HTTP-Client [295], and SpringSide [296].

2 GitHub homepage https://github.com, accessed 03/2018.

https://github.com
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Table 6.1: Case study software projects. For each software project we report the num-

ber of classes under test. Note that for the most popular software projects on

GitHub the number of classes is not a constant, as it can change at each revision.

We hence report the total number of unique classes throughout the 100 commits,

and, in brackets, the number of classes at the first and last commits.

Project # CUTs

Open source projects randomly selected from SF100 corpus

tullibee 18

a4j 45

gaj 10

rif 13

templateit 19

jnfe 51

sfmis 19

gfarcegestionfa 48

falselight 8

water-simulator 48

Industrial software projects

projectA 245

projectB 122

projectC 412

projectD 211

projectE 317

Most popular software projects on GitHub

HTTP-Request 1 [1:1]

JodaTime 135 [133:132]

JSon 37 [16:25]

JSoup 45 [41:45]

Scribe 79 [65:78]

Spark 34 [21:30]

Async-HTTP-Client 81 [71:75]

SpringSide 63 [23:60]

6.4.1.3 Experiment Procedure

For each open source project of the SF100 corpus and industrial
project, we ran EvoSuite with four different strategies: Simple (Sec-
tion 6.2.1), smart Budget allocation (Section 6.2.2), Seeding strategy
(Section 6.2.3), and a combination of the latter two (i.e, smart Bud-
get and Seeding strategy at the same time, Budget & Seeding). For the
open source projects from GitHub we ran EvoSuite with the same
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four strategies, but also with another strategy, a History strategy (Sec-
tion 6.3.1) which used seeding of previous test suites (Section 6.3.2).
The open source subjects were run on the University of Sheffield Ice-
berg HPC Cluster [201]. Each cluster node was running a Linux distri-
bution, using six cores (12 considering hyper-threading) at 2.6 GHz.
On the other hand, the industrial case study was run on the devel-
opment machine of one of the software engineers employed by our
industrial partner. The machine was running Windows 7, with six
cores (12 considering hyper-threading) at 3.07 GHz. In contrast to the
experiments on the cluster, that were using all the 12 virtual cores per
node, in the industrial case study we only used six parallel CTG runs
at any given time. The reason was that we could not occupy all the
computational resources of that machine.

As we have described, when running EvoSuite on a whole project,
there is the question of how long to run it. This depends on the avail-
able computational resources and how EvoSuite will be used in prac-
tice (e.g., during the day while coding, or over the weekend). In this
chapter, due to the high cost of running the experiments, we could not
consider all these different scenarios. So, we decided for one setting
per case study that could resemble a reasonable scenario. In particu-
lar, for all the case studies we allowed an amount of time proportional
to the number of classes in each project, i.e., three minutes per CUT
× | CUTs |. For the smart Budget allocation, we allowed a minimum
amount of time z > 1 minute (see Section 6.2.2).

Unlike the other strategies, the History strategy requires different
versions of the same project. As considering the full history would
not be feasible, we limited the experiments to the last 100 commits of
each project, i.e., we considered the latest 100 consecutive commits of
each project. Note that, project JSON only has 65 commits in its entire
history.

For the experiments, we configured History to use the Budget allo-
cation as baseline because the average branch coverage on the first
set of experiments (10 projects randomly selected from SF100 cor-
pus) achieved an highest relative improvement on that approach. The
maximum time for test generation was calculated for History for each
commit in the same way as for other strategies proportional to the
number of CUTs in the project (three minutes per CUT × | CUTs |).

On the open source projects from SF100, each experiment was re-
peated 50 times with different random seeds to take into account the
randomness of the algorithms. As we applied History with a time
window of 100 commits to the GitHub projects, we only ran Evo-
Suite five times on these eight projects. On the industrial systems
we were only able to do a single run. Running experiments on real
industrial case studies presents many challenges, and that is one of
the reasons why they are less common in the software engineering
literature. Even if it was not possible to run those experiments as rig-
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orously as in case of the open source software, they do provide extra
valuable information to support the validity of our results.

6.4.1.4 Measurements

As primary measurement of success of test generation we use branch
coverage (previously defined in Section 2.4.5.2). However, branch
coverage is only one possible measure to quantify the usefulness
of an automatically generated test suite [12, 297]. In the presence
of automated oracles (e.g., formal specifications such as pre/post-
conditions), one would also want to see if any fault has been found.
Unfortunately, automated oracles are usually unavailable. One could
look at program crashes, but that is usually not feasible for unit test-
ing. However, at unit level it is possible to see if any exception has
been thrown in a method of the CUT, and then check whether that
exception is declared as part of the method signature (i.e., using the
Java keyword throws).

As a second measurement we used undeclared exceptions (previ-
ously defined in Section 3.2.1.6). If an exception is declared as part
of a method signature, then throwing such an exception during ex-
ecution would be part of normal, expected behaviour. On the other
hand, finding an undeclared exception would point to a unit level
bug. Such a bug might not be critical (e.g., impossible to throw by
the user through the application interfaces such as a GUI), and could
even simply point to “implicit” preconditions. For example, some ex-
ceptions might be considered as normal if a method gets the wrong
inputs (e.g., a null object) but, then, the developers might simply fail
to write a proper method signature. This is the case when an ex-
ception is explicitly thrown with the keyword throw, but then it is
missing from the signature.

Whether a thrown exception represents a real fault is an import
question for automated unit testing. In particular, it is important to
develop techniques to filter out “uninteresting” exceptions that likely
are just due to violated implicit preconditions. However, regardless
of how many of these exceptions are caused by real bugs, a technique
that finds more of these exceptions would be better [257]. For this
reason, tools like EvoSuite not only try to maximise code coverage,
but also the number of unique, undeclared thrown exceptions for
each method in the CUTs, and experiments have shown that this can
reveal faults [130].

For the first set of experiments the overall time per project was
fixed. In the second set of experiments on CTG we also look at the
time spent on test generation.
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6.4.1.5 Analysis Procedure

The experiments carried out in this chapter are very different than
previous uses of EvoSuite. In previous empirical studies, each CUT
was targeted independently from the other CUTs in the same project.
That was to represent scenarios in which EvoSuite is used by prac-
titioners on the classes they are currently developing. On the other
hand, here when targeting whole projects there are dependencies:
e.g., in the smart Budget allocation, the amount of time given to each
CUT depends also on the number of branches of the other CUTs.
When there are dependencies, analysing the results of each CUT sep-
arately might be misleading. For example, how to define what is the
branch coverage on a whole project?

Assume a project P composed of |P| = n CUTs, where the project
can be represented as a vector P = {c1, c2, . . . , cn}. Assume that
each CUT c has a number of testing targets γ(c), of which k(c) are
actually covered by applying the analysed testing tool. Because tools
like EvoSuite are randomized, the scalar k(c) value will be repre-
sented by a statistics (e.g., the mean) on a sample of runs (e.g., 50)
with different random seeds. For example, if the tool was run r times,
in which each time we obtained a number of covered targets ki(c),

then k(c) =
∑i=r
i=1 ki(c)
r . If we want to know the coverage for a CUT

c, then we can use cov(c) =
k(c)
γ(c) , i.e., number of covered targets di-

vided by the number of targets. But what would be the coverage on
P, i.e., the mean coverage obtained over the r runs, as is commonly
used in the literature? A typical approach is to calculate the average
of those coverage values averaged over all the r runs:

avg(P) =
1

n

∑
c∈P

k(c)

γ(c)
.

However, in this case, all the CUTs have the same weight. The cover-
age on a trivially small CUT would be as important as the coverage of
a large, complex CUT. An alternative approach would be to consider
the absolute coverage on the project per run:

µ(Pi) =

∑
c∈P ki(c)∑
c∈P γ(c)

,

and, with that, consider the average on all the r runs:

µ(P) =
1

r

i=r∑
i=1

µ(Pi) .

With µ(P), we are actually calculating the average ratio of how many
targets in total have been covered over the number of all possible
targets. The statistics avg(P) and µ(P) can lead to pretty different
results. Considering the type of problem addressed in this chapter,
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we argue that µ(P) is a more appropriate measure to analyse the data
of our empirical analyses.

All the data from these empirical experiments have been statis-
tically analysed following the guidelines discussed by Arcuri et
al. [202]. In particular, we used the Wilcoxon-Mann-Whitney U-test
and the Vargha-Delaney Â12 effect size [203]. The Wilcoxon-Mann-
Whitney U-test is used when algorithms (e.g., result data sets X and
Y) are compared (in R this is done with wilcox.test(X, Y)). In our
case, what is compared is the distribution of the values µ(Pi) for each
project P. For the statistical tests, we consider a 95% confidence level.

Given a performance measure W (e.g., branch coverage), Âxy mea-
sures the probability that running algorithm x yields higherW values
than running algorithm y. If the two algorithms are equivalent, then
Âxy = 0.5. This effect size is independent of the raw values of W, and
it becomes a necessity when analysing the data of large case stud-
ies involving artefacts with different difficulty and different orders
of magnitude for W. E.g., Âxy = 0.7 entails one would obtain better
results 70% of the time with x.

Beside the standardised Vargha-Delaney Â12 statistics, to provide
more information we also considered the relative improvement ρ.
Given two data sets X and Y, the relative average improvement can
be defined as:

ρ(X, Y) =
mean(X) −mean(Y)

mean(Y)
.

Finally, we also reported the standard deviation σ and confidence
intervals (CI) using bootstrapping at 95% significance level. Note
that, because experiments on the industrial software projects were
only performed once, and experiments on the most popular software
projects on GitHub only performed a few times; we only reported the
σ and CI for experiments on the 10 open source projects randomly
selected from SF100 corpus.

6.4.1.6 Threats to Validity

Threats to internal validity might come from how the empirical study
was carried out. To reduce the probability of having faults in our test-
ing framework, it has been carefully tested. Furthermore, randomized
algorithms are affected by chance. To cope with this problem, we re-
peated each experiment (50 times for the SF100 experiments and five
times for the GitHub experiments) and followed rigorous statistical
procedures to evaluate their results.

To cope with possible threats to external validity, the SF100 corpus
was employed as case study, which is a collection of 100 Java projects
randomly selected from SourceForge [278]. From SF100, 10 projects
were randomly chosen. Although the use of SF100 provides high con-
fidence in the possibility to generalize our results to other open source
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software as well, we also included on our experiments some of the
most popular Java projects from GitHub.

As open source software represents only one face of software de-
velopment, in this chapter we also used five industrial systems. How-
ever, the selection of those systems was constrained by the industrial
partners we collaborate with. Results on these systems might not gen-
eralize to other industrial systems.

The strategies presented in this chapter have been implemented in
a prototype that is based on the EvoSuite tool, but any other tool that
can automatically handle the subjects of our empirical study could
be used. We chose EvoSuite because it is a fully automated tool, and
recent competitions for JUnit generation tools [16, 185–188] suggest
that it represents the state of the art.

To allow reproducibility of the results (apart from the industrial
case study), all 18 subjects and EvoSuite are freely available from
our webpage at www.evosuite.org.

6.4.2 Testing Whole Projects

The first set of experiments considers the effects of generating unit
tests for whole projects. Table 6.2 shows the results of the experiments
on the 10 open source projects randomly selected from SF100 corpus.
The results in Table 6.2 are based on branch coverage. The Simple strat-
egy is used as point of reference: the results on the other strategies
(smart Budget, Seeding and their combination, Budget & Seeding) are
presented relatively to the Simple strategy, on a per project basis. For
each strategy compared to Simple, we report the Â12 effect size, and
also the relative improvement ρ.

Table 6.3 presents the results on the number of unique pairs ex-
ception/method for each CUT, grouped by project. For each run, we
calculated the sum of all unique pairs on all CUTs in a project, and
averaged these results over the 50 runs. In other words, Table 6.3 is
structured in the same way as Table 6.2, with the only difference that
the results are for found exceptions instead of branch coverage.

The results on the industrial experiments were analysed in the
same way as the open source software results. Table 6.4 shows the
results for branch coverage. However, due to confidentiality restric-
tions, no results on the thrown exceptions are reported.

The results in Table 6.2 clearly show that a smart Budget allocation
significantly improves branch coverage. For example, for the project
sfmis the branch coverage goes from 35.8% to 46.7% (a relative im-
provement of +30.6%). The Â12 = 1 means that, in all the 50 runs
with smart Budget allocation the coverage was higher than in all the
50 runs with Simple strategy. However, there are two projects in which
it seems it provides slightly worse results; in those cases, however, the
results are not statistically significant. If we look at the results on the

www.evosuite.org
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Table 6.2: Branch coverage results for the 10 open source projects randomly
selected from the SF100 corpus. For each project we report the branch

coverage achieved by each strategy, the standard deviation (σ), and confidence

intervals using bootstrapping at 95% significance level. For all strategies, but the

Simple strategy, we report the effect sizes (Â12 and relative average improvement)

compared to the Simple strategy. Effect sizes Â12 that are statistically significant

are reported in bold. Results on the open source case study are based on 50 runs

per configuration.

Simple Budget Seeding Budget & Seeding

Project Cov. Cov. Â12 ρ Cov. Â12 ρ Cov. Â12 ρ

tullibee 39.1% – – 43.5% 0.89 +11.3% 39.6% 0.56 +1.1% 43.9% 0.92 +12.1%

a4j 62.5% – – 64.4% 0.86 +3.0% 55.3% 0.00 -11.5% 55.2% 0.00 -11.7%

gaj 66.5% – – 65.6% 0.46 -1.4% 67.5% 0.54 +1.5% 67.2% 0.53 +1.0%

rif 25.3% – – 25.0% 0.48 -1.4% 25.7% 0.58 +1.4% 24.8% 0.45 -2.0%

templateit 20.1% – – 24.6% 0.97 +22.4% 20.3% 0.53 +0.8% 24.9% 0.97 +23.7%

jnfe 38.7% – – 51.7% 0.96 +33.5% 43.9% 0.64 +13.4% 51.6% 0.96 +33.3%

sfmis 35.8% – – 46.7% 1.00 +30.6% 36.2% 0.55 +1.1% 46.3% 0.99 +29.3%

gfarcegestionfa 25.2% – – 33.4% 0.96 +32.5% 23.8% 0.43 -5.4% 33.1% 0.95 +31.5%

falselight 6.1% – – 6.2% 0.51 +2.0% 6.1% 0.50 0.0% 6.1% 0.50 0.0%

water-simulator 3.1% – – 3.8% 0.75 +19.1% 3.2% 0.53 +1.4% 4.0% 0.78 +27.2%

Cov. σ CI Cov. σ CI Cov. σ CI Cov. σ CI

tullibee 39.1% 3.2 [38.2,40.1] 43.5% 2.0 [43.0,44.1] 39.6% 3.1 [38.8,40.4] 43.9% 2.1 [43.3,44.5]

a4j 62.5% 1.0 [62.3,62.8] 64.4% 1.4 [64.0,64.8] 55.3% 2.2 [54.8,56.1] 55.2% 2.1 [54.7,55.9]

gaj 66.5% 4.9 [65.2,67.7] 65.6% 5.8 [64.1,67.3] 67.5% 4.1 [66.4,68.6] 67.2% 3.7 [66.3,68.3]

rif 25.3% 1.6 [24.9,25.8] 25.0% 1.6 [24.6,25.5] 25.7% 1.5 [25.3,26.2] 24.8% 1.5 [24.5,25.3]

templateit 20.1% 1.1 [19.8,20.4] 24.6% 2.0 [24.1,25.2] 20.3% 1.2 [20.0,20.6] 24.9% 2.0 [24.4,25.5]

jnfe 38.7% 3.4 [37.7,39.5] 51.7% 2.2 [51.2,52.3] 43.9% 8.1 [41.7,46.2] 51.6% 2.3 [51.0,52.3]

sfmis 35.8% 1.3 [35.4,36.2] 46.7% 0.9 [46.5,47.0] 36.2% 1.8 [35.7,36.7] 46.3% 1.7 [45.9,46.9]

gfarcegestionfa 25.2% 5.9 [23.6,26.8] 33.4% 1.4 [33.1,33.9] 23.8% 6.0 [22.3,25.5] 33.1% 1.5 [32.8,33.6]

falselight 6.1% 0.9 [6.0,6.4] 6.2% 0.0 [6.2,6.2] 6.1% 0.9 [6.0,6.4] 6.1% 0.9 [6.0,6.4]

water-simulator 3.1% 0.9 [2.9,3.4] 3.8% 0.9 [3.6,4.1] 3.2% 0.9 [3.0,3.5] 4.0% 1.0 [3.8,4.3]

industrial case study in Table 6.4, there is a large improvement on
all five projects. In particular, for one of those projects, the relative
improvement for branch coverage was as high as +67.6%.

The results in Table 6.3 are slightly different. Although the smart
Budget allocation still provides significantly better results on a higher
number of projects (statistically better in five out of 10; and equiv-
alent results in two subjects), there are three cases in which results
are statistically worse. In two of those latter cases, the branch cover-
age was statistically higher (Table 6.2), and our conjecture is that the
way exceptions are included in EvoSuite’s fitness function (see [130])
means that test suites with higher coverage (as achieved by the Bud-
get allocation) would be preferred over test suites with more excep-
tions. In this case, improving EvoSuite’s optimization strategy (e.g.,
by using multi-objective optimization) may lead to better results with
respect to both measurements. For the rif project (a framework for
remote method invocation) the decrease in the number of exceptions
is not significant (10.66 to 9.60) and neither is the decrease in cover-
age (25.3% to 25.0%). In this case, it seems that the use of the number
of branches is not a good proxy measurement of the test complex-
ity. This suggests that further research on measurements other than
branches as proxy for complexity would be important. On the other
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Table 6.3: Thrown exception results for the 10 open source projects ran-
domly selected from the SF100 corpus. For each project we report the

total number (i.e., sum of the averages over 50 runs for each CUT) of undeclared

thrown exceptions, the standard deviation (σ), and confidence intervals using boot-

strapping at 95% significance level. For all strategies, but the Simple strategy, we

report the effect sizes (Â12 and relative ratio difference) compared to the Simple

strategy. Effect sizes Â12 that are statistically significant are reported in bold. Re-

sults on the open source case study are based on 50 runs per configuration.

Simple Budget Seeding Budget & Seeding

Project Exc. Exc. Â12 ρ Exc. Â12 ρ Exc. Â12 ρ

tullibee 23.46 – – 29.36 0.88 +25.1% 23.46 0.49 0.0% 29.06 0.92 +23.8%

a4j 88.96 – – 93.58 0.77 +5.1% 87.20 0.41 -2.0% 88.22 0.47 -0.9%

gaj 30.28 – – 29.74 0.40 -1.8% 31.26 0.64 +3.2% 30.32 0.50 +0.1%

rif 10.66 – – 9.60 0.28 -10.0% 11.10 0.59 +4.1% 9.44 0.25 -11.5%

templateit 18.48 – – 31.14 0.97 +68.5% 19.05 0.56 +3.1% 30.66 0.98 +65.9%

jnfe 89.84 – – 94.46 0.90 +5.1% 92.88 0.64 +3.3% 94.34 0.89 +5.0%

sfmis 30.58 – – 35.02 0.93 +14.5% 31.24 0.59 +2.1% 35.08 0.89 +14.7%

gfarcegestionfa 53.70 – – 51.10 0.33 -4.9% 51.66 0.41 -3.8% 50.60 0.29 -5.8%

falselight 1.52 – – 1.42 0.45 -6.6% 1.58 0.53 +3.9% 1.42 0.45 -6.6%

water-simulator 45.74 – – 43.10 0.21 -5.8% 45.88 0.52 +0.3% 43.46 0.23 -5.0%

Cov. σ CI Cov. σ CI Cov. σ CI Cov. σ CI

tullibee 23.46 1.9 [23.0,24.0] 29.36 3.4 [28.4,30.4] 23.46 2.5 [22.8,24.1] 29.06 3.0 [28.2,29.9]

a4j 88.96 4.8 [87.6,90.2] 93.58 4.4 [92.4,94.8] 87.20 5.2 [85.9,88.6] 88.22 5.6 [86.7,89.8]

gaj 30.28 1.8 [29.8,30.8] 29.74 1.4 [29.3,30.1] 31.26 1.8 [30.8,31.8] 30.32 1.3 [30.0,30.7]

rif 10.66 1.3 [10.3,11.0] 9.60 1.2 [9.3,9.9] 11.10 1.2 [10.7,11.5] 9.44 1.1 [9.1,9.8]

templateit 18.48 3.5 [17.5,19.4] 31.14 4.3 [30.1,32.3] 19.05 2.9 [18.3,19.8] 30.66 3.9 [29.5,31.7]

jnfe 89.84 3.1 [88.9,90.6] 94.46 2.9 [93.7,95.2] 92.88 5.2 [91.3,94.2] 94.34 2.8 [93.5,95.1]

sfmis 30.58 2.3 [30.0,31.2] 35.02 2.0 [34.5,35.6] 31.24 2.4 [30.7,32.0] 35.08 2.6 [34.4,35.9]

gfarcegestionfa 53.70 7.9 [51.7,56.0] 51.10 5.9 [49.7,52.6] 51.66 8.4 [49.6,54.0] 50.60 5.2 [49.3,52.0]

falselight 1.52 0.5 [1.4,1.7] 1.42 0.5 [1.3,1.6] 1.58 0.5 [1.5,1.7] 1.42 0.5 [1.3,1.6]

water-simulator 45.74 3.0 [44.9,46.6] 43.10 2.1 [42.5,43.7] 45.88 3.1 [45.0,46.8] 43.46 1.9 [42.9,44.0]

hand, we would like to highlight that for the templateit project the
relative improvement was +68.5%.

RQ1: Smart Budget allocation improves performance significantly in most
of the cases.

Regarding input Seeding, in Table 6.2 there is one case in which it
gives statistically better results, but also one in which it gives statisti-
cally worse results. On the industrial case study (Table 6.4), it seems
to provide better results (although this observation is based only on
one run). Regarding the number of thrown exceptions, there are two
projects in which it gives statistically better results (Table 6.3). Unlike
the Budget allocation, the usefulness of seeding will be highly depen-
dent on the specific project under test. If there are many dependencies
between classes and many branches depend on specific states of pa-
rameter objects, then Seeding is likely to achieve better results. If this
is not the case, then the use of Seeding may adversely affect the search,
e.g., by reducing the diversity, thus exhibiting lower overall coverage
in some of the projects. However, note that the actual Seeding imple-
mented in EvoSuite for these experiments is simplistic. Thus, a main
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Table 6.4: Branch coverage results for the industrial case study. For each project

we report the branch coverage achieved by each strategy. For all strategies, but the

Simple strategy, we report the effect sizes (Â12 and relative average improvement)

compared to the Simple strategy. Results on the industrial case study are based on

one single run.

Simple Budget Seeding Budget & Seeding

Project Cov. Cov. Â12 ρ Cov. Â12 ρ Cov. Â12 ρ

projectA 23.6% 28.3% 1.00 +19.8% 24.2% 1.00 +2.4% 28.8% 1.00 +21.9%

projectB 13.0% 21.9% 1.00 +67.6% 15.6% 1.00 +19.7% 21.2% 1.00 +62.2%

projectC 30.4% 41.3% 1.00 +35.8% 30.3% 0.00 -0.2% 41.5% 1.00 +36.4%

projectD 72.5% 87.9% 1.00 +21.2% 72.7% 1.00 +0.2% 86.0% 1.00 +18.5%

projectE 23.9% 28.5% 1.00 +19.0% 24.1% 1.00 +0.8% 28.8% 1.00 +20.1%

conclusion from this result is that further research is necessary on
how to best exploit this additional information during the search.

RQ2: Input Seeding may improve performance, but there is a need for
better seeding strategies to avoid negative effects.

Finally, we analyse what happens when input Seeding is used to-
gether with the smart Budget allocation. For most projects, either per-
formance improves by a little (compared to just using smart Budget
allocation), or decreases by a little. Overall, when combined together,
results are slightly worse than when just using the Budget allocation.
This is in line with the conjecture that Seeding used naively can ad-
versely affect results: Suppose that seeding on a particular class is bad
(for example as is the case in the a4j project), then assigning signifi-
cantly more time to such a class means that, compared to Budget, sig-
nificantly more time will be wasted on misguided seeding attempts,
and thus the relative performance will be worse. Note also that the
overall result is strongly influenced by one particular project that is
problematic for input Seeding (i.e., a4j with Â12 = 0 in Table 6.2). This
further supports the need for smarter seeding strategies.

RQ3: Seeding with Budget allocation improves performance, but Seeding
strategies may negatively affect improvements achieved by Budget

allocation.

6.4.3 Continuous Test Generation

The second set of experiments considers the effects of CTG over time.
Figure 6.1 plots the overall branch coverage achieved over the course
of 100 commits. We denote the strategy that uses Seeding from previ-
ous test suites and allocation based on History. In most of the projects
the higher coverage of the History strategy achieves clearly higher
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Table 6.5: Coverage results over time for the most popular software projects
on GitHub. For each project we report the “time coverage”: the average branch

coverage over all classes in a project version, averaged over all 100 commits. These

time coverages are averaged out of the five repeated experiments. We compare the

“History” strategy with the “Simple”, “Budget”, and “Budget & Seeding” ones, and

report the effect sizes (Â12 over the five runs and relative average improvement).

Effect sizes Â12 that are statistically significant are reported in bold.

Simple Budget Budget & History

Project Cov. Cov. Seeding Cov. Cov. Âs ρ Âb ρ Âb&s ρ

HTTP-Request 0.25 0.24 0.25 0.39 1.00 +57.97% 1.00 +58.69% 1.00 +56.77%

JodaTime 0.55 0.62 0.61 0.65 1.00 +17.82% 0.80 +4.85% 0.92 +6.06%

JSon 0.58 0.64 0.65 0.86 1.00 +49.19% 1.00 +33.72% 1.00 +32.02%

JSoup 0.37 0.43 0.42 0.56 1.00 +51.18% 1.00 +31.74% 1.00 +33.73%

Scribe 0.83 0.85 0.87 0.85 1.00 +1.76% 0.48 +0.02% 0.00 -2.41%

Spark 0.38 0.40 0.40 0.50 1.00 +31.38% 1.00 +25.39% 1.00 +24.32%

Async-HTTP-Client 0.55 0.64 0.65 0.65 1.00 +18.90% 0.80 +1.32% 0.80 +0.14%

SpringSide 0.47 0.47 0.47 0.50 0.60 +5.90% 0.60 +5.62% 0.60 +6.13%

coverage, and this coverage gradually increases with each commit.
The coverage increase is also confirmed when looking at the results
throughout history; to this extent, Table 6.5 summarises the results
similarly to the previous experiment, and compares against the base-
line strategies Simple, Budget, and Budget & Seeding. In all projects,
the coverage was higher than using the Simple strategy (only on
SpringSide is this result not significant). Compared to Budget, there
is an increase in all projects (significant for four) but for Scribe, cov-
erage is essentially the same. Compared to Budget & Seeding, there
is a significant increase in five projects, and an insignificant increase
in two projects. Interestingly, for the Scribe project History leads to
significantly lower coverage (-2%) than Budget & Seeding. This shows
that seeding of input values is very beneficial on Scribe (where 69%
of the classes have dependencies on other classes in the project), and
indeed on average the benefit of input Seeding is higher than the ben-
efit of the History strategy. However, in principle History can also be
combined with Budget & Seeding.

RQ4: CTG achieves higher coverage than testing each project version
individually, and coverage increases further over time.

Figure 6.2 shows the time spent on test generation. Note that the
strategies (Simple, Seeding, Budget, Budget & Seeding) were always con-
figured to run with the same fixed amount of time. During the first
call of CTG, the same amount of time was consumed for the History
strategy, but during successive commits this time reduces gradually
as fewer classes need further testing.

RQ5: CTG reduces the time needed to maximise the code coverage of unit
test suites for entire projects.
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Figure 6.1: Branch coverage results over the course of 100 commits for the
GitHub open source case study.
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Figure 6.2: Time spent on test generation for the GitHub open source case
study over the course of 100 commits.
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Let us now look at some of the examples in more detail.
Async-HTTP-Client exhibits two interesting events during its history
(see Figure 6.1a): From the first commit until commit number 63 all
strategies have a constant coverage value. At commit 64, 20 classes
were changed and three new classes were added. Although this af-
fected the coverage of History and also other strategies, History only
increase its time for test generation briefly from 18 minutes at com-
mit 63, to 30 minutes on commit 64, on average (compared to 219

minutes for a full test generation run). Figure 6.2a further shows
a large increase of the test generation time at commit 93, although
the coverage does not visibly change. In this commit, several classes
were changed at that time, but only cosmetic changes happen to the
source code (commit message “Format with 140 chars lines”). As Evo-
Suite apparently had already reached its maximum possible coverage
on these classes, no further increase was achieved. We can observe
similar behaviour in the plots of JSoup (Figure 6.1e), where a major
change occurred at commit 50 with the introduction of a new class
(org.jsoup.parser.TokeniserState), which adds 774 new branches
to the 2,594 previously existing branches. JSoup project at commit 50

also has a slightly coverage reduction. Although History strategy on
JSoup maintains its coverage between commits 1 and 49, at commit
50 drops to 0.54 (on average). Before that commit the complexity was
2,594 number of branches, but at commit 50 a new class named org.

jsoup.parser.TokeniserState with a complexity of 774 was added
to the project, increasing the global complexity of the project to 3,368

branches, and decreasing its coverage. Although the observed cover-
age reduction at commit 50 (0.54), this represents 32% (on average)
more coverage than the second highest coverage at that commit (0.36

from Budget and Seeding). In Figure 6.2e, we observed the same time
reduction as on Async-HTTP-Client project.

The HTTP-Request subject reveals a nice increase over time, al-
though the time plot (Figure 6.2b) shows only small improvement
(13% less time in total). This is because this project consists only of a
single class. Consequently, most commits will change that particular
class, leading to it being tested more often. In the commits where the
class was not tested, no source code changes were performed (e.g.,
only test classes or other project files were changed, not source code).
Thus, HTTP-Request is a good example to illustrate how using previ-
ous test suites for seeding gradually improves test suites over time,
independently of the time spent on the class. Because this project has
only one class, the Seeding strategy has similar results (on average) to
the Simple strategy. A similar behaviour can also be observed for JSON
(see Figure 6.1d), where History leads to a good increase in coverage
over time. There is a slight bump in the coverage plot at commit 61

(Figure 6.2d), where 13 new classes were added to the project.
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JodaTime, Scribe, and SpringSide are examples of projects with
only a small increase in coverage (Figures 6.1c, 6.1f and 6.1h, re-
spectively). Although these projects differ in size, it seems that their
classes are all relatively easy for EvoSuite, such that additional time
or the seeding has no further beneficial effect. For example, 72% of
the classes in SpringSide have less than 17 branches. However, in all
three cases the reduction in test generation time is very large (Fig-
ures 6.2c, 6.2f and 6.2h respectively).

Finally, Spark shows interesting behaviour where all approaches
lead to increased coverage over the course of time (Figure 6.1g). This
is because during the observed time window of 100 commits the
project was heavily refactored. For example, some complex classes
were converted into several simpler classes, increasing the time spent
for non-History based strategies (Figure 6.2g), up to a maximum of
84 minutes on the last commit. This project also illustrates nicely why
applying seeding blindly does not automatically lead to better results:
For example, at commit 30 there are only 9 out of 25 classes that ac-
tually have dependencies, and many of the dependencies are on the
class ResponseWrapper — which EvoSuite struggles to cover. As a
consequence, there is no improvement when using seeding. This sug-
gests that there is not a single optimal seeding strategy, but that seed-
ing needs to take external factors such as dependencies and achieved
coverage into account.

6.5 related work

Continuous test generation is closely related to test suite augmenta-
tion: Test suite augmentation is an approach to test generation that
considers code changes and their effects on past test suites. Some
test suite augmentation techniques aim to restore code coverage in
test suites after changes by producing new tests for new behaviour
(e.g. [68]), while other approaches explicitly try to exercise changed
code to reveal differences induced by the changes (e.g., [22, 178, 179]);
Shamshiri et al. [298] have been extending the EvoSuite tool in this
direction. Although test suite augmentation is an obvious application
of CTG, there are differences: First, CTG answers the question of how
to implement test suite augmentation (e.g., how to allocate the compu-
tational budget to individual classes). Second, while CTG can benefit
from information about changes, it can also be applied without any
software changes. Third, CTG is not tied to an individual coverage
criterion; for example, one could apply CTG such that once cover-
age of one criterion is saturated, test generation can target a different,
more rigorous criterion. Finally, the implementation as part of contin-
uous integration makes it possible to automatically notify developers
of any faults found by automated oracles such as assertions or code
contracts. Some of the potential benefits of performing test suite aug-
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mentation continuously have also been identified in the context of
software product-lines [299].

6.6 summary

In this chapter, the scope of unit test generation tools like EvoSuite

is extended: Rather than testing classes in isolation, we consider
whole projects in the context of continuous integration. This permits
many possible optimizations, and our EvoSuite-based prototype pro-
vides Continuous Test Generation (CTG) strategies targeted at exploit-
ing complexity and/or dependencies among the classes in the same
project. To validate these strategies, we carried out a rigorous eval-
uation on a range of different open source and industrial projects,
totalling 2,061 classes. The experiments overall confirm significant
improvements on the test data generation: up to +58% for branch
coverage and up to +69% for thrown undeclared exceptions, while
reducing the time spent on test generation by up to +83%.

Although our immediate objective in our current experiments lies
in improving the quality of generated test suites, we believe that the
use of CTG could also have more far reaching implications. For exam-
ple, regular runs of CTG will reveal testability problems in code, and
may thus lead to improved code and design. The use of CTG offers
great incentive to include assertions or code contracts, which would
be automatically and regularly exercised.

To reduce the gap between what approaches are proposed by re-
searchers and what is actually used by engineers in practice, in the
next chapter we present three new plugins for the EvoSuite tool.
These plugins allow praticioners to simple execute EvoSuite from
an IDE, or to use the CTG strategies discussed in this chapter in a
continuous integration system.
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M AV E N , I N T E L L I J A N D J E N K I N S

abstract

Different techniques to automatically generate unit tests for object
oriented classes have been proposed, but how to integrate these tools
into the daily activities of software development is a little investigated
question. In this chapter, we report on our experience in supporting
industrial partners by introducing the EvoSuite automated JUnit test
generation tool in their software development processes. The first step
consisted of providing a plugin to the Apache Maven build infras-
tructure. The move from a research-oriented point-and-click tool to
an automated step of the build process has implications on how de-
velopers interact with the tool and generated tests, and therefore, we
produced a plugin for the popular IntelliJ Integrated Development
Environment (IDE). As build automation is a core component of Con-
tinuous Integration (CI), we provide a further plugin to the Jenkins CI
system, which allows developers to monitor the results of EvoSuite

and integrate generated tests in their source tree. In this chapter, we
discuss the resulting architecture of the plugins, and the challenges
arising when building such plugins. Although the plugins described
are targeted for the EvoSuite tool, they can be adapted and their
architecture can be reused for other test generation tools as well.

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Unit Test Generation in Build Automation . . . . . 133
7.3 IDE Integration of Unit Test Generation . . . . . . 137
7.4 Continous Test Generation . . . . . . . . . . . . . . 139
7.5 Lessons Learnt . . . . . . . . . . . . . . . . . . . . . 142
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1 introduction

As described in the previous chapters, the EvoSuite tool automati-
cally generates JUnit tests for Java software [9, 113, 130, 189]. Given
a Class Under Test (CUT), EvoSuite creates sequences of calls that
maximise testing criteria such as line and branch coverage, while at
the same time generating JUnit assertions to capture the current be-
haviour of the CUT. Although our previous experiments on open-



132 unit test generation during software development

source projects and industrial systems have shown that EvoSuite can
successfully achieve good code coverage — how should it be inte-
grated in the development process of the software engineers?

In order to answer this question, the interactions between a test gen-
eration tool and a software developer have been subjected to a num-
ber of different controlled empirical studies and observations [134,
196, 300]. However, the question of integrating test generation into
the development process goes beyond the interactions of an individ-
ual developer with the tool: In an industrial setting, several devel-
opers work on the same, large code base, and a test generation tool
should smoothly integrate into the current processes and tool chains
of the software engineers.

There are different ways of using the EvoSuite test generation tool.
The most basic way of doing it, is by running EvoSuite from the
command line. If the tool is compiled and assembled in a standalone
executable jar (e.g., evosuite.jar), then it can be called on a CUT
(e.g., org.Foo) as follows:

$ java -jar evosuite.jar org.Foo

However, in a typical Java project the full classpath needs to be spec-
ified (e.g., as a further command line input). This is necessary to tell
the tool where to find the bytecode of the CUT and of all its depen-
dency classes. For example, if the target project is compiled in a folder
called build, then to execute EvoSuite on the CUT, one can use the
following command:

$ java -jar evosuite.jar -class org.Foo -projectCP build

where the option -class is used to specify the CUT, and the option
-projectCP is used for specifying the classpath.

This approach works fine if EvoSuite is used in a “static” context,
e.g., when the classpath does not change, and a user tests the same
specific set of classes several times. A typical example of such a sce-
nario is the running of experiments on a set of benchmarks in an
academic context [200] — which is quite different from an industrial
use case. An industrial software system might have hundreds, if not
thousands, of entries on the classpath, which might frequently change
when developers push new changes to the source repository (e.g., Git,
Mercurial or SVN). Thus, manually specifying long classpaths for ev-
ery single submodule is not a viable option.

Usability can be improved by integrating the test generation tool
directly into an IDE. For example, EvoSuite has an Eclipse plugin [9]
which includes a jar version of EvoSuite. Test generation can be acti-
vated by the developer by selecting individual classes, and the class-
path is directly derived from the APIs of the IDE itself. However, this
approach does not scale well to larger projects with many classes
and frequent changes. Furthermore, EvoSuite requires changes to
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the build settings that have to be consistent for all developers of a
software project, as EvoSuite’s simulation of the environment of the
CUT requires inclusion of a dependency jar file (containing mocking
infrastructure, for example, the Java API of the file system [301] and
networking [302]).

To overcome these problems, we have developed a set of plugins
for common software development infrastructure in industrial Java
projects. In particular, in this chapter we present a plugin to control
EvoSuite from Apache Maven [303] (Section 7.2), as well as plugins
for IntelliJ IDEA [304] (Section 7.3), and Jenkins CI [266] (Section 7.4)
to interact with the Apache Maven plugin. Additionally, in Section 7.5
we discuss lessons we learnt while developing those plugins, and
finally, we summarise the chapter in Section 7.6.

7.2 unit test generation in build automa-
tion

Nowadays, the common standard in industry to compile and assem-
ble Java software is to use automated build tools. Maven is perhaps
the currently most popular one (an older one is Ant, whereas the
more recent Gradle is currently gaining momentum). Integrating a
test generation tool into an automated build tool consists of support-
ing execution of generated tests, as well as generation of new tests.

7.2.1 Integrating Generated Tests in Maven

In order to make tests deterministic and isolate them from the envi-
ronment, EvoSuite requires the inclusion of a runtime library [301].
When using a build tool like Maven, it is easy to add third-party li-
braries. For example, the runtime dependency for the generated tests
of EvoSuite can be easily added (and automatically downloaded) for
example by copy&pasting the following entry into the pom.xml file
defining the build:

<dependency>

<groupId>org.evosuite</groupId>

<artifactId>evosuite-standalone-runtime</artifactId>

<version>1.0.5</version>

<scope>test</scope>

</dependency>

Once this is set, the generated tests can use this library, which is
now part of the classpath. This is important because, when a soft-
ware project is compiled and packaged (e.g., with the command mvn

package), all the test cases are executed as well to validate the build.
However, when we generated test cases for one of our industrial

partners for the first time, building the target project turned into
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mayhem: some generated tests failed, as well as some of the exist-
ing manual tests (i.e, the JUnit tests manually written by the software
engineers), breaking the build. The reason is due to how classes are
instrumented: The tests generated by EvoSuite activate a Java Agent
to perform runtime bytecode instrumentation, which is needed to
replace some of the Java API classes with our mocks [301]. The in-
strumentation is done when the tests are run, and can only be done
when a class is loaded for the first time. On one hand, if the manual
existing tests are run first before the EvoSuite ones, the bytecode of
the CUTs would be already loaded, and instrumentation cannot take
place, breaking (i.e., causing them to fail) all the generated tests de-
pending on it. On the other hand, if manual tests are run last, they
will use the instrumented versions, and possibly fail because they do
not have the simulated environment configured for them.

There might be different ways to handle this issue, as for example
forcing those different sets of tests to run on independently spawned
JVMs. However, this might incur some burden on the software en-
gineers’ side, who would need to perform the configuration, and
adapt (if even possible) all other tools used to report and visualise
the test results (as we experienced). Our solution is twofold: (1) each
of our mocks has a rollback functionality [302], which is automati-
cally activated after a test is finished, so running manual tests after
the generated ones is not a problem; (2) we created a listener for the
Maven test executor, which forces the loading and instrumentation
of all CUTs before any test is run, manual tests included. Given this
solution, engineers can run all the tests in any order, and in the same
classloader/JVM. This is achieved by simply integrating the follow-
ing entry into the pom.xml where the Maven test runner is defined
(i.e., in maven-surefire-plugin):

<property>

<name>listener</name>

<value>org.evosuite.runtime.InitializingListener</value>

</property>

7.2.2 Generating Tests with Maven

The configuration options discussed so far handle the case of running
generated tests, but there remains the task of generating these tests
in the first place. Although invoking EvoSuite on the local machine
of a software engineer from an IDE may be a viable scenario during
software development, it is likely not the best solution for legacy sys-
tems. When using EvoSuite for the first time on a large industrial
software system with thousands of classes, it is more reasonable to
run EvoSuite on a remote dedicated server, as it would be a very
time consuming task. To simplify the configuration of this (e.g., to
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avoid manually configuring classpaths on systems with dozens of
pom.xml files in a hierarchy of submodules) and to avoid the need to
prepare scripts to invoke EvoSuite accordingly, we implemented a
Maven plugin with an embedded version of EvoSuite. For example,
to generate tests for all classes in a system using 64 cores, a software
engineer can simply type:

$ mvn -Dcores=64 evosuite:generate

To get an overview of all execution goals, the EvoSuite Maven plugin
can be called as follows:

$ mvn evosuite:help

or as follows:

$ mvn evosuite:help -Ddetail=true -Dgoal=generate

to get the list of parameters of, e.g., the generate goal. In partic-
ular, it is possible to configure aspects such as number of cores
used (cores), memory allocated (memoryInMB), or time spent per class
(timeInMinutesPerClass).

It is further possible to influence how the time is allocated to
individual classes using the strategy parameter. For instance, the
simple strategy described in Section 6.2.1 allocates the time speci-
fied in the timeInMinutesPerClass per class. By default, EvoSuite

used the budget strategy described in Section 6.2.2, which allocates
a time-budget proportional to the complexity of a class. As a proxy
to complexity, EvoSuite uses the number of branches to determine
whether class A is more complex than class B. That is, classes with
more branches have more time available to be tested. First, EvoSuite

determines the maximum and the minimum time budget available.
The minimum time budget is the minimum time per class (by de-
fault 1 minute) multiplied by the total number of classes. The maxi-
mum time budget is timeInMinutesPerClass multiplied by the total
number of classes. The difference between maximum and minimum
time budget is called extraTime and it is used to give more time to
more complex classes. Assuming there is an extraTime of e, the time
budget per branch is e

|branches| . Then, each CUT C has a time bud-
get of minTimeBudgetPerClass+ (timePerBranch× |branchesC|).
Further implemented strategies are the experimental seeding strat-
egy (Section 6.2.3), where EvoSuite tries to test classes in the order
of dependencies to allow re-use of Java objects, and the history strat-
egy (Section 6.3), where EvoSuite exploits the fact the projects evolve
over time. To get an overview of tests generated so far, one can use:

$ mvn evosuite:info

By default, EvoSuite stores tests in the .evosuite/evosuite-tests

hidden folder. Once the developer has inspected the tests and decided
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to integrate them into the source folder, this can be done using the
following command:

$ mvn evosuite:export

The export command copies the generated tests to another folder,
which can be set with the targetFolder option (default value is src/

test/java). Tests will only be executed by the mvn test command
once they are in src/test/java (unless Maven is configured other-
wise). Once exported, the coverage of manually written (if any) and
automatically generated tests can be measured using EvoSuite. This
can be done using the following command:

$ mvn evosuite:coverage

The coverage command instruments all classes under src/main/java
(for typical Maven projects) and runs all test cases from src/test/

java. EvoSuite executes all test cases using the JUnit API on all
classes, and determines the coverage achieved on all of EvoSuite’s
target code coverage criteria. Future improvements of this option will
try to re-use maven-surefire1 plugin to run the test cases instead of
directly using the JUnit API.

To enable the EvoSuite plugin, the software engineer would just
need to copy&paste the following plugin declaration to the root pom.
xml file:

<plugin>

<groupId>org.evosuite.plugins</groupId>

<artifactId>evosuite-maven-plugin</artifactId>

<version>1.0.5</version>

<executions>

<execution>

<goals>

<goal>prepare</goal>

</goals>

<phase>process-test-classes</phase>

</execution>

</executions>

</plugin>

By doing this, there is no further need to do any installation or
manual configuration: Maven will automatically take care of it. Note:
if a plugin is not in the Maven Central Repository [306] one needs to
add the URL of the server where the plugin is stored, but that needs
to be done just once (e.g., in a corporate cache using a repository
manager like Nexus [307]).

Once the EvoSuite Maven plugin is configured by editing the pom.

xml file (which needs to be done only once), if an engineer wants to

1 The Maven Surefire plugin [305] is used during the test phase of a maven project to
execute all unit tests.
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generate tests on a new server, then it is just a matter of uploading
the target system there (e.g., git clone if Git is used as source repos-
itory manager), and then executing mvn evosuite:generate. That is
all that is needed to generate tests with EvoSuite’s default configura-
tion (some parameters can be added to specify the number of cores to
use, for how long to run EvoSuite, if only a subset of classes should
be tested, etc.).

7.3 ide integration of unit test genera-
tion

Once the generated unit tests require a runtime dependency to run,
embedding EvoSuite within an IDE plugin (as in the past we did for
Eclipse) becomes more difficult because of potential EvoSuite version
mismatches: the IDE plugin could use version X, whereas the project
could have dependency on Y. Trying to keep those versions aligned
is not trivial: a software engineer might work on different projects at
the same time, each one using a different version; a software engineer
pushing a new version update in the build (e.g., by changing the de-
pendency version in the pom.xml file and then committing the change
with Git) would break the IDE plugin of all his/her colleagues, who
would be forced to update their IDE plugin manually; etc.

Our solution is to keep the IDE plugin as lightweight as possible,
and rely on the build itself to generate the tests. For example, the
IDE plugin would just be used to select which are the CUTs, and
what parameters to use (e.g., how long the search should last). Then,
when tests need to be generated, the IDE plugin just spawns a process
that calls mvn evosuite:generate. By doing this, it does not matter
what version of EvoSuite the target project is configured with, and
updating it will be transparent to the user. Furthermore, every time
a new version of EvoSuite is released, there is no need to update the
IDE plugin, just the pom.xml file (which needs to be done only once
and just by one engineer).

However, to achieve this, the interfaces between the IDE plugin
and the Maven plugin need to be stable. This is not really a problem
in automated test data generation, because in general there are only
few parameters a user is really interested into: for what CUTs should
tests be generated for, and what resources to use (e.g., memory, CPU
cores, and time).

This approach worked well for some of our industrial partners, but
not for all of them: For example, some use Gradle to build their soft-
ware rather than Maven. Furthermore, relying on a build tool does
not work when no build tool is used, e.g. when a new project is cre-
ated directly in the IDE. To cope with the issue of handling build tools
for which we have no plugin (yet), or handling cases of no build tool
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Figure 7.1: Screenshot of the EvoSuite plugin for IntelliJ IDEA, when ap-
plied on the code example from Arcuri et al. [302].

at all, we also found it necessary to have the option of using an exter-
nal command line EvoSuite executable, which the IDE plugin calls
on a separate spawned process. As the corresponding jar file does
not need to be part of the build, it can be simply added directly to
the source repository (e.g., Git) without needing to change anything
regarding how the system is built. In this way, all developers in the
same project will use the same version, and do not need to download
and configure it manually.

Regarding the runtime dependency for the generated tests, this is
not a problem for build tools like Ant/Ivy and Gradle, as they can
make use of Maven repositories. However, when no build tool is em-
ployed, the runtime dependency needs to be added and configured
manually (as for any other third-party dependency). Note: the Evo-
Suite executable could be used as runtime dependency as well (it is
a superset of it), but it would bring many new third-party libraries in
the build. This might lead to version mismatch problems if some of
these libraries are already used in the project.

This architecture is different from what we originally had consid-
ered for our Eclipse plugin. To experiment with it, we started a new
plugin for a different IDE, namely IntelliJ IDEA. This was further mo-
tivated by the fact that most of our industrial partners use IntelliJ and
not Eclipse. Figure 7.1 shows a screenshot of applying EvoSuite to
generate tests for the motivating example used in [302]. A user can se-
lect one or more classes or packages in the project view, right click on
them, and start the action Run EvoSuite. This will show a popup dia-
log, in which some settings (e.g., for how long to run EvoSuite) can
be chosen before starting the test data generation. Progress is shown
in a tool window view.
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While working on the IntelliJ plugin we found out that, in general,
embedding and executing a test data generation tool on the same JVM
of the plugin (as we did with Eclipse) is not a viable option. If you are
compiling a project with Java 8, for example, that does not mean that
the IDE itself is running on Java 8 (recall that IDEs like IntelliJ, Eclipse
and NetBeans are written in Java and execute in a JVM). For example,
up to version 14, IntelliJ for Mac used Java 6, although IntelliJ can
be used to develop software for Java 8. The reason is due to some
major performance GUI issues in the JVM for Mac in both Java 7 and
Java 8. An IDE plugin will run in the same JVM of the IDE, and so
needs to be compiled with a non-higher version of Java. In our case,
as EvoSuite is currently developed/compiled for Java 8, calling it
directly for the IDE plugin would crash it due to bytecode version
mismatch. Thus, the test data generation tool has to be called on a
spawned process using its own JVM.

7.4 continous test generation

Although generating tests on demand (e.g., by directly invoking the
Maven/IntelliJ plugins) on the developer’s machine is feasible, there
can be many reasons for running test generation on a remote server.
In particular, running EvoSuite on many classes repeatedly after
source code changes might be cumbersome. To address this prob-
lem, we introduced the concept of Continuous Test Generation (CTG)
in Section 6.3, where Continous Integration (CI) (e.g., Jenkins and
Bamboo) is extended with automated test generation. In a nutshell, a
remote server will run EvoSuite at each new code commit using the
EvoSuite Maven plugin. Only the new tests that improve upon the
existing regression suites will be sent to the users using a plugin to
the Jenkins CI system.

7.4.1 Invoking EvoSuite in the Context of CTG

To repeatedly invoke EvoSuite during CTG, the history strategy
needs to be set on the Maven plugin. As previously described in Sec-
tion 6.3.1, this strategy changes the budget allocation such that more
time is spent on new or modified classes than old classes, under
the assumption that new or modified code is more likely to be
faulty [282]. Furthermore, instead of starting each test generation
from scratch, the history strategy re-uses previously generated test
suites as a seed when generating the initial population of the Genetic
Algorithm, to start test generation with some code coverage, instead
of trying to cover goals already covered by a previous execution of
CTG (see Section 6.3.2 for more details).

The EvoSuite Maven plugin creates a folder called .evosuite un-
der the project folder where all the files generated and/or used dur-
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ing test generation are kept. To be independent of any Source Control
Management (SCM), we have implemented a very simple mechanism
to check which classes (i.e., Java files) have changed from one commit
to another one. Under .evosuite, CTG creates two files: hash_file
and history_file. Both files are based on a two column format, and
are automatically created by the EvoSuite Maven plugin. The first
file contains as many rows as there are Java files in the Maven project,
and each row is composed of the full path of each Java file and its
hash. The hash value allows EvoSuite to determine whether a Java
file has been changed. Although this precisely identifies which Java
files (i.e., classes) have been changed, it does not take into account
whether the change was in fact a source change or just, for exam-
ple, a JavaDoc change. In Section 8.2 we propose different strate-
gies that could be explored in the future to improve this feature.
The second file (history_file) just keeps the list of new/modified
classes. A class is considered new if there is no record of that class
on the hash_file. A class is considered as modified, if its current hash
value is different from the value on hash_file. Similar to Git out-
put, the first column of history_file is the status of the Java file:
“A” means added, and “M” means modified. The second column
is the full path of the Java file. Each CTG call also creates a tem-
porary folder (under the .evosuite folder) named with the format
tmp_year_month_day_hour_minutes_seconds. All files (such as .log,
.csv, .java files, etc) generated by EvoSuite during each test genera-
tion will be saved in this temporary folder.

At the end of each test generation, the best test suites will be copied
to a folder called best-tests under .evosuite. This folder will only
contain test suites that improve over already existing tests, i.e., man-
ually written (if any) and automatically generated tests. In order to
be copied to the best-tests folder, a test suite for a CUT needs to ei-
ther be (a) generated for a class that has been added or modified, (b)
achieve a higher code coverage than the existing tests, or (c) cover at
least one additional coverage goal that is not covered by the existing
tests.

7.4.2 Accessing Generated Tests from Jenkins

Once CTG is part of the build process (e.g., through the Maven plu-
gin), then integrating it in a CI system becomes easier. We have de-
veloped a plugin for the Jenkins CI system which allows developers
to:

– Visualize code coverage and time spent on test generation;

– Get statistic values such as coverage per criterion, number of
testable classes, number of generated test cases, total time spent
on test generation per project, module, build, or class;
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– View the source code of the generated test suites per class;

– Commit and push the new generated test suites to a specific
branch2.

The Jenkins plugins relies on information produced by the underly-
ing Maven plugin, which generates a file named project_info.xml

with detailed information. Consequently, reproducing the functional-
ity of the Jenkins plugin for other CI platforms should be straightfor-
ward.

Currently, the EvoSuite Jenkins plugin is available for download
on our webpage at www.evosuite.org/downloads. To install it, the ad-
ministrator of a Jenkins instance has to go to “Manage Jenkins” menu,
and then “Manage Plugins” option. On the “Advanced” tab there
are three different options to install plugins: “HTTP Proxy Configu-
ration”, “Upload Plugin”, and “Update Site”. The “Upload Plugin”
option should be used to upload and install the evosuite.hpi file
previously downloaded from our webpage. Once installed, the Evo-
Suite Jenkins plugin runs as a “post-build” step, in which the output
of the EvoSuite Maven plugin is displayed on the CI web interface.
This is similar to the type of architecture used by other plugins such
as Emma [272] (a widely used Java tool for code coverage): the Emma
Maven plugin needs to be added to the pom.xml project descriptor,
and then it needs to be called as part of the CI build. To enable the
EvoSuite Jenkins plugin, users just have to access the “configure”
page of their project and add EvoSuite as one of the “post-build”
actions. As shown in Figure 7.2, there are three options to configure
EvoSuite:

1. Automatic commits: The plugin can be configured to automati-
cally commit newly generated test suites to the Git repository.
If this option is deactivated, then the generated test suites will
remain on the CI system and users can still use the CI web in-
terface to access the generated test suites of each class.

2. Automatic push: The plugin can be configured to automatically
push commits of generated tests to a remote repository.

3. Branch name: To minimise interference with mainstream devel-
opment, it is possible to let the plugin push to a specific branch
of the repository.

Consequently, when the development team of a project is already
running a CI server like Jenkins and is using a build tool like Maven,
then adding and configuring the EvoSuite Jenkins plugin is a matter
of a few minutes. This is in fact an essential property of a successful
technology transfer from academic research to industrial practice, as

2 At the time of writing this chapter, EvoSuite just supported Git repositories.

www.evosuite.org/downloads
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Figure 7.2: Configuring the EvoSuite Jenkins plugin.

“trying out” those novel techniques becomes a simple, low risk activ-
ity. At any rate, support for other CI systems (e.g., Bamboo) and build
tools (e.g., Gradle) is possible and should be developed in the future
to support more projects / systems.

Once configured, and after the first execution of CTG on the project
under test, a coverage plot will be shown on the main page of the
project, as shown in Figure 7.3. In this plot, the x-axis represents the
commits, and y-axis represents the coverage achieved by each crite-
rion. The plot is clickable and redirects users to the selected build
(see Figure 7.4).

On the project dashboard, users also have access to a button called
“EvoSuite Project Statistics”, which redirect them to a statistics page,
where the overall coverage, the coverage per criterion, and the time
spent on test generations is reported (see Figure 7.5). Similarly, on
the build and module pages (and in addition to coverage values) the
number of generated test cases is also reported. On the class page
(see Figure 7.6) users can also view the source code of the generated
test suite.

7.5 lessons learnt

While developing the plugins for Maven, IntelliJ IDEA and Jenkins,
we learnt several important lessons, which we discuss in this section.
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Figure 7.3: Jenkins dashboard with EvoSuite plugin applied on Apache
Commons Lang project.

Figure 7.4: Jenkins build dashboard with EvoSuite statistics like, for exam-
ple, number of testable classes, or overall coverage.

7.5.1 Lightweight Plugins

Developing a plugin is usually a very time consuming and tedious
task — not necessarily because of specific technical challenges, but
rather due to a systematic lack of documentation. Most tools we anal-
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Figure 7.5: EvoSuite statistics such as overall and coverage achieved by each
criterion, and time spend on generation of a project.

Figure 7.6: EvoSuite statistics of a class and the source code of the generated
test suite.

ysed provide some tutorials on how to write plugins, but these are
very basic. API documentation in form of JavaDocs is usually very
scarce, if it exists at all. For example, at the time of writing this chap-
ter, IntelliJ IDEA does not even have browsable JavaDoc documenta-
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tion. The “recommended” way to learn how to develop plugins for
IntelliJ IDEA is to check out its source code, and also to study other
already existing open-source plugins for it. The same happened dur-
ing the development of the Jenkins plugin: Although there are more
than 1,000 Jenkins plugins [266] (at the time of writing this chapter)
and the documentation to setup the IDE (Eclipse or IntelliJ IDEA) to
develop and build a Jenkins plugin is very complete, the documenta-
tion of, for example, how to keep data from one build to another is
very limited. To our surprise, Jenkins web interface is not created as
a typical webpage. I.e., instead of building all the web interface ele-
ments from different files (e.g., .html, .css, .js, etc.) every time a page
is loaded, Jenkins deserialises all the data previously generated by a
build. This is of course a feature that speed up Jenkins, but it took
us a while to understand it and properly use it, due to the lack of
documentation.

Often, adding even some very basic functionalities requires hours
if not days of studying the source code of those tools, or asking ques-
tions on their developers’ forums (in this regard, IntelliJ’s forum was
very useful). To complicate matters even more, the APIs of these tools
are not really meant for maintainability (e.g., backward compatibility
to previous versions, as usually done for widely used libraries), and
can drastically change from release to release.

The lesson here is that plugins should be as lightweight as possible,
where most of the functionalities should rather be in the test data
generation tools. A plugin should be just used to start the test data
generation with some parameters, and provide feedback on when the
generation is finished, or issue warnings in case of errors.

Another lesson learnt is that, at least in our cases, it pays off to run
the test data generation tools in a separated JVM. This is not only for
Java version mismatch issues (recall Section 7.3), but also for other
technical details. The first is related to the handling of classloaders:
EvoSuite heavily relies on classloaders, for example to load and in-
strument CUTs, and also to infer the classpath of the JVM that started
EvoSuite automatically (this is needed when EvoSuite spawns client
processes). When run from command line, the classloader used to
load EvoSuite’s entry point would be the system classloader, which
usually is an instance of URLClassLoader. A URLClassLoader can be
queried to obtain the classpath of the JVM (e.g., to find out which ver-
sion of Java was used, and its URL on the local file system). However,
this is practically never the case in plugins, where classes are usually
loaded with custom classloaders. If a tool relies on the system class-
loader, then running it inside a plugin will simply fail (as it was in
our case with EvoSuite).

Another benefit of running a test data generation tool on a separate
process is revealed when there are problems, like a crash or hanging
due to an infinite loop or deadlock. If such problems happen in a
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spawned process, then that will not have any major side effects on the
IDE, and the software engineers will not need to restart it to continue
coding. As generating tests is a time consuming activity (minutes or
even hours, depending on the number of CUTs), a couple of seconds
of overhead due to a new JVM launch should be negligible.

Furthermore, there are more subtle corner cases we encountered:
During a demonstration of EvoSuite with the Eclipse plugin, we de-
cided to switch off the wifi connection just a minute before the demo
started, in order to avoid other programs interfering with the demo,
e.g., an incoming Skype call. Unfortunately, to the amusement of the
audience, this had the side effect of making the EvoSuite Eclipse plu-
gin to not working any more, although running EvoSuite from com-
mand line was perfectly fine. Following debugging investigations led
to us to the culprit: the localhost host name resolution. EvoSuite uses
RMI to control its spawn client processes. This implies opening a reg-
istry TCP port on the local host, which resulted in the IP address of
the wifi network card. This mapping was cached in the JVM when
Eclipse started. Switching off the wifi did not update the cache, and
then EvoSuite, which was running in the same JVM of Eclipse, was
using this no longer valid IP address. This problem would not have
happened if EvoSuite was started in its own JVM. (Note, however,
that a simple fix to this issue was to hardcode the address 127.0.0.1

instead of leaving the default resolution of the localhost variable).

7.5.2 Compile Once, Test Everywhere

Java is a very portable language. Thanks to Java, we have been able
to apply EvoSuite and its plugins on all major operating systems,
including Mac OS X, Linux, Solaris and Windows. However, this was
not straightforward.

Among academics, Mac and Linux systems are very common. The
latter is particularly the case because clusters of Linux computers are
often used for research experiments. However, in industry Windows
systems are the most common ones, and when we applied EvoSuite

it turned out that initially our plugins did not work for that operating
system.

A common issue is the handling of file paths, where Mac and
Linux use “/” as path delimiter, whereas Windows uses “\”. How-
ever, this issue is simple to fix in Java by simply using the constant
File.separator when creating path variables. Another minor issues
is the visualisation of the GUI: for example, we noticed some small
differences between Mac and Windows in the IntelliJ plugin pop-up
dialogs. To resolve this problem one needs to open the plugin on
both operating systems, and perform layout modifications until the
pop-up dialogs are satisfactory in both systems.
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However, there were also some more complex problems. In partic-
ular, Windows has limitations when it comes to start new processes:
Process cannot take large inputs as parameter (e.g., typically max
8191 characters). In test data generation, large inputs are common, for
example to specify the full classpath of the CUT, and the lists of CUTs
to test. A workaround is to write such data to a file on disk, and use
the name and path of this file as input to the process; the process will
then read from this file and apply its configurations. However, this ap-
proach does not work for the classpath, as that is an input to the JVM
process, and not the Java program the JVM is running. Fortunately,
this is a problem faced by all Java developers working on Windows,
and there are many forums/blogs discussing workarounds. The solu-
tion we chose in EvoSuite is that, when we need to spawn a process
using a classpath C, we rather create a “pathing jar” on the fly. A
pathing jar is a jar file with no data but a manifest configuration file,
where the property Class-Path is set to C (after properly escaping it).
Then, instead of using C as classpath when spawning a new process,
the classpath will just point to the generated pathing jar.

Another major issues we faced when running EvoSuite on Win-
dows is the termination of spawned processes, although this might
simply be a limitation of the JVM: Commands like Process.destroy

(to kill a spawned process) and System.exit (to terminate the execu-
tion of the current process) do not work reliably on Windows, result-
ing in processes that are kept on running indefinitely. This is chal-
lenging to debug, but fortunately, as it affects all Java programmers
working on Windows, there are plenty of forums/blogs discussing
it. In particular, in Windows one has to make sure that all streams
(in, out and err) between a parent and a spawned process are closed
before attempting a destroy or a exit call.

To be on the safe side and to avoid the possibility of EvoSuite

leaving orphan processes, the entry point of EvoSuite (e.g., IntelliJ
or Maven plugins) starts a TCP server, and gives its port number
as input to all the spawned processes. Each spawned process will
connect to the entry point, and check if the connection is alive every
few seconds. If the connection goes down for any reason, then the
spawned process will terminate itself. This approach ensures that,
when a user stops EvoSuite, no spawned process can be left hanging,
as the TCP server in the entry point will not exist any more. The
benefit of this approach is that it is operating system agnostic, as it
does not rely on any adhoc operating-sytem specific method to make
sure that no spawned process is left hanging.

7.6 summary

In this chapter, we presented three plugins we developed for Evo-
Suite to make it usable from Maven, IntelliJ IDEA and Jenkins. This
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was done in order to improve the integration of EvoSuite into the
development process for large industrial software projects. We dis-
cussed the motivations for our architectural choices, based on our ex-
perience in starting to apply EvoSuite among our industrial partners,
and presented technical details and lessons learnt.

The architecture of our plugins is not specific to EvoSuite, and
could in principle be reused for other test data generation tools, e.g.,
Randoop [41], jTExpert [190], GRT [308] and T3i [309]. However, to
this end we would need to formalize the names of the input parame-
ters (e.g., how to specify the classes to test and how many cores could
be used at most) that are passed to those tools, and they would then
need to be updated to use this information.

EvoSuite and its plugins are freely available for download. Their
source code is released under the LGPL open-source license, and it
is hosted on GitHub. For more information, visit our webpage at:
www.evosuite.org.

www.evosuite.org
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C O N C L U S I O N S & F U T U R E W O R K

In this chapter we first summarise our main contributions, and we
then outline how these contributions could be further enhanced.

8.1 Summary of Contributions . . . . . . . . . . . . . . 149
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . 151

8.1 summary of contributions

As we previously described in Chapter 1, the problem considered in
this thesis is the use of search-based algorithms to automatically gen-
erate unit test cases for object-oriented software that is, typically, de-
veloped continuously. Although search-based techniques have been
successfully applied, their applicability is an open question. In partic-
ular, this thesis aims to explore and investigate the following research
questions:

– Which coverage criteria shall be used to guide the search in
order to produce the best test cases? How can a search-based
algorithm efficiently optimise several coverage criteria?

– Which search-based algorithm works best at generating unit
tests for single and multiple criteria?

– How can search-based testing be improved to automatically
generate unit test cases that are able to detect software faults,
and to help developers to find the location of the faulty code?

– Which components (e.g., a class in Java) in a software should
be subjected to test generation? In which order should compo-
nents be tested? How much time should be allocated to test
each component?

– How can a test generation tool be integrated in the developers’
processes?

The main contributions of this thesis are fivefold, and they are sum-
marised in the following sections.

8.1.1 Optimisation of Multiple Coverage Criteria

In Chapter 2 we showed that, typically, search-based test generation
approaches use evolutionary search algorithms that are guided by
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coverage criteria such as branch coverage or statement coverage to
generate tests. However, developers may expect that automated test
generation approaches would exercise several properties of the soft-
ware under test simultaneous, as not even manually-written test cases
only aim to, for example, cover all branches. Thus, in Chapter 3, we
defined six coverage criteria, and proposed a simple approach to
simultaneously optimise these coverage criteria, in addition to the
three other criteria previously used independently in the literature
(i.e., branch coverage, statement coverage, and weak mutation). An
empirical evaluation on 650 open-source Java classes showed that the
optimisation of all criteria is effective and efficient in terms of cover-
age achieved and computational cost required to compute all criteria.

8.1.2 Evolutionary Algorithms for Test Suite Generation

Given the different coverage criteria defined in Chapters 2 and 3 and
the approach to optimise all of them defined in Chapter 3, in Chap-
ter 4 we performed an empirical evaluation of seven different evo-
lutionary algorithms and two random approaches to understand the
influence of each one at optimising test suites for an individual cover-
age objective (i.e., branch coverage), and for multiple coverage objec-
tives (i.e., all criteria defined in the previous contribution). Our results
showed that 1) evolutionary algorithms outperform both random-
based techniques, and 2) the MOSA algorithm works better for the
test generation problem than the other evolutionary algorithms con-
sidered in our study.

8.1.3 Diagnostic Ability of Automatically Generated Unit Tests

A software fault can only be detected if and only if there is at least
one test case that covers the faulty code with the input that triggers
the faulty behaviour. Therefore, given the fact that MOSA was the
evolutionary algorithm evaluated in the previous contribution that
achieved the highest coverage, in Chapter 5 we performed an evalu-
ation of MOSA and an extended version of MOSA (which optimises
the diversity of coverage-based generated test cases) on six real faults.
Our results showed that the proposed extension of MOSA is more
effective at detecting four out of six faults, and could reduce the time
developers spend at localising the faulty code by 25%.

8.1.4 Continuous Test Generation

Experiments on automated test generation techniques (as the ones de-
scribed in Chapters 2 to 4) consist of applying a tool to an entire soft-
ware project, and to allocate the same amount of time to every com-
ponent (e.g., class in Java). In practice, even if one would restrict this
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test generation to code that has been changed since the last time of
test generation, the computational effort (e.g., CPU time and memory
used) to generate tests may exceed what developers are prepared to
use their own computers for while they are working on them. There-
fore, in Chapter 6, we presented a novel approach called Continuous
Test Generation (CTG) to alleviate this problem.

CTG is the synergy of automated test generation with continuous
integration: Tests could be generated during every nightly build, but
resources are focused on the most important classes, and test suites
are built incrementally over time. CTG supports the application of
test suite augmentation, but most importantly: 1) addresses the time-
budget allocation problem of individual classes; 2) it is not tied to an
individual coverage criterion; 3) it is applicable for incremental test
generation, even if the system under test did not change; and 4) it
leads to overall higher code coverage while reducing the computa-
tional time spent on test generation.

8.1.5 The EvoSuite Toolset

EvoSuite is a search-based tool that uses a genetic algorithm to au-
tomatically generate test suites for Java classes. By default, EvoSuite

provides a command line version and an Eclipse plugin. However, in
order to increase its adoption and usage by practitioners, in Chap-
ter 7 we introduced three new plugins for EvoSuite: a plugin for the
Apache Maven build infrastructure, for the IntelliJ IDE, and for the
Jenkins CI system. Note that, these three plugins provide support for
all contributions previously described.

8.2 future work

In this section we suggest several recommendations for future work.

8.2.1 Coverage Criteria

Although the optimisation of multiple coverage criteria proposed
in Chapter 3 allows the exploration of multiple properties of the soft-
ware under test, an important question that remains to be answered
in the future is, which selection of criteria matches the expectations
of practitioners? Are there some criteria that practitioners would be
more likely to use than others? To address these questions controlled
experiments with real software testers will have to be conducted.
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8.2.2 Hyper-heuristics Search Algorithms

Considering the variation of results achieved by each evolutionary
algorithm evaluated in Chapter 4 with respect to different configu-
rations and classes under test, it would be of interest to use these
insights to develop hyper-heuristics [310] that select and adapt the op-
timal algorithm to the specific problem at hand.

8.2.3 Oracle Problem

One of the greatest challenges in automatic test generation is the pro-
cess of automatically verifying whether a test case reveals a fault
— this is typically known as the oracle problem (more details in Sec-
tion 2.5.4). Therefore, in order to avoid it, studies automatic test gen-
eration are typically performed on a regression scenario. That is, it is
assumed there is a golden version of the software under test that is
correct, and test cases are automatically generated for it. The oracles
of those test cases exercise the behaviour of the golden version. These
test cases are then executed against future versions of the software to
verify that no regression faults have been introduced. (This is exactly
the process we used in Chapter 5 to overcome the lack of accurate
oracles.) Although an effective process in a regression scenario, ide-
ally what a software engineer really would like to is to generate test
cases for the current version of the software under test and find faults
in it. However, due to the lack of an accurate technique to automati-
cally generate oracles that are able reveal faults on the current version,
software engineers may have to be asked to manually provide them.
To do so, automated test generation techniques would have to gen-
erate test cases that are easy for human developers to understand.
Otherwise, the process of understanding what each test case does
and provide an oracle would be very tedious and time consuming, in
particular for large test suites.

Readability could be the key to reduce the cost of asking develop-
ers to manually provide an oracle [141, 142]. However, how can an
automated test generation technique optimise coverage, entropy, and
readability simultaneously is still an open question. Unlike the com-
bination of multiple coverage criteria we proposed in Chapter 3 or
the integration of coverage and entropy we proposed in Chapter 5,
the integration of readability may require a dedicated multi-objective
optimisation algorithm (e.g., NSGA-II [127]), as the test case with the
highest coverage may be the least readable test, and the most readable
one may be the one with the lowest coverage or worst entropy. There-
fore, further empirical studies would need to be performed to assess
the most efficient approach of generating test cases that achieve high
coverage, low entropy, and that are readable simultaneously.
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8.2.4 Scheduling Classes for Testing

The continuous test generation prototype described in Sections 6.3
and 7.3 at this point is only a proof of concept, and there remains
much potential for further improvements. In particular, there is po-
tential to further improve the time budget scheduler that is respon-
sible for allocating a certain amount of time each class under test is
allowed to be tested.

8.2.4.1 Complexity Metrics

As some classes may require more time to be tested than other, our
continuous test generation approach allocates for each class a time
budget proportional to its complexity, i.e., number of branches. Thus,
complex classes have a larger time budget than classes that are less
complex. However, this measure does not distinguish, for example,
nested branches and normal branches (branches with depth one). We
propose to look at other metrics or combinations of different met-
rics [311] which might improve the accuracy of the time budget sched-
uler.

8.2.4.2 Adaptive Time Budget

Although two or more classes under test could have the same com-
plexity (according to some metrics), the effort to test each one could
be different, as some could require, e.g., the creation of complex ob-
jects. For instance, assume there are two classes, A and B, both with
exactly same complexity. On a first invocation of a test generation
tool, only 30% of the code of class A is covered and 80% of the code
of class B is covered. Given that both classes are equally complex and
were tested for the same time budget, the coverage achieved might
mean that class A is more difficult to test than class B. Therefore, a
future invocation of the test generation tool could explore this infor-
mation and allow more time to test class A.

8.2.4.3 Repository’s History

The abundant information available in a source control management
could also be explored to improve the time budget scheduler. For
instance, fault prediction [312] approaches have been used to estimate
the probability of a component (e.g., file) being faulty in the future
based on historical data from a version control system [313]. Such
probability could also be used in automatic test generation to, for
example, allocate a time budget proportional to the faulty probability
of each class. In such a scenario, classes that are more likely of being
faulty would be tested for longer than classes that are less likely to
be faulty.
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8.2.4.4 Detection of Code Changes

As described in 7.3, our continuous test generation identifies which
Java files (i.e., classes) have been changed, and feeds this information
to the time budget scheduler. However, this approach has a drawback,
it is not able to distinguish between a documentation (e.g., JavaDoc)
change and a source-code change. To efficiently use the time spend
on testing, future work should investigate alternatives to improve the
detection of changes that are not source-code related. For instance,
the Abstract Syntax Tree (AST) of a current modified class and it
previous version can be compared to identify whether the structure
of the class has been modified.

8.2.5 The EvoSuite Unit Test Generation Tool

Although EvoSuite [9] is now a mature and advance unit test gener-
ation tool and its effectiveness has been evaluated on open source as
well as industrial software in terms of code coverage [117, 200], fault
finding effectiveness [256, 257], and effects on developer productiv-
ity [134, 196], there are still some functionalities that could be further
improved and much potential for additional functionalities.

8.2.5.1 Java’s 64k Method Limit

According to the JVM specification, the virtual machine code of a
method can not exceed 65,535 bytes long. As EvoSuite instruments
the bytecode of a class under test (i.e., injects custom code into the
class to keep track of, for example, which branch instructions have
been covered or not) occasionally, the length of an (already long)
method exceeds the limit specified. A potential way of addressing
this would be to stop instrumenting before the limit is reached, at the
price of limited search guidance; a more effective solution would in-
volve identifying parts of the code that are worth instrumenting thus
reducing the overhead of the instrumentation.

8.2.5.2 Flaky Tests

Unstable tests, also known as “flaky” tests, i.e., tests that either do
not compile or fail due to environment dependencies such as system
time, are still a challenge for test generation tools. In order to address
this problem, once the search is completed, EvoSuite applies vari-
ous optimisations to reduce the length and improve the readability
of the generated tests. For example, statements that do not contribute
to increase coverage are removed, and a minimised set of effective
test assertions is selected using mutation analysis. It is known for
previous experiments that minimised tests are less likely to be flaky.
However, occasionally, due to the generation of long tests, EvoSuite’s
minimisation phase runs out of time and hence EvoSuite reverts the
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resulting test suite to its previous, unminimised version, which as
mentioned is more likely to be flaky. A partial minimisation approach
to select and minimise only a reduced subset of tests, or a more effi-
cient minimisation approach based on delta-debugging [314], could be
explored to alleviate this issue.

8.2.5.3 Build Tools

In order to attract software engineers (either researchers or practition-
ers working on industrial projects) to use EvoSuite, we must keep
improving and updating all current build tools, and add support for
new ones if possible. For instance, Gradle build tool1 is gaining mo-
mentum in industry and it seems already very popular in projects on
GitHub. The proposed architecture for the IntelliJ plugin described
in Section 7.3 already paved the way for a simple and straightforward
way of creating new plugins on top of EvoSuite’s API.

8.2.5.4 Continuous Integration Systems

In Section 7.4 we presented the first prototype version of the Evo-
Suite Jenkins plugin, and although it is usable, there is much poten-
tial for additional functionalities. For example, although coverage of
existing test cases is measured, this is not yet used in coverage visual-
izations. In particular, it would be helpful to see in detail which parts
of all classes under test are covered by existing tests, which parts are
covered by newly generated tests, and which parts are not yet cov-
ered at all. Furthermore, support to other SCMs besides the already
supported Git would be beneficial, and support to other continuous
integration systems, would also be a plus.

1 Gradle homepage http://gradle.org, accessed 03/2018.

http://gradle.org
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