
Encoding Test Requirements as Constraints for Test Suite Minimization

José Campos, Rui Abreu
Faculty of Engineering of University of Porto, Portugal

Abstract

Software (regression) testing is performed not only to
detect errors as early as possible but also to guarantee that
changes did not affect the system negatively. As test suites
tend to grow over time, e.g., new test cases are added to test
new features, (re-)executing the entire suite becomes pro-
hibitive. We propose an approach, RZOLTAR, addressing
this issue: it encodes the relation between a test case and
its testing requirements (code statements in this paper) in
a so-called coverage matrix; maps this matrix into a set of
constraints; and computes a set of optimal solutions (main-
taining the same coverage as the original suite) by lever-
aging a fast constraint solver. We show that RZOLTAR
efficiently (0.68 seconds on average) finds a collection of
test suites that significantly reduce the size of the original
suite (61.12%), while greedy only finds one solution with a
reduction of 56.58% in 6.92 seconds on average.

Keywords: Constraint solver, empirical evaluation, re-
gression testing, test suite reduction.

1. Introduction

In recent years, the software testing research commu-
nity has given considerable attention to the subject of re-
gression testing. Some approaches [4, 6, 12, 13, 14, 15, 16,
18], just like the one proposed in this paper, targeted cost
reduction of regression testing by selecting only a few test
cases from the original test suite. Approaches for test suite
minimization trade-off completeness (in terms of some cri-
teria) for time efficiency (e.g., [6, 16]).

Each test case can be conceptually viewed as an arti-
fact that will test a set of requirements (e.g., the test case
executes/verifies components foo and bar). Mapping a
test suite into a collection of sets, reduces the problem
of test suite minimization to the minimal hitting set prob-
lem [9]. Despite being a NP-complete problem [9, 19],
recent advances in the AI community have proposed con-
straint solvers that are fast and scale to millions of variables
(consequently, to large software programs) [10].

Our approach to minimize test suites, dubbed
RZOLTAR, leverages the efficient and scalable MINION
constraint solver [10]. Our approach differs from related
work because:

(i) It does not trade-off completeness for time efficiency
(e.g., greedy heuristic approach [6]);

(ii) It produces a collection of solutions (and not only just
one solution like the greedy [6] or the integer pro-
gramming approach [14]).

As our approach yields more than one solution, the devel-
oper can then prioritize them using, e.g., cardinality or time
to execute the test cases.

The adoption of regression testing techniques, such as
minimization, remain limited, as there are only a few tools
providing state-of-the-art techniques [22]. To facilitate
the adoption of our technique, we implemented RZOLTAR
within the GZOLTAR toolset [5]. GZOLTAR is an Eclipse1

plug-in for automatic debugging, offering graphical visual-
izations of diagnostic reports produced by spectrum-based
fault localization [2]. The main reason for this choice is to
allow the developers to adopt the tool without much effort
as it is already integrated in the Eclipse IDE and takes as
input JUnit2 test cases.

We have evaluated the performance of our approach us-
ing several open source, real, and large software programs.
Our empirical evaluation indicates that RZOLTAR can in-
deed significantly reduce the original test suite. We ob-
served average reductions of 61.12% in terms of number of
test cases and 44.49% of time reduction, while still main-
taining full code coverage. Comparing with the simple
greedy approach [6] which is amongst the best performing
heuristics, RZOLTAR reduces the size of the original suite
more than greedy, and provides more than one solution for
almost all open-source projects used in the evaluation in
less time (10.23 times on average).
This paper makes the following contributions:

• We propose a technique for test suite minimization
based on constraint solving programming, which effi-
ciently reduces the size of the test suite, maintaining
full coverage;

• The proposed technique has been implemented within
the GZOLTAR toolset [5], more specifically in a
cutting-edge Eclipse view dubbed RZOLTAR, this
way providing an ecosystem for testing and debug-
ging software programs;

1The Eclipse Foundation website, http://www.eclipse.org/, 2013.
2JUnit’s official website, http://www.junit.org/, 2013.



• We empirically evaluate the test minimization capa-
bilities of RZOLTAR using large, real world software
programs;

• We compare the performance and results of our ap-
proach with greedy, known as an effective time algo-
rithm [22].

To the best of our knowledge, our constraint-based ap-
proach to test suite minimization has not been described
before.

2. Motivating Example

Consider the source code Π of a software program
(see Fig. 1 for our running example, where we consider
three components: line 1 is component m1, line 2 is com-
ponent m2, and line 3 is component m3). The value
M = |{m1,m2,m3}| represent the number of compo-
nents in the example program. During the development
phase of the software development life-cycle it is usually
the case to have a set of testing requirements for Π. Note
that it is irrelevant for our approach what requirements are,
but in this paper we assume statement coverage.

Definition 1 A test case t is a (i, o) tuple, where i is a
collection of input settings or variables for determining
whether a software system works as expected or not, and
o is the expected output. If Π(i) = o the test case passes,
otherwise fails.

Definition 2 A test suite T = {t1, . . . , tN} is a collection
of test cases that are intended to test whether the program
follows the specified set of requirements. The cardinality
of T is the number of test cases in the set |T | = N .

As an example consider the following test suite
T = {t1, t2, t3, t4}. The test case t1 checks whether
add(1,2) and sub(2,1) follow the specification or
not, test case t2 checks add(1,0), test case t3 checks
sub(1,0), and test case t4 checks mul(0,1).

During the development phase of software, it is com-
mon practice to build and maintain a regression test suite.
Such test suite is used to perform regression testing of the
software after a change is made (e.g., after fixing a bug or
adding a new feature). Regression test suites are therefore
an important artifact of the software development process
to assess the quality of the software. Moreover, as develop-
ers often add new test cases to the suite as the development
progresses, it must be maintained in order to keep testing
efficiency optimized.

In many situations (e.g., testing that requires user input)
the size of the test suite may be simply too large, making
it impractical to execute all the test cases in the suite. Be-
sides, the ever increasing time-to-market pressure requires
the testing phase to be optimized as much as possible.

Therefore, to make regression testing amenable to large
programs, the suite should be minimized, i.e., it should

public class Calculator {
1. public int add(int x, int y) { return x + y; }
2. public int sub(int x, int y) { return x - y; }
3. public int mul(int x, int y) { return x * y; }

}

Figure 1. Example Program.

contain only the necessary test cases to test the require-
ments and discard redundant ones. As an example, one
can easily conclude that there is no need to execute all test
cases in the previous test suite T as using, either t1 and t4
or t2 and t3 and t4 already checks all requirements.

To minimize the number of tests but still achieving the
same code coverage as in the original suite, consider that
the testing requirements for each test case can be encoded
as a set. For example, {m1,m2} are the testing require-
ments for t1. Taking as input a collection of sets, one per
test case, we would like to find the minimal hitting set of
tests cases that achieve the same coverage as the original
test suite. In other words, the problem is to find the min-
imal hitting set3 of the collection of covered requirements
set.

Definition 3 Minimal hitting set is the problem of finding
the minimal sub collection (cover) of subsets whose union
gives elements that cover all the elements of main set.

Identifying the minimal hitting set of a collection of sets
is an important problem in many domains (e.g., such as Air
Crew Scheduling [20]). Being an NP-complete problem
(i.e., exponential on the number of components) [9], brute-
force algorithms are prohibitive for real-world, often large
programs. Furthermore, heuristic approaches (e.g., STAC-
CATO [1], greedy [6]) trade-off completeness for time ef-
ficiency. In the next section, we present our approach to
efficiently minimize test suites which guarantee to cover
exactly the same requirements as the original suite. More-
over, our approach, unlike most related work approaches,
generate multiple solutions for the minimization problem.
As multiple solutions are generated, the developer can pri-
oritize them using two criteria: (i) cardinality of the mini-
mized test suite or (ii) test suite’s execution time.

3. RZOLTAR

In this section we describe our approach, coined
RZOLTAR, a constraint-based technique for test suite min-
imization. RZOLTAR takes as input the testing require-
ments for each test case and yields a collection of test suites
that guarantee both the same coverage as the initial test
suite. The approach works in three major phases:

1. It executes the system under analysis with the current
test suite in order to obtain the so-called coverage ma-
trix (see Section 3.1);

3A minimal hitting set is a hitting set such that none of its subsets is a
hitting set.



2. The coverage matrix is subsequently converted into a
set of constraints, which are amenable to be solved by
a constraint solver (detailed in Section 3.2);

3. The constraints are solved with the slightly modified,
off-the-shelf constraint solver MINION, and priori-
tized using a certain criterion (detailed in Section 3.3).

We now detail each of these phases.

3.1. Test Case Coverage

As mentioned before, although our approach is not lim-
ited to any testing requirement, in this paper we use code
coverage. In the following we detail how code coverage is
stored for subsequent usage4.

Each test case in the test suite, when run through the
program, will cover a subset of the total set of components
(statements in the context of this paper). By tracking which
components each test case activate (covers), a N ×M bi-
nary matrix A is created. We refer to this matrix as cov-
erage matrix. An element aij is equal to 1 if and only if
component mj is covered when the test ti is executed:

ω(ti, mj) = (aij == 1 ? true : false) (1)

Note that, while a test may be designed to cover a spe-
cific component, other components may still be covered.
Thus, the result of interception between test and compo-
nent, returned by the ω(ti, mj) function in Eq. (1), can
be explored to reduce the number of tests to generate a test
suite that leads to the same coverage as the initial test suite.
Next we elaborate on how to explore the information in the
coverage matrix to minimize and prioritize the current test
suite.

3.2. Modeling Coverage Matrix as Constraints

As mentioned before, our approach minimizes the cur-
rent test suite using a constraint solver. In order for the
coverage matrix to be amenable to off-the-shelf, fast, and
scalable constraint solvers, RZOLTAR converts the cover-
age matrix (which contains all information available as no
other modeling is required) into a set of constraints.

t1
t2
t3
t4

m1 m2 m3
1 1 0
1 0 0
0 1 0
0 0 1


Figure 2. Coverage matrix example, with four tests (lines) and three
components (columns). E.g., the component m2 is covered when the
test t1 or t3 is executed.

The key idea behind our approach is to encode the test-
ing requirement of each test case into a set of constraints,

4Note that code coverage is obtained when running the program with the
original test suite.

each of which has to be satisfied for the problem to be
solved. For ease of comprehension, we illustrate this phase
through an example. Consider the example in Fig. 2, which
is obtained by running four test cases which cover the three
components of the program in Fig. 1. The three compo-
nents in Fig. 2 represents the three statements of the exam-
ple program: m1 correspond to statement with number 1,
m2 to statement 2, and m3 to statement 3. The four test
cases execute at least one component: t1 exercises compo-
nents m1 and m2, t2 covers only component m1, t3 exer-
cises component m2, and t4 exercises component m3.

In order to ensure that component m1 is covered, test t1
or t2 needs to be executed. Formally,

(t1 ∨ t2)

To cover component m2, test t1 or test t3 are essential, so
the mapping is

(t1 ∨ t3)

To cover component m3, test t4 suffices

(t4)

Thus, the final encoding for this problem is (a conjunction
of previous constraints) is

C = ( (t1 ∨ t2) ∧ (t1 ∨ t3) ∧ (t4) )

Next section describes how to solve the constraints us-
ing a constraint solver.

3.3. Solving the Constraints

A constraint system comprises a tuple (V,D,C) where
V is a set of finite variables, D is a function mapping a
domain to each variable, and C is a finite set of constraints
where each constraint has a scope (variables from V ) and
relations restricting the variable values.

Given a constraint system, a Constraint Satisfaction
Problem (CSP) finds assignments of values to variables
V from their domains D that satisfy constraint C. As
mentioned before, searching for a solution for C is NP-
complete in the finite case. However, efficient algorithms
for solving the CSPs have been proposed in the past,
e.g., [3, 10].

MINION [10] is a general-purpose constraint solver,
with an expressive input language based on the common
constraint modeling device of matrix models. Experimen-
tal results show that MINION is orders of magnitude faster
than state-of-the-art constraint toolkits on large and diffi-
cult problems [10]. For small problems or instances, where
solutions are discovered with a simple search, gains are just
marginal. Due to lack of space, we do not detail how the
model of Section 3.2 is encoded into MINION.

The constraint solver yields all possible solutions, and
not only those of minimal cardinality. To filter out those
solutions that are not minimal in terms of cardinality,
we modified MINION to use a TRIE data structure. A



TRIE [8] is an ordered tree data structure used to store a
set (set of test cases identifiers in this paper) where the
keys are commonly strings. The main idea is that strings
with a common prefix share nodes and edges in the tree.
The main advantages of the TRIE data structure are: (i)
ease with handling sequences of several lengths; (ii) add
and/or delete can be easily achieved; (iii) speed of storage
and access [11]. A thorough description of the TRIE data
structure can be found in [7].

After filtering out the collection of sets yielded by
the constraint solver, we would only get {t1, t4} and
{t2, t3, t4} as the minimal solutions, while still covering
all components. Once the solutions are found and given
user input/preferences, the collection is order either using
the cardinality or the time needed to execute the minimal
solutions found.

3.4. Tooling

The lack of tools offering state-of-the-art techniques for
test suite minimization impairs wide adoption, namely by
industry. For instance, to perform unit testing there are
a number of frameworks based on the xUnit architecture,
but, to our knowledge, only a few really provide support
for testing minimization [22]. Seeking wide adoption of
our technique, we integrated the proposed technique into
an Eclipse view, coined RZOLTAR, in the GZOLTAR [5]
Eclipse plug-in, available online at:

http://www.gzoltar.com

4. Evaluation

In this section, we evaluate the test suite minimization
capabilities of the proposed approach using real software
programs and comparing it with the state-of-art greedy ap-
proach [6]. In particular, we empirically studied the car-
dinality and execution time reduction of the test suites
yielded by our approach and the greedy approach, as well
as the time needed to produce the results.

4.1. Empirical Evaluation

To assess the performance of our approach, we per-
formed an empirical evaluation using five open source,
large software subjects. This study was meant to answer
the following research questions.

RQ1: Can RZOLTAR efficiently minimize the test suite,
maintaining the same code coverage?

RQ2: What is the execution time reduction of RZOLTAR’s
minimized test suite when compared to the original
suite (and the suite computed using the greedy ap-
proach)?

Sections 4.1.1 and 4.1.2 present the software subjects used
in the study and the experimental setup, respectively. Sec-
tion 4.1.3 reports and discusses the results obtained in the
experiments.

Table 1. Subject programs detailed.

Subject Version Classes Test Cases LOCs Coverage

JMeter 2.6 970 556 84266 34.8%

JTopas 0.8 57 160 4373 71.9%

NanoXML 2.2.3 29 9 4660 56.2%

org.jacoco.report 0.5.7 59 235 2600 97.3%

XML-Security 1.5.0 353 462 24542 64.7%

4.1.1. Experimental Subjects. Five subjects, written in
Java, were considered in our empirical study. JMeter5

is a Java desktop application designed to load test func-
tional behavior and measure performance. JTopas6 is a
Java library used for parsing text data. NanoXML7 is a
small XML parser for Java. JaCoCo8 project’s module
org.jacoco.report provides utilities for report generation
used by the JaCoCo itself. XML-Security9 is a component
library implementing XML signature and encryption stan-
dards. Both JMeter and XML-Security are sub-projects of
the open source Apache project10.

All programs, except NanoXML, provide test suites in
JUnit. NanoXML’s test suite is encoded in a Test Script
Language (TSL) suite [17]. Basically, in TSL, tests are
defined by an input/output file containing the input/output
pair per test.

For each program, we report (see Table 1) the version
used in our experiments, number of classes, number of
JUnit test cases, number of Lines of Code (LOC) (non-
comment lines), and percentage of code coverage of the
original test suite. Code coverage information was ob-
tained using the open source Eclipse plug-in Metrics11.

4.1.2. Experimental Setup. As NanoXML does not pro-
vide JUnit tests and our toolset takes as such tests only
(the only format supported by RZOLTAR at the moment),
we have converted the TSL tests into JUnit tests. Essen-
tially, each input/output pair in the TSL test suite is mapped
into a JUnit test which checks whether the output holds for
a given input. Hence, we still maintain inputs/outputs of
tests and the purpose of the testing pair in the TSL suite.

For all the other programs, we convert all JUnit test
cases in simple unit tests. These programs provide test
cases which have at least two or three unit tests. So, to
check the real purpose of every unit test, we mapped ev-
ery unit test into a single test case (e.g. if a test case has 3
unit test (u1, u2, and u3), we create test case c1 with u1,
c2 with u2, and c3 with u3). This transformation is valid
and legitimate, because it does not change source code, or
increase/decrease percentage of coverage or even the num-
ber of tests. It is necessary just because of a technological
limitation in RZOLTAR: it does not handle the individual

5JMeter, http://jmeter.apache.org, 2013.
6JTopas, http://jtopas.sourceforge.net, 2013.
7NanoXML, http://devkix.com, 2013.
8JaCoCo, http://www.eclemma.org/jacoco, 2013.
9XML-Security, http://santuario.apache.org, 2013.
10Apache, http://www.apache.org, 2013.
11Metrics, http://metrics.sourceforge.net, 2013.

http://www.gzoltar.com
http://jmeter.apache.org
http://jtopas.sourceforge.net
http://devkix.com
http://www.eclemma.org/jacoco
http://santuario.apache.org
http://www.apache.org
http://metrics.sourceforge.net


Table 2. Cardinality of original suite (|T |) and minimized test suite
(|Tm|) % of reduction, for every subject, provided by RZOLTAR and
greedy approach.

Original RZOLTAR greedy

Subject |T | |Tm| % |Tm| %

JMeter 556 237 57.37% 255 54.14%

JTopas 160 27 83.13% 29 81.88%

NanoXML 9 7 22.22% 8 11.11%

org.jacoco.report 235 63 73.19% 66 71.91%

XML-Security 462 140 69.70% 167 63.85%

tests in a JUnit suite, but considers instead each suite as
one test.

For each subject, we repeated the process ten times to
measure the time that RZOLTAR and the greedy approach
take to compute the collection of valid solutions (collection
of minimal test suites). We also report the average and the
standard deviation σ (detailed in the next section).

The experiments were run on a 2.27 Ghz Intel Core
i3-350M with 4 GB of RAM running Debian GNU/Linux
Wheezy12.

4.1.3. Results and Discussion.

RQ1: Can RZOLTAR efficiently minimize the test
suite, maintaining the same code coverage?

Table 2 plots the cardinality of the original test suite,
the cardinality of the minimized test suite yielded by
RZOLTAR and greedy. The cardinality reduction for
the subject programs ranged from 22.22% in case of
NanoXML, to a significant result of 83.13% in JTopas. For
JMeter the reduction was about 57.37%, org.jacoco.report
73.19%, and XML-Security 69.70%. For the greedy ap-
proach, the reduction for JMeter was about 54.14%, JTopas
81.88%, NanoXML 11.11%, org.jacoco.report 71.91%,
and XML-Security 63.85%.

The results in Table 3 show that RZOLTAR can compute
more than one minimal sets of test cases for almost all pro-
grams (except for org.jacoco.report) in less than 3 seconds,
and in most cases the solutions were computed even in less
than 0.5 seconds. On the other hand, greedy can only de-
termine one solution for each subject. For instance, for
JMeter, with 84266 constraints (number of LOCs) and 556
variables (number of tests cases), the RZOLTAR approach
generated two minimal sets in just 1 second, unlike greedy
which only returns one set in 16 seconds. As we can see
in Table 3, for every subjects greedy performed worst than
RZOLTAR, 10.23 times on average.

12Debian GNU/Linux, http://www.debian.org, 2013.

Table 3. Average and standard deviation (σ) of time (t) (in seconds) to
execute RZOLTAR and greedy approach. And the number (#) of mini-
mized test suites.

RZOLTAR greedy

Subject t σ # t σ #

JMeter 1.115 0.027 2 16.190 0.076 1

JTopas 0.475 0.015 2 0.725 0.004 1

NanoXML 0.042 0.004 2 0.169 0.005 1

org.jacoco.report 0.205 0.004 1 0.679 0.007 1
XML-Security 3.046 0.066 3 16.852 0.034 1

Table 4. Average time (t) (in seconds) needed to execute the original
test suite, the reduced proposed by RZOLTAR and greedy approach,
and the % of time reduction afford by each approach.

Original RZOLTAR greedy

Subject t t % t %

JMeter 28.844 23.405 18.86% 23.878 17.22%

JTopas 2744.891 852.067 68.96% 836.914 69.51%
NanoXML 0.417 0.361 13.43% 0.374 10.31%

org.jacoco.report 3.423 1.206 64.77% 1.627 52.47%

XML-Security 30.056 13.092 56.44% 18.089 39.82%

RQ2: What is the execution time reduction of
RZOLTAR’s minimized test suite when compared to
the original suite (and the suite computed using the
greedy approach)?

We also measured the time needed to execute the mini-
mal test suite with RZOLTAR and greedy, and compared it
to the original suite. As expected, when reducing the size
of the original test suite, one reduces the time needed to
achieve the same coverage. Table 4 shows the time needed
to execute the original set and the reduced one (minimal
set) proposed by RZOLTAR and greedy. Similar to the
results reported for the cardinality (where RZOLTAR ob-
tains better results), the time reduction for minimal sets
calculated by RZOLTAR is (in most cases) greater than
the greedy approach. For instance, for XML-Security sub-
ject RZOLTAR reduces the execution time in 56.44% and
greedy only in 39.82% (on average).

4.2. Threats to Validity

Despite the programs used in the empirical results are
real, large and open source software, the main threat to the
external validity is the fact only five subjects were used. It
is plausible to conclude that the results for a different set
of programs, with different characteristics, may generate
different results.

Threats to internal validity revolves around eventual
faults in the RZOLTAR implementation or even in the un-
derlying constraint solver. To mitigate this threat, we have
not only thoroughly tested the toolset but also manually
checked a large set of results.

http://www.debian.org


5. Related Work

Trying to find the minimal test suite that covers the same
set of requirements as the original one is a NP-complete
problem, but can be solved in a polynomial time using the
minimal hitting set problem [9]. The NP-completeness of
the test suite minimization problem encourages the usage
of heuristics. Precedent work on test case minimization
has advanced the state-of-the-art of heuristic approaches to
the minimal hitting set problem [4, 6, 12, 13, 14, 15, 16,
18]. Due to space limitations, we refrain from detailing the
approaches.

To our knowledge, our approach is the first to leverage
a constraint solver to generate multiple optimal test suites,
each with the same coverage as the original suite.

6. Conclusions and Future Work

In this paper, a new approach, dubbed RZOLTAR, for
test suite minimization was proposed. It takes as input the
requirements covered by the test cases in the suite (code
coverage in the context of this paper) and, using a con-
straint solver programming approach, minimizes the suite,
while still guaranteeing that the testing requirements are
met. The collection of generated suites can then be ranked
by the user (e.g., by cardinality or time needed to execute).
To facilitate the adoption of our approach, we have inte-
grated it within the GZOLTAR Eclipse plug-in [5].

Application to five real-world, open source, and large
programs indicates that RZOLTAR can significantly reduce
the original test suite, while still maintaining the full code
coverage. We observed averaged reductions of 61.17% in
terms of test suite size and 63.98% of execution time re-
duction. RZOLTAR was also compared with the greedy
approach, and yielded better results in term of reduction of
all test suites and time reduction.

Future work includes the following. We will investigate
the fault detection capabilities of the reduced test suites
(similar to Wong et al. work [21]), as even though they
achieve the same coverage, the reduction may have a neg-
ative impact in fault detection.

Acknowledgment

This work is funded by the ERDF through the Programme
COMPETE and by the Portuguese Government through
FCT - Foundation for Science and Technology within
project PTDC/EIA-CCO/116796/2010.

References

[1] Rui Abreu and Arjan J. C. van Gemund. A Low-Cost Approximate
Minimal Hitting Set Algorithm and its Application to Model-Based
Diagnosis. In Eighth Symposium on Abstraction, Reformulation,
and Approximation, SARA ’09. AAAI, 2009.

[2] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van
Gemund. A practical evaluation of spectrum-based fault localiza-
tion. J. Syst. Softw., 82(11):1780–1792, November 2009.

[3] Dharini Balasubramaniam, Christopher Jefferson, Lars Kotthoff,
Ian Miguel, and Peter Nightingale. An automated approach to gen-
erating efficient constraint solvers. In Proceedings of the 2012 In-
ternational Conference on Software Engineering, ICSE 2012, pages
661–671, Piscataway, NJ, USA, 2012. IEEE Press.

[4] Jennifer Black, Emanuel Melachrinoudis, and David Kaeli. Bi-
Criteria Models for All-Uses Test Suite Reduction. In Proceed-
ings of the 26th International Conference on Software Engineering,
ICSE ’04, pages 106–115, 2004.

[5] José Campos, André Riboira, Alexandre Perez, and Rui Abreu.
GZoltar: An Eclipse Plug-In for Testing and Debugging. In Pro-
ceedings of the 27th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2012, pages 378–381, 2012.

[6] V. Chvatal. A Greedy Heuristic for the Set-Covering Problem.
Mathematics of Operations Research, 4(3):233–235, 1979.

[7] K.D. Forbus and J. De Kleer. Building Problem Solvers. Number v.
1 in Artificial Intelligence. Mit Press, 1993.

[8] Edward Fredkin. Trie memory. Commun. ACM, 3(9):490–499,
September 1960.

[9] R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Series of Books in the Mathe-
matical Sciences. W. H. Freeman, 1979.

[10] Ian P. Gent, Chris Jefferson, and Ian Miguel. MINION: A Fast,
Scalable, Constraint Solver. In Proceedings of the 17th European
Conference on Artificial Intelligence, pages 98–102, 2006.

[11] Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale.
Data structures for generalised arc consistency for extensional con-
straints. In Proceedings of the 22nd national conference on Artifi-
cial intelligence - Volume 1, AAAI’07, pages 191–197, 2007.

[12] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel.
On-demand test suite reduction. In Proceedings of the 2012 Inter-
national Conference on Software Engineering, ICSE 2012, pages
738–748, 2012.

[13] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodol-
ogy for controlling the size of a test suite. ACM Trans. Softw. Eng.
Methodol., 2(3):270–285, July 1993.

[14] Hwa-You Hsu and Alessandro Orso. MINTS: A General Frame-
work and Tool for Supporting Test-suite Minimization. In Proceed-
ings of the 31st International Conference on Software Engineering,
ICSE ’09, pages 419–429, 2009.

[15] Dennis Jeffrey and Neelam Gupta. Test Suite Reduction with Se-
lective Redundancy. In Proceedings of the 21st IEEE International
Conference on Software Maintenance, ICSM ’05, pages 549–558,
2005.

[16] J. Offutt, J. Pan, and J. Voas. Procedures for reducing the size of
coverage-based test sets. In Proceedings of the Twelfth International
Conference on Testing Computer Software, June 1995.

[17] T. J. Ostrand and M. J. Balcer. The Category-Partition Method
for Specifying and Generating Functional Tests. Commun. ACM,
31(6):676–686, June 1988.

[18] Sriraman Tallam and Neelam Gupta. A concept analysis inspired
greedy algorithm for test suite minimization. SIGSOFT Softw. Eng.
Notes, 31(1):35–42, September 2005.

[19] Staal Vinterbo and Aleksander Øhrn. Minimal approximate hitting
sets and rule templates. International Journal of Approximate Rea-
soning, 25(2):123 – 143, 2000.

[20] H.P. Williams. Model building in mathematical programming.
Wiley-Interscience publication. Wiley, 1985.

[21] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P.
Mathur. Effect of test set minimization on fault detection effec-
tiveness. Software: Practice and Experience, 28(4):347–369, 1998.

[22] S. Yoo and M. Harman. Regression testing minimization, selection
and prioritization: a survey. Softw. Test. Verif. Reliab., 22(2):67–
120, March 2012.


	. Introduction
	. Motivating Example
	. RZoltar
	. Test Case Coverage
	. Modeling Coverage Matrix as Constraints
	. Solving the Constraints
	. Tooling

	. Evaluation
	. Empirical Evaluation
	. Experimental Subjects. 
	. Experimental Setup. 
	. Results and Discussion. 

	. Threats to Validity

	. Related Work
	. Conclusions and Future Work

