
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

An empirical evaluation of evolutionary algorithms for unit test suite
generation

José Camposa, Yan Gea, Nasser Albuniana, Gordon Frasera,b,⁎, Marcelo Elerc, Andrea Arcurid,e

a Department of Computer Science, The University of Sheffield, UK
b Chair of Software Engineering II, University of Passau, Germany
cUniversity of São Paulo, Brazil
d Kristiania University College, Norway
eUniversity of Luxembourg, Luxembourg

A R T I C L E I N F O

Keywords:
Evolutionary algorithms
Test suite generation
Empirical study

A B S T R A C T

Context: Evolutionary algorithms have been shown to be effective at generating unit test suites optimised for
code coverage. While many specific aspects of these algorithms have been evaluated in detail (e.g., test length
and different kinds of techniques aimed at improving performance, like seeding), the influence of the choice of
evolutionary algorithm has to date seen less attention in the literature.
Objective: Since it is theoretically impossible to design an algorithm that is the best on all possible problems, a
common approach in software engineering problems is to first try the most common algorithm, a genetic al-
gorithm, and only afterwards try to refine it or compare it with other algorithms to see if any of them is more
suited for the addressed problem. The objective of this paper is to perform this analysis, in order to shed light on
the influence of the search algorithm applied for unit test generation.
Method: We empirically evaluate thirteen different evolutionary algorithms and two random approaches on a
selection of non-trivial open source classes. All algorithms are implemented in the EVOSUITE test generation tool,
which includes recent optimisations such as the use of an archive during the search and optimisation for multiple
coverage criteria.
Results: Our study shows that the use of a test archive makes evolutionary algorithms clearly better than random
testing, and it confirms that the DynaMOSA many-objective search algorithm is the most effective algorithm for
unit test generation.
Conclusion: Our results show that the choice of algorithm can have a substantial influence on the performance of
whole test suite optimisation. Although we can make a recommendation on which algorithm to use in practice,
no algorithm is clearly superior in all cases, suggesting future work on improved search algorithms for unit test
generation.

1. Introduction

Search-based testing has been successfully applied to generating
unit test suites optimised for code coverage on object-oriented classes.
A popular approach is to use evolutionary algorithms where the in-
dividuals of the search population are whole test suites, and the opti-
misation goal is to find a test suite that achieves maximum code cov-
erage [1]. Tools like EVOSUITE [2] have been shown to be effective in
achieving code coverage on different types of software [3].

Since the original introduction of whole test suite generation [4],
many different optimisations have been introduced to improve

performance even further, and to get a better understanding of the
current limitations. For example, the insufficient guidance provided by
basic coverage-based fitness functions has been shown to cause random
search to often be equally effective as evolutionary algorithms [5].
Optimisation now no longer focuses on individual coverage criteria, but
combinations of multiple different coverage criteria [6,7]. To cope with
the resulting larger number of coverage goals, evolutionary search can
be supported with archives [8] that keep track of useful solutions en-
countered throughout the search. To improve effectiveness, whole test
suite optimisation has been re-formulated as a many-objective optimi-
sation problem [9]. In the context of these developments, one aspect of
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whole test suite generation remains largely unexplored: What is the
influence of the specific flavour of evolutionary algorithms applied to
evolve test suites?

In this paper, we aim to shed light on the influence of the different
evolutionary algorithms in whole test suite generation, to find out
whether the choice of algorithm is important, and which one should be
used. By using a large set of complex Java classes as case study, and the
EVOSUITE [2] search-based test generation tool, we investigate specifi-
cally:

RQ1: Which archive-based single-objective evolutionary algorithm
performs best?

RQ2: How does evolutionary search compare to random search and
random testing?

RQ3: Which archive-based many-objective evolutionary algorithm
performs best?

RQ4: How does evolution of whole test suites compare to many-ob-
jective optimisation of test cases?

We investigate each of these questions in the light of individual and
multiple coverage criteria as optimisation objectives. This paper ex-
tends an earlier study [10], where we compared seven evolutionary
algorithms and two random approaches. Our experiments now cover
five additional algorithms, for a total of 13 different evolutionary al-
gorithms, and corroborate the original findings: In most cases a simple
(μ, λ) Evolutionary Algorithm (EA) is better than other, more complex
algorithms. In most cases, the variants of EAs and GAs are also clearly
better than random search and random testing, when a test archive is
used. This study also extends the previous study with experiments using
many-objective search algorithms using multiple criteria, and our ex-
periments confirm that many-objective search, in particular the Dyna-
MOSA algorithm [11], achieves higher branch coverage, even in the
case of optimisation for multiple criteria, than all the other evaluated
single/many-objective evolutionary algorithms.

2. Evolutionary algorithms for test suite generation

Evolutionary Algorithms (EAs) are inspired by natural evolution,
and have been successfully used to address many kinds of optimisation
problems. In the context of EAs, a solution is encoded “genetically” as
an individual (“chromosome”), and a set of individuals is called a po-
pulation. The population is gradually optimised using genetics-inspired
operations such as crossover, which merges genetic material from at
least two individuals to yield new offspring, mutation, which in-
dependently changes the elements of an individual with a low prob-
ability, and selection which chooses individuals for reproduction, pre-
ferring better, fitter individuals. While it is impossible to
comprehensively cover all existing algorithms, in the following we
discuss common variants of EAs for test suite optimisation. Expansion of
the evaluation to less common algorithms (e.g., Differential Evolution
[12], PAES [13], Coral Reef Optimisation [14], etc.) will be future
work.

2.1. Representation

For test suite generation, the individuals of a population are sets of
test cases (test suites); each test case is a sequence of calls. The length of
a sequence of calls is variable, and there can be dependencies between
statements. For example, one statement may define a variable used as a
parameter for a call later in the call sequence. Standard types of
statements in such sequences are definitions of primitive variables (e.g.,
integers or strings), calls to constructors to instantiate objects, and
method calls on these objects.

Crossover on test suites is based on exchanging test cases between
sets [1]. Mutation adds/modifies tests to suites, and adds/removes/
changes statements within tests. The mutations applied at test case level

need to ensure that test cases remain valid (e.g., when adding a new call
there need to be suitable parameter objects defined earlier in the se-
quence).

Although standard selection techniques are largely used (e.g., rank
or tournament selection), the variable size representation (the number
of statements in a test and number of test cases in a suite can vary)
requires modification to avoid bloat [15]; this is typically achieved by
ranking individuals with identical fitness based on their length, and
then using rank selection.

Standard whole test suite optimisation algorithms use test suites as
individuals, since they are targeting coverage of all goals at the same
time. Existing many-objective algorithms, on the other hand, aim to
optimise an individual test for each distinct coverage goal, and so the
search representation in this case is test cases. In this case, the test case
mutation operators used when test suites are mutated are still used and
bloat control is also active during selection. Crossover, however, needs
to ensure that sequences of calls remain valid (i.e., all dependency
variables need to exist). This is typically achieved by using repair ac-
tions when attaching to subsequences.

2.2. Optimisation goals and archives

The selection of individuals is guided by fitness functions, such that
individuals with good fitness values are more likely to survive and be
involved in reproduction. In the context of test suite generation, the
fitness functions are based on code coverage criteria such as statement
or branch coverage.

To provide a gradient to the search, most common fitness functions
rely on the approach level and branch distance metrics [16,17]. The
approach level � t x( , ) for a given test t on a coverage goal x∈ X (for
any given set of coverage goals X) is the minimal number of control
dependent edges in the control dependency graph between the target
goal x and the control flow path represented by the test case t. That is, it
estimates the approximation between the execution path of a given test
input and the target. The branch distance d(t, x) heuristically quantifies
how far a branch (i.e., the control flow edge resulting from a true/false
evaluation of an if-condition) is from being evaluated to true or to false.
When optimising for individual coverage goals, the fitness function is
usually a combination of approach level and branch distance. For ex-
ample, for branch coverage the fitness function to minimise the ap-
proach level and branch distance between a test t and a branch cov-
erage goal x is defined as:

�= +f t x t x ν d t x( , ) ( , ) ( ( , )) (1)

where ν is any normalizing function in the range [0,1] [18]. When
evolving test suites, however, one does not target individual goals but
all coverage goals. For example, for branch coverage the resulting fit-
ness function aims to minimise the branch distance of all branches B in
the program under test. Thus, the fitness function for a test suite T and a
set of branches B is:

∑=
∈

f T B d T b( , ) ( , )BC
b B (2)

where d(T, b) is defined as:

=
⎧

⎨
⎪

⎩
⎪

∈d T b

b
ν d t T b( , )

0 if branch has been covered,
( ( , )) if the predicate has been

executed at least twice,
1 otherwise.

min

(3)

More recently, there is a trend to optimise for multiple coverage
criteria at the same time. Since coverage criteria usually do not re-
present conflicting goals, it is possible to combine fitness functions with
a weighted linear combination [6]. However, the increased number of
coverage goals may affect the performance of the EA. To counter these
effects, it is possible to store tests for covered goals in an archive [8],
and then to dynamically adapt the fitness function to optimise only for
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the remaining uncovered goals. That is, during fitness evaluation, if a
test case is found that newly covers a non-covered goal (e.g., branch,
line, etc.), the covering test case and the covered goal are added to an
archive. The fitness function is then optimised to only take into account
the remaining goals. Note that this optimisation is only performed at
the end of an iteration, i.e., only after evaluating all individuals, and not
during the evaluation of one test suite or during the creation of a new
population, as it would make fitness values between individuals in-
consistent. Once the search ends, the best individual of the EA is no
longer the best individual of the search population, but a test suite
composed by all the tests in the archive. Besides optimising fitness
functions to make use of the archive, search operators can also be
adapted to make use of the test archive; for example, new tests may be
created by mutating tests in the archive rather than randomly gen-
erating completely new tests.

2.3. Random search & random testing

Random search is a baseline search strategy which does not use
crossover, mutation, or selection, but a simple replacement strategy
[19]. Random search consists of repeatedly sampling candidates from
the search space; the previous candidate is replaced if the fitness of the
new sampled individual is better. Random search can make use of a test
archive by changing the sampling procedure as indicated above. It has
been shown that in unit test generation, due to the flat fitness land-
scapes and often simple search problems, random search is often as
effective as EAs, and sometimes even better [5].

Random testing is a variant of random search in test generation
which builds a test suite incrementally. Test cases (rather than test
suites) are sampled individually, and if a test case improves the cov-
erage of the test suite, it is retained in the test suite, otherwise it is
discarded. This incremental process does not benefit from using an
archive, because every sampled test case that covers a goal that has not
been covered is added to the test suite.

2.4. Genetic algorithms

The genetic algorithm (GA) is one of the most widely-used EAs in
many domains because it is well understood, it can be easily im-
plemented, and it tends to obtain good results on average. Algorithm 1
illustrates a Standard GA. It starts by creating an initial random po-
pulation of size ps (Line 1). Then, a pair of individuals is selected from
the population using a strategy sf, such as rank-based, elitism or tour-
nament selection (Line 6). Next, both selected individuals are re-
combined using crossover cf (e.g., single point, multiple-point) with a
probability of cp to produce two new offspring o1, o2 (Line 7). After-
wards, mutation is applied on both offspring (Lines 8–9), independently
changing the genes with a probability of mp, which usually is equal to ,n

1

where n is the number of genes in a chromosome. The two mutated
offspring are then included in the next population (Line 10). At the end
of each iteration the fitness value of all individuals is computed (Line
13).

Many variants of the Standard GA have been proposed to improve
effectiveness. Specifically, we consider a monotonic version of the
Standard GA (Algorithm 2) which, after mutating and evaluating each
offspring, only includes either the best offspring or the best parent in
the next population (whereas the Standard GA includes both offspring
in the next population regardless of their fitness value). Another var-
iation of the Standard GA is a Steady State GA (Algorithm 3), which uses
the same replacement strategy as the Monotonic GA, but instead of
creating a new population of offspring, the offspring replace the parents
from the current population immediately after the mutation phase.

A Breeder GA [20] (Algorithm 4) is a GA variant that does not aim
to mimic Darwinian evolutionary, but instead tries to mimic breeding
mechanism, as used for example in livestock. This is done by selecting a
fixed percentage (e.g., 50%) of the best individuals of the total
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population as gene pool, and then uniformly sampling from this pool for
reproduction (using standard crossover and mutation) when generating
a new population. In addition, the best q individuals (e.g., 1) survive in
terms of elitism.

The Cellular GA [21] differs from the Standard GA by considering a
structured population which influences selection. For example, in-
dividuals can be set in a toroidal d-dimensional grid where each in-
dividual takes a place per a grid (i.e., cell) and belongs to an overlapped
neighbourhood. The grid of individuals can have different number of
dimensions; common values are one-dimensional (i.e., ring) or two-
dimensional grids. In the case of a bi-dimensional grid, different shapes
(i.e., models) of a neighbourhood can be defined. For example, the
linear 5 model considers the individual itself and the individuals in its
north, south, east, and west positions as neighbours of the current one.

Each individual is only allowed to interact with its neighbours and
therefore the search operators are only applied on the individuals of
one neighbourhood. First, two parents p1, p2 are selected among the
neighbours of one individual p according to a selection criterion. Then,
crossover is performed to create two new individuals o1, o2, which are
then evaluated. The best individual (o) among the two new generated
individuals is mutated and evaluated. Finally, if fitness value of p is
better than the fitness value of o, the former is included in the next
population, otherwise the later is included in the next population. Due
to the neighbourhood overlapping, the Cellular GA motivates slow
diffusion of solutions through the population and thus the exploration
of the search space and the exploitation inside each neighbourhood are
promoted during the search.

The + λ λ1 ( , ) GA (Algorithm 6), introduced by Doerr et al. [22],
starts by generating a random population of size 1. Then, mutation is
used to create λ different mutated versions of the current individual.
Mutation is applied with a high mutation probability, defined as

=m ,p
k
n where k is typically greater than one, which allows, on average,

more than one gene to be mutated per chromosome. Then, uniform
crossover is applied to the parent and best generated mutant to create λ
offspring. While a high mutation probability is intended to support
faster exploration of the search space, a uniform crossover between the
best individual among the λ mutants and the parent was suggested to
repair the defects caused by the aggressive mutation. Then all offspring
are evaluated and the best one is selected. If the best offspring is better
than the parent, the population of size one is replaced by the best off-
spring. + λ λ1 ( , ) GA could be very expensive for large values of λ, as
fitness has to be evaluated after mutation and after crossover.

2.5. Evolution strategies

Evolution strategies, dating back to Rechenberg [23], primarily use
mutation and selection as search operators. Algorithm 7 shows a basic
( +μ λ) Evolutionary Algorithm (EA), where a population of μ in-
dividuals is evolved by generating λ individuals in each generation
through mutation of the μ individuals in the population. Among the
different ( +μ λ) EA versions, two common settings are (1+λ) EA and
(1+1) EA, where the population size is 1, and the number of offspring
is also limited to 1 for the (1+1) EA. In the ( +μ λ) EA, after the mu-
tation step the best μ individuals out of the previous generation and the
offspring are selected and kept as the new population. A variant of this
is a (μ, λ) EA (Algorithm 8), where the μ new individuals are only se-
lected from the offspring, and the parents are discarded.

2.6. Chemical Reaction Optimisation (CRO)

The Chemical Reaction Optimisation (CRO) [24] (Algorithm 9) is a
metaheuristic algorithm which incorporates the best of a population-
based algorithm (e.g., as genetic algorithms) and the simulated an-
nealing [25] local search. CRO is inspired by the nature of chemical
reactions, i.e., the process of transforming a set of unstable molecules in
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a container (similar to a population in GAs) to a set of stable molecules.
The basic unit in CRO is a molecule (similar to a chromosome in GAs)
and it is characterised by its potential energy (corresponding to the
fitness value in GAs), its kinetic energy, and the number of collisions
that is has been involved in. To manipulate individuals and explore the
search space, CRO iteratively applies chemical reactions, which are
similar to the search operations in a GA.

There are four types of reactions, each occurring in each iteration of
CRO: on-wall ineffective collision and inter-molecular ineffective collision
are used as local search operators, and on the other hand decomposition
and synthesis are used as global search operators. An on-wall ineffective
collision occurs when a molecule hits a wall of the container and stays
as a single molecule. In the process some of molecule’s kinetic energy is
transferred to the container. An inter-molecular ineffective collision
occurs when multiple molecules (typically two) collide with each other.
Although this collision could be modelled as two independent on-wall
ineffective collisions, the energy is handled in a different way, as mo-
lecules could exchange energy. A decomposition occurs when a mole-
cule hits a wall of a container, but rather than bouncing away as a
single molecule as in an inter-molecular ineffective collision, it breaks
into several molecules (typically two). If the kinetic energy of the mo-
lecule is not enough to create two new molecules, some energy from the
container is added to the newly generated molecules. On the other
hand, a synthesis occurs when multiple molecules (typically two) col-
lide with each other and form a single molecule. The kinetic energy of
both molecules is joined and added to the new molecule.

CRO has more parameters to control than a common GA, in parti-
cular: the rate at which molecules lose kinetic energy after a collision
(kinetic energy loss rate, a lower value would allow molecules to explore
their local search space for longer), the rate of molecular collisions
(molecular collision rate, a higher value would allow molecules to ex-
change information, i.e., energy more often), and the initial kinetic en-
ergy of each molecule (a higher value would allow molecules to explore
their local search space for longer). There are two other parameters to
control the degree of diversity of the container (i.e., population of
molecules): a decomposition threshold to control whether a decomposi-
tion can be applied to a molecule (only molecules that have not been
involved in n collisions can be decomposed), and a synthesis threshold to
control whether a molecules can be synthesised (a molecule can syn-
thesised if its kinetic energy is lower than a threshold). In this paper we
used the values suggested by Lam and Li [26], i.e., kinetic energy loss rate
and molecular collision rate of 0.2, an initial kinetic energy of 1000, a
decomposition threshold of 500, and a synthesis threshold equal to 10.

2.7. Linearly Independent Path based Search (LIPS) algorithm

The Linearly Independent Path based Search (LIPS) algorithm [27]
uses a single-objective genetic algorithm to optimise one coverage
target (i.e., a branch) at a time. Algorithm 10 illustrates how LIPS
works. As neither the pseudo-code nor the source code of the original
LIPS implementation are available, we refer to the implementation
proposed by Panichella et al. [28] and implemented on EVOSUITE.

Briefly, it starts by generating and evaluating a random test case i. If
i covers any branch goal, it is added to a pool of test cases (which keeps
the best test cases found by the search, similar to an archive). Then, the
list of branches not covered by test i is computed. For the next iteration
of the algorithm, a target goal is chosen from the list of uncovered goals
(i.e., the last uncovered goal of the path traversed by the last test case
added to the pool of test cases), and a population (which includes i) is
randomly generated. In LIPS, every target goal has an initial time limit
to be covered equal to the total search budget divided by the total
number of targets. However, as the search evolves, the time limit to
satisfy each target is dynamically updated as branches are covered
during the search (as some branches could be easier/quicker to cover
than others). Within this time limit new offspring are generated based
on traditional selection, crossover, and mutation operators. Once the

offspring is generated it is then evaluated to assess whether it covers the
target goal or any other goal. If any offspring (i.e., test cases) cover the
current target goal: 1) the target goal is removed from the list of un-
covered goals, 2) the new test case is added to the final pool of test
cases, and 3) a new uncovered target goal is selected. If no offspring is
able to cover the target goal within the allocated time budget, no test
case is added to the pool and a new uncovered target goal is selected.
Note that whether a new offspring covers the target goal or not, it may
by chance cover other goals (“collateral coverage”). In this case, all
goals covered by the new offspring are removed from the list of un-
covered goals and the test is added to the final pool of test cases. At the
end of each iteration the current population seeds the next iteration of
the algorithm as it may include individuals covering alternative bran-
ches of the uncovered target branch. The algorithm stops when all
targets are covered or a stopping condition is met.

2.8. Many-objective sorting algorithm

Unlike the single-objective optimisation on the test suite level de-
scribed above, the Many-Objective Sorting Algorithm (MOSA) [9] re-
gards each coverage goal as an independent optimisation objective.
MOSA is a variant of NSGA-II [29], and uses a preference sorting cri-
terion to reward the best tests for each non-covered target, regardless of
their dominance relation with other tests in the population. MOSA also
uses an archive to store the tests that cover new targets, which aiming
to keep record on current best cases after each iteration.

Algorithm 11 illustrates how MOSA works. It starts with a random
population of test cases. Then, and similar to typical EAs, the offspring
are created by applying crossover and mutation (Line 6). Selection is
based on the combined set of parents and offspring. This set is sorted
(Line 9) based on a non-dominance relation and preference criterion.
MOSA selects non-dominated individuals based on the resulting rank,
starting from the lowest rank (F0), until the population size is
reached (Lines 11–14). In fewer than ps individuals are selected, the
individuals of the current rank (Fr) are sorted by crowding distance
(Lines 16 and 17), and the individuals with the largest distance are
added. Finally, the archive that stores previously uncovered branches is
updated in order to yield the final test suite (Line 18). In order to cope
with the large numbers of goals resulting from the combination of
multiple coverage criteria, the DynaMOSA [11] extension dynamically
selects targets based on the dependencies between the uncovered tar-
gets and the newly covered targets. Both, MOSA and DynaMOSA, have
been shown to result in higher coverage of some selected criteria than
traditional GAs for whole test suite optimisation.

2.9. Many Independent Objective (MIO) algorithm

The Many Independent Objective (MIO) Algorithm [30] is a search
algorithm that is tailored for test suite generation. Its main motivation
is to tackle cases when there is a large number of testing targets, and
comparatively little available search budget. This is mainly the case for
system testing, but could also happen for unit testing of large classes
with test criteria like mutation testing (which typically results in many
test targets).

A high level pseudo-code of how MIO works is listed in Algorithm
12. MIO evolves individual test cases, which are stored in an archive. At
the end of search, a test suite is composed of the tests in the archive. In
MIO, testing targets are sought independently, and a population of test
cases is kept for each testing target. Once a target is covered, its best
solution is saved in the archive, and the population is deleted. To avoid
memory problems, the number of populations is dynamic: MIO only
holds populations for targets that are reached and not fully covered yet.

At the beginning of the search, all populations are empty, and a
random test case is generated. This test is added to all the populations
of the targets reached by its execution. At each iteration, like in a (1+1)
EA, a test case is sampled and mutated. The resulting offspring is copied
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and added to all the populations of targets reached by the offspring
execution. When a population size reaches a certain threshold N, adding
a new offspring will be followed by removing the worst test case in that
population, where the fitness value is only based on that single target
the population is for. In other words, a population will not increase in
size more than N.

The sampling of which offspring to generate is done in two ways:
with probability P, it is created at random, whereas with − P1 it is
sampled from one of the populations. When a population to sample
from is chosen, the actual test in the population to copy and mutate is
chosen randomly with uniform probability.

To handle the tradeoff between exploration and exploitation of the
search landscape, MIO employs a dynamic parameter control. For ex-
ample, give a starting value for R (e.g., =R 0.5), this value is decreased
linearly over time until it reaches =R 0, when a more focused search
starts. Similarly, N decreases down to =N 1. In other words, at the
beginning of the search, MIO is similar to random search, but, with the
passing of iterations, it becomes closer and closer to a focused (1+1)
EA. When the focused search starts is controlled by a parameter F,
which represents the amount of search budget consumed before starting
the focused search.

To handle possible issues with infeasible targets, the choice of which
population to sample from is not at random. MIO keeps track of how
often there are improvements in fitness value for the different testing
targets that are not yet covered. Populations for testing targets with
recent fitness improvements are more likely to be sampled from com-
pared to populations for targets whose best fitness value has been
stagnating (which would happen for infeasible targets).

3. Empirical study

In order to evaluate the influence of the evolutionary algorithm on
test suite generation, we conducted an empirical study. In this section,
we describe the experimental setup.

3.1. Experimental setup

3.1.1. Selection of classes under test
A key factor of studying evolutionary algorithms on automatic test

generation is the selection of classes under test. As many open source
classes, for example contained in the SF110 [3] corpus, are trivially
simple [5] and would not reveal differences between algorithms, we
used the selection of non-trivial classes from the DynaMOSA study [11].
This is a corpus of 117 open-source Java projects and 346 classes, se-
lected from four different benchmarks. The complexity of classes ranges
from 14 statements and 2 branches to 16,624 statements and 7938
branches. The average number of statements is 1109, and the average
number of branches is 259.

3.1.2. Unit test generation tool
We used EVOSUITE [2], which provides search algorithms to evolve

coverage-optimised test suites, and allows an unbiased comparison of
the algorithms as the underlying implementation of the tool is the same
across all algorithms. By default, EVOSUITE uses a Monotonic GA de-
scribed in Section 2.4. It also provides a Standard and Steady State GA,
Random search, Random testing and, more recently, MOSA, Dyna-
MOSA, and LIPS. For this study, we extended EVOSUITE with seven al-
gorithms: the 1+(λ, λ) GA, ( +μ λ) EA, (μ, λ) EA, Breeder GA, Cellular
GA, CRO, and MIO. All evolutionary algorithms use a test archive.

3.1.3. Experiment procedure
We performed two experiments to assess the performance of the

13 selected evolutionary algorithms (described in Section 2). First,
we conducted a tuning study to select the best population size (μ) of
nine algorithms, number of mutations (λ) of + λ λ1 ( , ) GA, popula-
tion size (μ) and number of mutations (λ) of ( +μ λ) EA and (μ, λ) EA,

and the amount of search budget consumed before starting MIO’s
focused search, as the performance of each EA can be influenced by
the parameters used [31]. Random-based approaches do not require
any tuning. Then, we conducted a larger study to perform the com-
parison.

For both experiments we have two configurations: 1) single-cri-
terion optimisation (i.e., branch coverage optimisation), and 2) mul-
tiple-criteria optimisation1 (i.e., line, branch, exception, weak-muta-
tion, output, method, method-no-exception, and context-dependent
branch coverage) [6] to study the effect of the number of coverage
criteria on the coverage of resulting test suites. For both configurations
we used EVOSUITE’s default search budget of 1 min. Due to the random-
ness of EAs, we repeated the experiments 30 times.

For the tuning study, we randomly selected 10% (i.e., 34) of
DynaMOSA’s study classes [11] (with 15 to 1707 branches, 227 on
average) from 30 Java projects. This resulted in a total of 25,500
(13,260 single-criterion configurations, and 12,240 multiple-criteria
configurations; the number of multiple-criteria configurations is lower
because LIPS only supports single criteria) calls to EVOSUITE and more
than 17 days of CPU-time overall. For the second experiment, we used
the remaining 308 classes (346 total - 34 used to tune each EA - 4
discarded due to crashes of EVOSUITE) from the DynaMOSA study [11].
Besides the tuned μ, λ parameters, and MIO’s exploitation starting
point, we used EVOSUITE’s default parameters [31].

3.1.4. Experiment analysis
For each test suite generated by EVOSUITE on any experimental con-

figuration we measure the coverage achieved on eight criteria, along-
side other metrics, such as the number of generated test cases, the
length of generated test suites in terms of statements, number of
iterations of each EA, number of fitness evaluations, mutation score of
the generated test suites, etc. As described by Arcuri and Fraser [31]
“easy” branches are always covered independently of the parameter
settings used, and several others are just infeasible. Therefore, rather
than using raw coverage values, we use relative coverage [31]: Given
the coverage of a class c in a run r, cov(c, r), the best and worst coverage
of c in any run, max(cov(c)) and min(cov(c)) respectively, a relative
coverage, δ(c, r), can be defined as

= −
−

δ c r cov c r min cov c
max cov c min cov c

( , ) ( , ) ( ( ))
( ( )) ( ( ))

If the best and worst coverage of c is equal, i.e.,
= =max cov c cov c( ( )) min( ( )), then δ(c, r) is 1 (if range of cov(c, r) is

between 0 and 1) or 100 (if range of cov(c, r) is between 0 and 100).
Given a set of runs R, the average relative coverage of a class c is de-
fined as

∑=
∈

c
R

δ c rΔ( ) 1 ( , )
r R

Thus, the coverage achieved by an algorithm A can be defined as

∑=
∈

cov
C

c1 Δ( )A
c C

where C represents the set of classes. This way, the coverage of a trivial
small class would be as important as the coverage of a large (perhaps
more complex) class. For each averaged coverage value we compute
common statistics such as standard deviation (σ), and confidence in-
tervals (“CI”) using bootstrapping at 95% confidence level. In order to
statistically compare the performance of each EA we use the Var-
gha–Delaney A12 effect size, the Wilcoxon–Mann–Whitney U-test with a
95% confidence level, and the Friedman test. Note that we do not
perform any p-value adjustments in this study, e.g., Bonferroni, as the

1 At the time of writing this paper, LIPS did not support all the criteria used
by EVOSUITE.
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use of such adjustments has been discouraged [32] due to substantial
reduction in the statistical power of rejecting an incorrect null hy-
pothesis [33], and therefore increasing the likelihood of Type II errors.

3.1.5. Threats to validity
Threats to internal validitymight result from how the empirical study

was carried out. We thoroughly tested the experiment framework and
test generation tool in order to reduce the chances of having faults, but
it is well-known that testing alone cannot prove the absence of defects.
Since the randomised algorithms underlying our study are affected by
chance, we ran each experiment 30 times and followed rigorous sta-
tistical procedures to evaluate the results. To avoid possible con-
founding factors when comparing different algorithms, they were all
implemented in the same tool. Furthermore, we used the same default
values for all relevant parameters, and tuned the algorithm-specific
ones. It is nevertheless possible that different parameter values might
influence the performance of each EA.

We measured the success of different EAs using code coverage.
While higher coverage is a desirable goal for test generation, there is an
ongoing debate on how code coverage correlates to fault finding po-
tential, and so there is a threat to construct validity resulting from how
we measure test suite quality. However, code coverage is nevertheless
sufficient to compare the effectiveness of different optimisation algo-
rithms at achieving their optimisation goal.

As with any empirical study, there are threats to external validity
regarding the generalisation to other types of software. The results re-
ported in this paper are limited to the number and type of EAs used in
the experiments. However, we believe these are representative of state-
of-art algorithms, and are sufficient in order to demonstrate the influ-
ence of each algorithm on the problem, and of the choice of algorithm
on the problem in general. We used 346 complex classes from 117
open-source Java projects in our experiments. While this resulted in a
substantial computational effort, our results may not generalise to other
classes. However, we specifically chose classes that are complex, as also
used in previous studies [11] on test generation.

3.2. Parameter tuning

The execution of an EA requires a number of parameters to be set.
As there is not a single best configuration setting to solve all problems
[34] in which an EA could be applied, a possible alternative is to tune
EA’s parameters for a specific problem at hand to find the “best” ones.
Our experimental setup largely relies on two previous tuning studies:
1) Arcuri and Fraser [31] determined the best values for most para-
meters of EVOSUITE, such as crossover rate, elitism rate, selection
function, etc.; and 2) Shamshiri et al. [35] determined the best values
for CRO in the context of search-based test generation, for instance,
the best potential energy value, or the best number of collisions al-
lowed, etc. Both studies performed a similar tuning study as the one
defined and reported in this paper to identify the best parameters.
Note that, although neither Breeder GA, Cellular GA, + λ λ1 ( , ) GA,
( +μ λ) EA, and (μ, λ) EA have been evaluated in the context of unit
test generation, none of the algorithms except Cellular GA require any
new parameters. For the Cellular GA we use the best parameter (i.e.,
neighbourhood model) that has been reported by previous work [21].
The main distinguishing factors between the algorithms we are con-
sidering in this study are μ (i.e., the population size) and λ (i.e., the
number of mutations), or F which represents the amount of search
budget consumed before starting the focused search in MIO. In par-
ticular, we selected common values used in previous studies and re-
ported to be the best for each EA:

• Population size of 10, 25, 50, and 100 for Standard GA, Monotonic
GA, SteadyState GA, Breeder GA, Cellular GA, CRO, MOSA,
DynaMOSA, and LIPS.

• λ size of 1, 8 [22], 25, and 50 for + λ λ1 ( , ) GA.

• μ size of 1, 7 [36], 25, and 50, and λ size of 1, 7, 25, and 50 for
( +μ λ) EA and (μ, λ) EA.

• F of 0.00, 0.25, 0.50, 0.75, 1.00 for MIO.

Thus, for Standard GA, Monotonic GA, SteadyState GA, Breeder GA,
Cellular GA, CRO, MOSA, DynaMOSA, LIPS, and + λ λ1 ( , ) GA there are
4 different configurations; for ( +μ λ) EA and (μ, λ) EA, and as λ must
be divisible by μ, there are 8 different configurations (i.e., +1 1, +1 7,

+1 25, +1 50, +7 7, +25 25, +25 50, +50 50); for MIO there are 5
different configurations, i.e., a total of 61 different configurations.

To identify the best parameter of each EA, we performed a pairwise
comparison of the coverage achieved by using any μ (population size),

+μ λ, or F. The parameter for which an EA achieved a significantly
higher coverage more often was selected as the best. Table 1 shows the
best parameter per EA. For single and multiple-criteria the best popu-
lation size is shared by several EAs, for instance, Standard GA, Steady-
State GA, Breeder GA, and CRO share the same value (10 for single-
criteria, and 100 for multiple-criteria). The best population size for
MOSA and DynaMOSA is the same for single-criteria (i.e., 10), but
different for multiple-criteria (25 for MOSA, and 10 for DynaMOSA).
The best F value for MIO is 1.0 for single-criteria, and 0.25 for multiple-
criteria, i.e., for a smaller number of coverage goals MIO works best
without focusing the search, and for a larger number of coverage goals
(multiple-criteria scenario) MIO works best if the focus search is en-
abled once 25% of the search budget has been consumed. Table 1 also
reports the average effect size of the best parameter value when com-
pared to all possible parameter values; and the effect size of pairwise
comparisons in which the best parameter was significantly better/
worse.

Table 1
Best parameter (X, i.e., μ, +μ λ, or F) of each EA for single and multiple criteria
optimisation. “Branch Coverage” column reports the branch coverage per EA,
and column “Overall Coverage”, the overall coverage of a multiple-criteria
optimisation, “Avg. A12” represents the average effect size of the best parameter
value when compared to all possible parameter values, “Better A12” the effect
size of all pairwise comparisons in which the best parameter was significantly
better, and “Worse A12” the effect size of pairwise all comparisons in which the
best parameter was significantly worse.

Branch Overall Avg. Better Worse
Algorithm X cov. cov. A12 A12 A12

Search budget of 60 s – Single-criteria
Standard GA 10 0.74 – 0.53 0.76 0.31
Monotonic GA 25 0.75 – 0.54 0.73 0.32
Steady-State GA 10 0.70 – 0.54 0.73 0.32

+ λ λ1 ( , ) GA 8 0.61 – 0.53 0.69 0.30
( +μ λ) EA 7+7 0.74 – 0.52 0.78 0.26
(μ, λ) EA 1,7 0.76 – 0.65 0.83 0.28
Breeder GA 10 0.67 – 0.51 0.73 0.23
Cellular GA 100 0.60 – 0.52 0.77 0.26
CRO 10 0.70 – 0.51 0.73 0.26
MOSA 10 0.74 – 0.53 0.72 0.24
DynaMOSA 10 0.75 – 0.55 0.73 0.16
LIPS 100 0.58 – 0.54 0.72 0.31
MIO 1.00 0.68 – 0.52 0.72 0.34

Search budget of 60 s – Multiple-criteria
Standard GA 100 0.64 0.66 0.52 0.74 0.23
Monotonic GA 100 0.63 0.65 0.53 0.76 0.22
Steady-State GA 100 0.58 0.61 0.53 0.77 0.23

+ λ λ1 ( , ) GA 50 0.49 0.51 0.60 0.77 0.31
( +μ λ) EA 50+50 0.67 0.69 0.55 0.77 0.21
(μ, λ) EA 25,50 0.68 0.70 0.61 0.81 0.25
Breeder GA 100 0.61 0.63 0.57 0.75 0.23
Cellular GA 100 0.57 0.60 0.62 0.79 0.25
CRO 100 0.62 0.64 0.49 0.73 0.23
MOSA 25 0.73 0.73 0.58 0.77 0.29
DynaMOSA 10 0.77 0.73 0.55 0.72 0.20
LIPS – – – – – –
MIO 0.25 0.67 0.66 0.54 0.71 0.28
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4. Experiment results

Table 2 summarises the results of the main experiment described in
the previous section. For each algorithm we report the branch coverage
achieved for single and multiple criteria, the overall coverage for
multiple criteria, the mutation score, the number of generated test
cases, and the rank of each algorithm based on their average perfor-
mance. Table 2 also reports the standard deviation and confidence in-
tervals (CI) using bootstrapping at 95% significance level of the cov-
erage achieved (either branch or overall coverage).

On one hand, MOSA and DynaMOSA achieve the highest coverage
on average (82%) for single criteria. Although the CI of both algorithms
overlap ([80%, 85%] vs. [79%, 84%]), DynaMOSA is ranked first. The
results of the Friedman test are statistically significant, i.e., p-values are
< 0.0001 for both single and multiple criteria (full data is available on
the accompanying website [37]). This means that, for both single and
multiple criteria, the rankings reported in Table 2 are statistically dif-
ferent (i.e., there is at least one algorithm that has performance dif-
ferent from the others). For multiple criteria, DynaMOSA achieves the
highest overall coverage (86%) and CI among all algorithms. On the
other hand, the + λ λ1 ( , ) EA achieves the lowest branch coverage
(61%) for single criteria, and Random testing achieves the lowest
overall coverage (45%) for multiple criteria, thus it is ranked as the
worst algorithm. There are a few algorithms that perform similarly, for
instance, Standard GA, Monotonic GA, and ( +μ λ) EA achieve the same
branch coverage for single criteria (79%); and ( +μ λ) EA, and (μ, λ) EA
achieve the same overall coverage for multiple criteria (77%). To make
these quantitative results more accessible, Fig. 1 shows the coverage
distribution achieved by each algorithm. It also shows the median and
the mean per algorithm, and the mean of all algorithms. For single

criteria the average coverage among all algorithms is 74%, which
means 7 algorithms (i.e., Random search and Random testing, + λ λ1 ( , )
EA, Breeder GA, Cellular GA, and LIPS) out of 15 perform below the
average. On the other hand, for multiple criteria only 4 algorithms
perform below the average (i.e., Random search and testing, + λ λ1 ( , )
EA, and Cellular GA).

In terms of mutation score and number of generated test cases, all
algorithms performed similarly. For instance, MOSA and DynaMOSA
generated 29 and 30 test cases for single criteria, respectively, and both
sets of test cases achieve the same mutation score (47%). The algorithm
that generated the lowest number of test cases (18) and achieved the
lowest mutation score (41%) is the + λ λ1 ( , ) EA. Besides these three
EAs, the range of mutation scores for single criteria is only [42%, 46%],
and the number of test cases is in the range of [23, 28]. Note that for
both, single and multiple criteria, the EA that generated more test cases
is the one that achieved the highest coverage (either branch or overall
coverage) and mutation score.

Although DynaMOSA achieved the highest coverage and mutation
score among all algorithms, and is ranked first for both single and
multiple criteria, it is not clear whether it performs consistently better
than any other algorithm across all classes under test. In the following
sections we perform further analyses to address this issue and answer
our research questions.

4.1. RQ1 – Which archive-based single-objective evolutionary algorithm
performs best?

Table 3 summarises the results of a pairwise tournament of all EAs.
An EA X is considered to be better than an EA Y if it performs sig-
nificantly better on a higher number of comparisons. For example, the

Table 2
For each algorithm, we report several statistics on the obtained results, such as branch and overall coverage, standard deviation (σ), mutation score, number of
generated test cases (#T), and the rank of each algorithm based on their average performance (R), which is statistically significant for both single and multiple
criteria according to the Friedman test (p-value is < 0.0001 for both single and multiple criteria, full data is available on the accompanying website [37]). For
averaged coverage values we also report confidence intervals (CI) using bootstrapping at 95% significance level.

Algorithm Branch Overall Mut.
Cov. σ CI Cov. σ CI Score #T R σ

Search budget of 60 seconds – Single-criteria
Random Search 0.73 0.07 [0.70, 0.76] — — — 0.44 28 8.3 3.9
Random Testing 0.69 0.08 [0.66, 0.72] — — — 0.43 25 10.5 3.3
Standard GA 0.79 0.09 [0.77, 0.82] — — — 0.46 27 6.3 3.0
Monotonic GA 0.79 0.08 [0.76, 0.81] — — — 0.45 27 6.2 2.7
Steady-State GA 0.76 0.08 [0.73, 0.79] — — — 0.44 27 8.1 3.1

+ λ λ1 ( , ) GA 0.61 0.13 [0.58, 0.65] — — — 0.41 18 11.0 3.8
( +μ λ) EA 0.79 0.08 [0.77, 0.82] — — — 0.46 28 5.9 2.7
(μ, λ) EA 0.81 0.09 [0.79, 0.83] — — — 0.46 28 5.1 2.9
Breeder GA 0.72 0.10 [0.70, 0.76] — — — 0.44 25 9.5 3.0
Cellular GA 0.67 0.09 [0.64, 0.71] — — — 0.43 26 10.8 3.2
CRO 0.74 0.10 [0.71, 0.77] — — — 0.44 26 8.6 2.8
MOSA 0.82 0.08 [0.79, 0.84] — — — 0.47 29 5.1 3.3
DynaMOSA 0.82 0.08 [0.80, 0.85] — — — 0.47 30 4.8 3.5
LIPS 0.62 0.11 [0.59, 0.66] — — — 0.42 23 11.9 3.5
MIO 0.75 0.09 [0.72, 0.78] — — — 0.44 27 7.9 3.4
Search budget of 60 seconds – Multiple-criteria
Random Search 0.65 0.10 [0.62, 0.67] 0.64 0.10 [0.62, 0.66] 0.44 31 9.1 4.3
Random Testing 0.55 0.09 [0.52, 0.59] 0.45 0.12 [0.42, 0.48] 0.41 28 12.3 2.5
Standard GA 0.71 0.08 [0.68, 0.74] 0.76 0.07 [0.73, 0.78] 0.46 42 5.6 2.5
Monotonic GA 0.71 0.08 [0.68, 0.74] 0.75 0.08 [0.73, 0.78] 0.46 41 6.1 2.4
Steady-State GA 0.65 0.08 [0.61, 0.68] 0.70 0.07 [0.67, 0.73] 0.45 39 8.9 2.7

+ λ λ1 ( , ) GA 0.48 0.13 [0.45, 0.52] 0.54 0.12 [0.51, 0.57] 0.40 26 11.3 3.2
( +μ λ) EA 0.72 0.08 [0.69, 0.75] 0.77 0.08 [0.75, 0.79] 0.46 42 5.3 2.5
(μ, λ) EA 0.72 0.09 [0.69, 0.75] 0.77 0.08 [0.75, 0.79] 0.47 40 5.6 2.7
Breeder GA 0.66 0.09 [0.63, 0.69] 0.71 0.08 [0.69, 0.74] 0.45 39 8.2 2.3
Cellular GA 0.61 0.09 [0.58, 0.64] 0.66 0.08 [0.63, 0.69] 0.44 39 10.2 2.4
CRO 0.69 0.09 [0.65, 0.72] 0.73 0.08 [0.71, 0.75] 0.46 40 7.1 2.7
MOSA 0.79 0.09 [0.76, 0.81] 0.81 0.08 [0.79, 0.83] 0.49 44 4.3 3.2
DynaMOSA 0.84 0.08 [0.82, 0.86] 0.86 0.07 [0.84, 0.87] 0.51 48 3.2 3.0
LIPS — — — — — — — — — —
MIO 0.68 0.10 [0.65, 0.71] 0.71 0.09 [0.69, 0.74] 0.45 37 7.9 3.7
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(b) Multiple criteria.

Fig. 1. Coverage achieved by each algorithm. Middle line of each boxplot marks the median, white circles represent outliers, * symbol signifies the mean, and the
grey line represents the mean of all coverages.

Table 3
X Pairwise comparison of all evolutionary algorithms. “Better than” and “Worse than” give the number of comparisons for which the best EA is statistically
significantly (i.e., p-value<0.05) better and worse, respectively. Columns A12 give the average effect size.

Tourn. Branch Overall Better Worse

Algorithm position cov. cov. A12 than A12 than A12

Search budget of 60 s – Single-criteria
Standard GA 4 0.79 – 0.58 741 / 2464 0.82 210 / 2464 0.26
Monotonic GA 3 0.79 – 0.58 733 / 2464 0.81 189 / 2464 0.26
Steady-State GA 5 0.76 – 0.50 536 / 2464 0.82 599 / 2464 0.21

+ λ λ1 ( , ) GA 8 0.61 – 0.33 189 / 2464 0.76 1218 / 2464 0.12
( +μ λ) EA 2 0.79 – 0.60 815 / 2464 0.81 128 / 2464 0.28
(μ, λ) EA 1 0.81 – 0.63 1028 / 2464 0.81 60 / 2464 0.30
Breeder GA 7 0.72 – 0.44 322 / 2464 0.82 846 / 2464 0.21
Cellular GA 9 0.67 – 0.35 210 / 2464 0.82 1256 / 2464 0.17
CRO 6 0.74 – 0.50 460 / 2464 0.82 528 / 2464 0.23

Search budget of 60 s – Multiple-criteria
Standard GA 2 0.71 0.76 0.62 961 / 2464 0.82 130 / 2464 0.26
Monotonic GA 4 0.71 0.75 0.60 892 / 2464 0.81 188 / 2464 0.26
Steady-State GA 7 0.65 0.70 0.44 371 / 2464 0.85 893 / 2464 0.21

+ λ λ1 ( , ) GA 9 0.48 0.54 0.22 120 / 2464 0.76 1724 / 2464 0.08
( +μ λ) EA 1 0.72 0.77 0.64 1066 / 2464 0.83 106 / 2464 0.27
(μ, λ) EA 3 0.72 0.77 0.62 1012 / 2464 0.83 216 / 2464 0.24
Breeder GA 6 0.66 0.71 0.47 411 / 2464 0.84 733 / 2464 0.23
Cellular GA 8 0.61 0.66 0.37 223 / 2464 0.88 1207 / 2464 0.18
CRO 5 0.69 0.73 0.53 601 / 2464 0.82 460 / 2464 0.22

J. Campos et al. Information and Software Technology 104 (2018) 207–235

224



10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
at

io
 o

f C
la

ss
es

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.03 0.02 0.04
0.08 0.08

0.13
0.16

0.44

(a) Standard GA.
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(b) Monotonic GA.
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(c) Steady-State GA.
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(d) 1 + (λ, λ) GA.
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(e) (μ + λ) EA.
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(f) (μ, λ) EA (best).
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(g) Breeder GA.
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(h) Cellular GA.
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(i) CRO.

Fig. 2. Proportion of classes that have an average branch coverage (averaged out of 30 runs on all their classes) within each 10% branch coverage interval. X-labels
show the upper limit (inclusive). For example, the group 30% represents all the classes with an average branch coverage greater than 20% and lower than or equal to
30%.
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(a) Standard GA.
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(b) Monotonic GA.
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(c) Steady-State GA.
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(d) 1 + (λ, λ) GA.
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(e) (μ + λ) EA (best).
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(f) (μ, λ) EA.
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(g) Breeder GA.
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(h) Cellular GA.
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(i) CRO.

Fig. 3. Proportion of classes that have an average overall coverage (averaged out of 30 runs on all their classes) within each 10% overall coverage interval. X-labels
show the upper limit (inclusive). For example, the group 30% represents all the classes with an average overall coverage greater than 20% and lower than or equal to
30%.
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(μ, λ) EA was the one with more positive comparisons (1028) and the
least negative comparisons (just 60) – thus, being the best EA for single
criteria. While it is ranked third for multiple criteria, it achieved the
same branch and overall coverage (72% and 77%, respectively) as the
first ranked EA, i.e., ( +μ λ) EA, with an A12 effect size of 62% averaged
over all comparisons.

Figs. 2 and 3 illustrate these results visually by showing the pro-
portion of classes per coverage interval for single and multiple criterion
respectively. For example, (μ, λ) EA achieved a branch coverage be-
tween 91% and 100% for 63% of all classes under test (see Fig. 2f), and
an overall coverage between 91% and 100% for 52% of all classes
under test (see Fig. 3f). As expected, the best EA for single and multiple
criteria is the one with the highest ratio of classes within the coverage
interval ]90%, 100%].

Surprisingly, despite its reported good performance [22] the
+ λ λ1 ( , ) EA was statistically significantly better only on 120 com-

parisons for multiple criteria, while it was statistically significantly
worse on 1724 comparisons out of 2464 – which make it the worst EA
in our comparison. A recent study has shown that due to the presence of
many plateaus in the landscape of a test generation problem (and not
the number of local optima), crossover has little or no impact on the
search [38]. Thus, our conjecture is that the worst performance of the

+ λ λ1 ( , ) EA in our evaluation is due to the fact the only individual in
the population heavily relies on the outcome of λ crossover operations,
which may or may not perform successfully (i.e., generate an individual
that is better than the single one in the population). Another EA that
performed poorly is the Cellular GA. To the best of our knowledge, this
is the first time a Cellular GA has been applied to automatic software
test generation and therefore it has not been studied in detail, for in-
stance, the question which neighbourhood model works best for this
particular problem still remains.

RQ1: For a small number of coverage goals a (μ, λ) EA is better than
the other considered evolutionary algorithms, for a large number of
coverage goals a ( +μ λ) EA performed better.

4.2. RQ2 – How does evolutionary search compare to random search and
random testing?

Table 4 compares the results of each EA with the two random-based
techniques considered in this study: Random search and Random
testing. Both random approaches are hardly affected by the number of
coverage goals. For instance, Random testing covers 69% of all branch
goals for single criteria, where for multiple criteria it only covers 45%
of all goals (55% of all branch goals). The % of goals covered by
Random search decreases from 73% (single criteria) to 64% (multiple
criteria).

As we can see in Fig. 5, for single criteria all EAs but + λ λ1 ( , ) EA
and Cellular GA achieve higher branch coverage than Random testing.
For multiple criteria, all EAs achieve higher overall coverage than
Random testing, most of them significantly higher overall coverage. For
example, Random testing covers 45% of all coverage goals for multiple
criteria where +μ λ EA covers 77% (an effect size A12 of 0.89 and a p-
value of 0.03). When compared to Random search (see Fig. 4), six out of
nine EAs performed better for single criteria (i.e., Standard GA,
Monotonic GA, Steady-State GA, ( +μ λ) EA, (μ, λ) EA), and CRO; and
all EAs but + λ λ1 ( , ) EA performed better than Random search for
multiple criteria. This result is different to the earlier study by Sham-
shiri et al. [5], where random achieved similar, and sometimes higher
coverage than a genetic algorithm. Our conjecture is that the better
performance of some EAs in our evaluation is due to (1) the use of the
test archive, and (2) the use of more complex classes in the experiment.

RQ2: Evolutionary algorithms (in particular (μ, λ) EA) perform
better than random search and statistically better than random
testing.

4.3. RQ3 – Which archive-based many-objective evolutionary algorithm
performs best?

Table 5 summarises the results of a pairwise tournament of all many
objective algorithms, i.e., MOSA, DynaMOSA, LIPS, and MIO. For both
single and multiple criteria configurations, DynaMOSA is ranked first
(e.g., it was statistically significantly better on 391 comparisons and
significantly worse on only 31 out of 924 comparisons), MOSA is
second, followed by MIO and then LIPS. As we discussed in RQ1, the
most effective algorithm (i.e., the one with more positive comparisons)
is the one with the highest ratio of classes with a coverage between ]
90%, 100%]. For DynaMOSA, 70% of all classes fall into the ]90%,
100%] interval, while for MOSA this number is lower at 67%, for MIO
at 54%, and LIPS only managed to achieve coverage in this interval for
35% of classes (see Fig. 6). For the multiple criteria configuration, for
DynaMOSA 77% of all classes under test fall into the ]90%, 100%]
interval, for MOSA it is 62%, and for MIO 42% (see Fig. 7).

The ranking of many-objective algorithms for single criteria (i.e.,
branch coverage) is in line with previous studies in which DynaMOSA
outperformed its predecessor MOSA [11], and MOSA in turn was more
effective than LIPS [28] at generating test cases for Java static methods
with purely procedural behaviour. Note that although MOSA and Dy-
naMOSA achieve the same branch coverage for single criteria on
average, DynaMOSA is statistically significantly better on more com-
parisons (391 vs 370) and significantly worse on less comparison (31 vs
51) than MOSA. Thus, DynaMOSA is statistically better than MOSA.
MIO achieves a branch coverage of 75% for single criteria, and 71%
overall coverage for multiple criteria (see Table 6); therefore it is
ranked third. This result is different to two studies conducted by Arcuri
[30,39], where MIO performed better than MOSA. Our conjecture is
that the testing level influences this difference: Arcuri [30,39] per-
formed an empirical evaluation on the automatic generation of system
tests, and we performed an empirical evaluation on the automatic
generation of unit tests. Besides the larger number of coverage goals in
system testing, a main difference is that system tests are usually

Table 4
Comparison of evolutionary algorithms and two random-based approaches:
Random search and Random testing. Statistically significant effect sizes are
shown in bold.

Branch Overall vs. Random search vs. Random testing

Algorithm cov. cov. A12 p A12 p

Search budget of 60 s – Single-criteria
Random search 0.73 – – – 0.64 0.16
Random testing 0.69 – 0.36 0.16 – –
Standard GA 0.79 – 0.58 0.12 0.70 0.09
Monotonic GA 0.79 – 0.58 0.13 0.70 0.07
Steady-State GA 0.76 – 0.50 0.16 0.63 0.12

+ λ λ1 ( , ) GA 0.61 – 0.38 0.11 0.42 0.11
( +μ λ) EA 0.79 – 0.59 0.12 0.71 0.08
(μ, λ) EA 0.81 – 0.63 0.11 0.73 0.07
Breeder GA 0.72 – 0.47 0.12 0.56 0.14
Cellular GA 0.67 – 0.37 0.11 0.48 0.11
CRO 0.74 – 0.51 0.13 0.63 0.11

Search budget of 60 s – Multiple-criteria
Random search 0.65 0.64 – – 0.75 0.05
Random testing 0.55 0.45 0.25 0.05 – –
Standard GA 0.71 0.76 0.67 0.07 0.87 0.02
Monotonic GA 0.71 0.75 0.66 0.07 0.87 0.02
Steady-State GA 0.65 0.70 0.58 0.06 0.81 0.03

+ λ λ1 ( , ) GA 0.48 0.54 0.39 0.05 0.56 0.15
( +μ λ) EA 0.72 0.77 0.69 0.06 0.89 0.03
(μ, λ) EA 0.72 0.77 0.68 0.06 0.89 0.03
Breeder GA 0.66 0.71 0.60 0.07 0.83 0.03
Cellular GA 0.61 0.66 0.53 0.07 0.78 0.05
CRO 0.69 0.73 0.63 0.07 0.84 0.03
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computationally more expensive to execute than unit test, which would
benefit algorithms with small populations, such as MIO. On the other
hand, algorithms with large populations (e.g., Standard GA) would take
longer for evaluating the fitness of its individuals, and therefore fewer
solutions would be explored.

RQ3: DynaMOSA outperforms the other many-objective algorithms
for individual and multiple criteria.

4.4. RQ4 – How does evolution of whole test suites compare to many-
objective optimisation of test cases?

Table 6 compares each EA with the many-objective optimisation
algorithms MOSA, DynaMOSA, LIPS, and MIO.

Our results confirm and enhance previous studies [9,11] by evalu-
ating eight different EAs (i.e., Standard GA, Steady-State GA, + λ λ1 ( , )
GA, ( +μ λ) EA, (μ, λ) EA, Breeder GA, Cellular GA, CRO) in addition to
Monotonic GA, and show that MOSA and DynaMOSA perform better at
optimising test cases than any EA at optimising test suites for single and
multiple criteria (see Figs. 8 and 9). Interestingly, and unlike any other
algorithm, DynaMOSA achieves higher branch coverage on multiple
criteria than on single criteria. This shows that DynaMOSA is suitable
for optimising a large number of coverage goals (which is to be ex-
pected in a multiple criteria configuration) without negative effects on
the final coverage.

We can only include LIPS in the single criterion scenario; here, all
EAs performed better than LIPS (see Fig. 10). When compared to MIO,
only four EAs performed better than MIO for both single and multiple
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Fig. 4. Effect size A12 of EA X vs. Random search. Middle line of each boxplot marks the median, white circles represent the outliers, ▲ represents the mean of a
significant effect size greater than 0.5 (i.e., EA X performs significantly better than Random search), ▼ the mean of a significant effect size lower than 0.5 (i.e., EA X
performs significantly worse than Random search), × the mean of a no significant effect size.
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Fig. 5. Effect size A12 of EA X vs. Random testing. Please refer to Fig. 4 for an explanation of each symbol.

Table 5
Pairwise comparison of all many objective algorithms. “Better than” and “Worse than” give the number of comparisons for which the best EA is statistically
significantly (i.e., p-value<0.05) better and worse, respectively. Columns A12 give the average effect size.

Tourn. Branch Overall Better Worse

Algorithm position cov. cov. A12 than A12 than A12

Search budget of 60 s – Single-criteria
MOSA 2 0.82 – 0.63 370 / 924 0.86 51 / 924 0.23
DynaMOSA 1 0.82 – 0.66 391 / 924 0.87 31 / 924 0.26
LIPS 4 0.62 – 0.24 40 / 924 0.83 614 / 924 0.09
MIO 3 0.75 – 0.48 196 / 924 0.89 301 / 924 0.18

Search budget of 60 s – Multiple-criteria
MOSA 2 0.79 0.81 0.55 212 / 616 0.85 140 / 616 0.21
DynaMOSA 1 0.84 0.86 0.71 352 / 616 0.85 15 / 616 0.20
LIPS – – – – – – – –
MIO 3 0.68 0.71 0.25 16 / 616 0.80 425 / 616 0.13
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(b) DynaMOSA.
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Fig. 6. Proportion of classes that have an average branch coverage (averaged out of 30 runs on all their classes) within each 10% branch coverage interval. X-labels
show the upper limit (inclusive). For example, the group 30% represents all the classes with an average branch coverage greater than 20% and lower than or equal to
30%.
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(b) DynaMOSA.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
at

io
 o

f C
la

ss
es

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.01 0.01 0.03
0.08

0.13
0.16 0.14

0.21 0.21

(c) MIO.

Fig. 7. Proportion of classes that have an average overall coverage (averaged out of 30 runs on all their classes) within each 10% overall coverage interval. X-labels
show the upper limit (inclusive). For example, the group 30% represents all the classes with an average overall coverage greater than 20% and lower than or equal to
30%.
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criteria: Standard GA, Monotonic GA, ( +μ λ) EA, and (μ, λ) EA (see
Fig. 11).

RQ4: DynaMOSA outperforms any EA at optimising test suites for
individual and multiple criteria.

4.5. Discussion

Given the results of our study, we now discuss some of the im-
plications and insights.

4.5.1. Does the choice of evolutionary algorithm matter?
In line with common wisdom on evolutionary algorithms, there is

not a single EA that works best in all scenarios. Our experiments do,
however, provide evidence that the choice of algorithm has a sub-
stantial impact in the coverage achieved in test generation. For in-
stance, the range of branch coverage achieved by each EA for single

criteria goes from 61% ( + λ λ1 ( , ) EA) up to 82% (DynaMOSA), and the
overall coverage for multiple criteria from 54% up to 86% (see Fig. 2).
Thus, clearly the choice of evolutionary algorithm matters.

4.5.2. Does the representation of individuals in an evolutionary algorithm
matter?

All EAs except MOSA, DynaMOSA, LIPS, and MIO represent the
individuals of a population as test suites (i.e., a sets of test cases). On
the other hand, algorithms such as MOSA, DynaMOSA, LIPS, and MIO
represent individuals as test cases. An interesting question for future
work therefore is to study the influence of the representation on the
effectiveness of the search.

4.5.3. Is there room for improvements?
Table 7 reports the number of classes under test to which an EA X

performed significantly better than all the other evaluated EAs. For
instance, for single criteria DynaMOSA performed significantly better

Table 6
Comparison of evolutionary algorithms on whole test suites optimisation and many-objective optimisation algorithms of test cases. Statistically significant effect sizes
are shown in bold.

Branch Overall vs. MOSA vs. DynaMOSA vs. LIPS vs. MIO

Algorithm cov. cov. A12 p A12 p A12 p A12 p

Search budget of 60 s – Single-criteria
MOSA 0.82 – – – 0.47 0.31 0.78 0.05 0.64 0.15
DynaMOSA 0.82 – 0.53 0.31 – – 0.78 0.05 0.65 0.12
LIPS 0.62 – 0.22 0.05 0.22 0.05 – – 0.28 0.08
MIO 0.75 – 0.36 0.15 0.35 0.12 0.72 0.08 – –
Standard GA 0.79 – 0.43 0.16 0.41 0.15 0.77 0.05 0.56 0.17
Monotonic GA 0.79 – 0.42 0.15 0.40 0.15 0.76 0.06 0.56 0.15
Steady-State GA 0.76 – 0.36 0.10 0.35 0.11 0.74 0.09 0.47 0.13

+ λ λ1 ( , ) GA 0.61 – 0.28 0.10 0.28 0.09 0.50 0.10 0.35 0.14
( +μ λ) EA 0.79 – 0.44 0.15 0.42 0.15 0.77 0.05 0.58 0.15
(μ, λ) EA 0.81 – 0.47 0.17 0.45 0.15 0.79 0.05 0.61 0.17
Breeder GA 0.72 – 0.32 0.10 0.31 0.10 0.68 0.08 0.43 0.14
Cellular GA 0.67 – 0.25 0.06 0.24 0.05 0.63 0.09 0.34 0.09
CRO 0.74 – 0.36 0.11 0.34 0.11 0.71 0.07 0.48 0.16

Search budget of 60 s – Multiple-criteria
MOSA 0.79 0.81 – – 0.37 0.17 – – 0.72 0.10
DynaMOSA 0.84 0.86 0.63 0.17 – – – – 0.78 0.09
LIPS – – – – – – – – – –
MIO 0.68 0.71 0.28 0.10 0.22 0.09 – – – –
Standard GA 0.71 0.76 0.35 0.10 0.29 0.08 – – 0.60 0.14
Monotonic GA 0.71 0.75 0.35 0.10 0.28 0.09 – – 0.58 0.13
Steady-State GA 0.65 0.70 0.27 0.09 0.22 0.05 – – 0.47 0.11

+ λ λ1 ( , ) GA 0.48 0.54 0.17 0.05 0.14 0.04 – – 0.24 0.08
( +μ λ) EA 0.72 0.77 0.37 0.12 0.30 0.09 – – 0.63 0.11
(μ, λ) EA 0.72 0.77 0.37 0.14 0.30 0.09 – – 0.62 0.13
Breeder GA 0.66 0.71 0.28 0.10 0.23 0.07 – – 0.48 0.13
Cellular GA 0.61 0.66 0.22 0.07 0.18 0.04 – – 0.40 0.13
CRO 0.69 0.73 0.32 0.11 0.26 0.09 – – 0.53 0.12
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Fig. 8. Effect size A12 of EA X vs. MOSA. Please refer to Fig. 4 for an explanation of each symbol.
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than all the other EAs for 21 classes, (μ, λ) EA for 5 classes, MIO for 3
classes, MOSA performed significantly better for 2 classes, and Standard
GA, Monotonic GA, and Steady-State GA for only 1 class. Considering
that there are classes on which other EAs (e.g., MIO) performed better
than DynaMOSA, there might be potential to improve DynaMOSA by
incorporating some of MIO’s features into DynaMOSA. For example,
rather than generating an offspring based on the population, in each
iteration DynaMOSA could (given a certain probability) sample in-
dividuals, that still do not satisfy some coverage goals, from the archive
as MIO does. There may also be potential to develop entirely new
search algorithms tailored for test generation.

4.5.4. Technical limitations
Overall, there is a large number of classes under test for which EAs

were able to achieve high coverage. For example, DynaMOSA covered

half of all classes under test with a branch coverage between 90% and
100%. However, there are some classes for which all EAs and random
approaches evaluated in our empirical study failed to achieve any
substantial coverage due to limitations of the test generation tool.
Fig. 12 shows the 28 classes on which all EAs and all random ap-
proaches failed to achieve more than 25% branch coverage. We looked
closer at three problematic classes that stand out particularly:

1. Battle class from project feudalismgame, which represents the
largest area in the figure. It consists of 786 branch goals, however
only 1% of all goals have been covered. Despite the fact the class
Battle is composed by eight public methods, all of them are in-
voked with Java reflection as described in the following snippet of
code:
Thus, in order to cover the methods of the class under test and
therefore their branches, EVOSUITE would have to generate a string
parameter exactly as the name of one of the methods. When a string
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Fig. 9. Effect size A12 of EA X vs. DynaMOSA. Please refer to Fig. 4 for an explanation of each symbol.
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Fig. 10. Effect size A12 of EA X vs. LIPS. Please refer to Fig. 4 for an explanation
of each symbol.
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Fig. 11. Effect size A12 of EA X vs. MIO. Please refer to Fig. 4 for an explanation of each symbol.

Table 7
Number of classes on which an EA X performed significantly better than all the
other evaluated EAs. Note: for multiple criteria, no EA performed significantly
better than all the other evaluated EAs for any class under test (CUT).

Branch Overall

Algorithm cov. σ CI cov. σ CI A12 #CUT

Search budget of 60 s – Single-criteria
Standard GA 1.00 0.01 [1.00, 1.00] – – – 0.94 1
Monotonic GA 0.93 0.08 [0.90, 0.96] – – – 0.76 1
Steady-State GA 0.65 0.05 [0.63, 0.67] – – – 0.84 1
(μ, λ) EA 0.67 0.23 [0.59, 0.75] – – – 0.85 5
MOSA 0.85 0.08 [0.82, 0.88] – – – 0.89 2
DynaMOSA 0.89 0.06 [0.88, 0.92] – – – 0.93 21
MIO 0.69 0.12 [0.65, 0.74] – – – 0.92 3
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is required, EVOSUITE either randomly generates one (with a certain
probability) or uses static / dynamic seeds from the class under test
[40]. Static seeds are all string constants in the bytecode of the class
under test, and dynamic seeds are strings observed at runtime, for
example, a call to the equals method of String class. It would be
of interest to extend EVOSUITE to also seed the name of methods or
class fields for cases such as this particular one that uses Java re-
flection to invoke methods of the class under test.

2. MP3 class from project celwars2009, which represents the smallest
area in the figure (i.e., the smallest class represented in Fig. 12).

Although it only consists of 10 branch goals, EAs only managed to
achieve a branch coverage of 18%. Although EVOSUITE has been ex-
tended to support environment requirements such as interactions
with the file system, console inputs, and many non-deterministic
functions of the Java Virtual Machine (JVM) such as date and time
[41], this particular class under test requires an MP3 file to suc-
cessfully exercise the code under test, as described in the following
snippet of code:
Without guidance, EVOSUITE is unlikely to produce data that re-
presents valid MP3 files. To increase the adoption of EVOSUITE, it
would be of interest to extend it to generate not only music files, but
also other types of files, e.g., image files that could be required to
test a graphics editor software.

3. MessageList class from project bpmail. Despite the fact that it
only consists of 24 branch goals, no EA or random approach was
able to cover any goal at all. MessageList is an abstract class for
which there is no concrete class, i.e., a non-abstract class that ex-
tends it, in the project. Therefore, no new objects of type
MessageListcould have been created. Although EVOSUITE has been
extended to mock certain type of classes, e.g., interfaces [42], it will
have to be further extended to handle cases such as this one, i.e., an
abstract class without a concrete class to instantiate.

These examples suggest that there are fundamental technical chal-
lenges sometimes prohibiting high code coverage in practice; the choice
of search algorithm in such cases is minor. Consequently, it will be
important to drive research not only on algorithmic improvements, but
to also accompany these improvements with advances in the en-
gineering of test generation tools.

5. Related work

Although a common approach in search-based testing is to use
genetic algorithms, numerous other algorithms have been proposed in
the domain of nature-inspired algorithms, as no algorithm can be best
on all domains [34]. Many researchers compared evolutionary algo-
rithms to solve problems in domains outside software engineering
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Fig. 12. Classes on which all evaluated EAs and random approaches achieved less than 25% branch coverage. The area of each box is proportional to the number of
branches in each class, and the colour represents the coverage achieved averaged over 30 repetitions.

public class ArrayByteList_ESTest {

@Test

public void test0() throws Throwable {

ArrayByteList arrayByteList0 = new ArrayByteList();

arrayByteList0.ensureCapacity(550);

assertEquals(0, arrayByteList0.size());

}

@Test

public void test1() throws Throwable {

ArrayByteList arrayByteList0 = new ArrayByteList();

arrayByteList0.add((byte) (-113));

arrayByteList0.add(0, (byte)0);

byte byte0 = arrayByteList0.removeElementAt(0);

assertEquals(1, arrayByteList0.size());

assertEquals((byte)0, byte0);

}

}

Listing 1. Example of a test suite (with only a subset of test cases) auto-
matically generated by EVOSUITE [2] for ArrayByteList class of project
Apache Commons Collections.
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[43–45]. Within search-based software engineering, comparative
studies have been conducted in several domains such as discovery of
software architectures [46], pairwise testing of software product lines
[47], test case selection [48], or finding subtle higher order mutants
[49].

In the context of test data generation, Harman and McMinn [50]
empirically compared GA, Random testing and Hill Climbing for

structural test data generation. While their results indicate that so-
phisticated evolutionary algorithms can often be outperformed by
simpler search techniques, there are more complex scenarios (e.g., test
data generation for Matlab Simulink models [51]), for which evolu-
tionary algorithms are better suited. Ghani et al. [51] compared Si-
mulated Annealing (SA) and GA for the test data generation for Matlab
Simulink models, and their results show that GA performed slightly

// Arguments for battle follows the following order: 1) Method name (attack

// target), e.g., vassal; 2) Attacker’s Name

public void perform(Collection args) {

try {

Iterator argsIter = args.iterator();

// The following will call a method dinamically according to the item

// the player wants to buy

Class aMethod = this.getClass().forName("feudalism.Battle");

Class[] argType = {String.class};

Method methodObj = aMethod.getMethod((String)argsIter.next(), new

Class[]{Collection.class});

methodObj.invoke(this, args);

GameAutoActions.saveAll();

} catch (Exception e) {

e.printStackTrace();

} }

Listing 2. Piece of code from class Battle of project feudalismgame.

public class MP3 extends Thread {

AudioInputStream in = null;

AudioInputStream din = null;

String filename = "";

public MP3(String filename) {

this.filename = filename; this.start();

}

public void run() {

AudioInputStream din = null;

try {

File file = new File(filename);

AudioInputStream in = AudioSystem.getAudioInputStream(file);

AudioFormat baseFormat = in.getFormat();

// +18 lines of code that are never executed because ’file’ does not

// point to a valid mp3 file

} catch (Exception e) {

e.printStackTrace();

} finally {

if (din != null) {

try { din.close(); } catch(IOException e) { }

}

} } }

Listing 3. Piece of code from class MP3 of project celwars2009.
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better than SA. Sahin and Akay [52] evaluated Particle Swarm Opti-
misation (PSO), Differential Evolution (DE), Artificial Bee Colony,
Firefly Algorithm and Random search algorithms on software test data
generation benchmark problems, and concluded that some algorithms
performs better than others depending on the characteristics of the
problem. Varshney and Mehrotra [53] proposed a DE-based approach
to generate test data that cover data-flow coverage criteria, and com-
pared the proposed approach to Random search, GA and PSO with re-
spect to number of generations and average percentage coverage. Their
results show that the proposed DE-based approach is comparable to
PSO and has better performance than Random search and GA. In con-
trast to these studies, we consider unit test generation, which arguably
is a more complex scenario than test data generation, and in particular
local search algorithms are rarely applied.

Although often newly proposed algorithms are compared to random
search as a baseline (usually showing clear improvements), there are
some studies that show that random search can actually be very effi-
cient for test generation. In particular, Shamshiri et al. [5] compared
GA against Random search for generating test suites, and found almost
no difference between the coverage achieved by evolutionary search
compared to random search. They observed that GAs cover more
branches when standard fitness functions provide guidance, but most
branches of the analyzed projects provided no such guidance. Similarly,
Sahin and Akay [52] showed that Random search is effective on simple
problems.

Recently, Scalabrino et al. [27] compared LIPS (Linearly In-
dependent Path-Based Search) and MOSA (Many-Objective Sorting Al-
gorithm) [9] with respect to generating test data for C programs. They
used 35 simple C functions extracted from different open-source C li-
braries on their evaluation. Results show that there are no major dif-
ferences between LIPS and MOSA when it comes to branch coverage.
However, authors found that LIPS outperforms MOSA with respect to
running time, but MOSA produces shorter test suites. Motivated by the
several threats to the validity of such empirical evaluation (e.g., most
subjects are trivial and can be fully covered in a few seconds), Pa-
nichella et al. [28] replicated this empirical study by comparing LIPS
and MOSA in different settings: LIPS were implemented within EVOSUITE

[2] and 33 functions from the original benchmark were implemented as
Java static methods. Additionally, 37 static methods were randomly
selected from open source libraries, which means the evaluation was
performed over 70 subjects. Results show that the new LIPS im-
plementation is superior than the original implementation given the
flexibilities provided by EVOSUITE. They noticed that the new LIPS im-
plementation reached higher branch coverage using less time budget.
Despite these improvements, results show that MOSA is more effective
and efficient than LIPS when new and more complex subjects are
considered.

To the best of our knowledge, no study has been conducted to
evaluate several different evolutionary algorithms in a whole test suite
generation context and considering a large number of complex classes.
As can be seen from this overview of comparative studies, it is far from
obvious what the best algorithm is, since there are large variations
between different search problems.

6. Conclusions

Although evolutionary algorithms are commonly applied for whole
test suite generation, there is a lack of evidence on the influence of
different algorithms. Our study yielded the following key results:

• The choice of algorithm can have a substantial influence on the
performance of whole test suite optimisation, hence tuning is im-
portant. While EVOSUITE provides tuned default values, these values
may not be optimal for different flavours of evolutionary algorithms.

• Although previous studies showed little benefit of using a GA over
random testing, our study shows that on complex classes and with a

test archive, evolutionary algorithms are on average superior to
random testing and random search.

• The Dynamic Many Objective Sorting Algorithm (DynaMOSA) is
superior to whole test suite optimisation and other many objective
search algorithms.

It would be of interest to extend our experiments to further search
algorithms. In particular, the use of other non-functional attributes such
as readability [54] suggests the exploration of multi-objective algo-
rithms. Considering the variation of results with respect to different
configurations and classes under test, it would also be of interest to use
these insights to develop hyper-heuristics that select and adapt the
optimal algorithm to the specific problem at hand.
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